GAS IN SPIRAL GALAXY GROUPS: THE COS GTO TEAM Survey of QSO/Galaxy Pairs

(Targeted Galaxies are Late-Type at $L < L^*$)

COS GTO TEAM QSO/GALAXY SURVEY:

1. "TARGETED" COS QSO/GALAXY PAIRS (Stocke & Keeney primaries) 12 TARGETS, 11 GALAXIES PROBED, 13 ABSORBERS DETECTED. $L_{GALAXY} = 0.003 \text{ TO } 0.8 \text{ L}^*$ SFR: from $< 10^{-3} \text{ TO } 1 \text{ M}_{\odot} \text{ yr}^{-1}$

"SERENDIPITOUS" STIS QSO/GALAXY PAIRS (Keeney, Stocke, Danforth, Syphers & Yamamoto primaries)
 TARGETS OBSERVED 42 CGM Absorbers Detected.
 WITH STIS E140M GRATING AT SNR ~ 5—15 PER RESSEL
 (500 absorbers total at log N_{HI} ≥ 13.0 [Danforth & Shull 2008; Tilton et al. 2013] & 700 galaxies ≤ 1 Mpc from the sightline [Keeney, in prep])
 L_{GALAXY} = 0.01 TO 9 L*

[see Stocke et al. 2013 for details of this survey]

Covering factors very high ($^{\sim}100\%$) inside 1 VIRIAL RADIUS for L > 0.1L* galaxies; $^{\sim}50\%$ for dwarfs \rightarrow filling factor of clouds is substantial.

PROBING THE CGM: THE 10% OF Ly α ABSORBERS CLOSEST TO GALAXIES

OVI best indicator of Spread of Metals: Probably due to higher lonization parameter (lower densities) further from galaxies

CGM Absorbers: Location and Relative Radial Velocities:

X-AXIS: Impact Parameter/Virial Radius . Y-AXIS: Radial Velocity Difference / Escape Velocity

Isolated Low Surface Brightness Galaxy Highly-ionized gas at $|\Delta v|$ = 9 km s⁻¹ Probably will not escape into IGM

Total Mass in Warm CGM Clouds

- Covering fractions of $\sim 100\%$ \Rightarrow given the observed range of cloud sizes, this high covering requires : a volume filling factor of $\sim 5\%$
- Cloud size of 0.1--30 kpc (diameter) based on photo-ionization modeling → ~ 4,000 "warm" clouds (> 1 kpc) reside within R_{virial} for super-L* galaxies (fewer for smaller galaxies).
- Individual clouds have masses of $\sim 10^{4-8} \, \mathrm{M}_{\odot}$
- Thus, the warm CGM of each L* galaxy has a TOTAL mass of ~ 8
 × 10⁹ M_o → ~ 50 % of the stellar mass of the galaxy
- These more distant CGM clouds have 10X more mass than the SiIII HVCs close around the Milky Way (Shull, Collins, & Giroux 2009; Howk & Lehner 2011)

PG 1116+215 SIGHTLINE S/N ~ 40:1

@ Z=0.138

LOW C IONS:

b = 10 km s⁻¹ \rightarrow b_{HI} = 34 km s⁻¹

Charles Danforth, trail runner and BLA finder (delaxe)

OVI GIVES:

 $b = 34 \text{ km s}^{-1}$

 \rightarrow

 $b_{HI} = 130 \text{ km s}^{-1}$

BOTH ABSORBERS ARE ASSOCIATED WITH SMALL SPIRAL-RICH GROUPS OF GALAXIES OF COMPARABLE RICHNESS (5 OR 6 AT L > 0.3L*)

But PG1116 group has a higher velocity dispersion:

$$\sigma$$
 = 70 km/s
predicts b(HI)= 85 km/s
and log T ~ 5.85

 $\sigma = 70 \text{ km/s}$:

predicts b(HI)=85 km/s and $\log T \sim 5.85$, which can be hidden **EASILY** in the Ly alpha profile

HE 0153-4520: z=0.226 HI + OVI SYSTEM: BROAD Ly α + OVI on top of a narrower H I absorber ! (S/N ~ 34:1)

ALSO HAS: C II, C III, N II, N III, Sii II, Si III → Log U = -2.6 → Cannot account for O VI!

BROAD ABSORBER: $\log N_{HI} = 13.6$

and with b=110: km/s

O VI: log N=14.2 and b=37 km/s

b-values → log T ~ 6.2 °K:

O VI velocity offset: 10—15 km/s

IMPLICATIONS if BLA systems are SPIRAL-RICH GALAXY GROUP GAS

WHAT WE SEE

WHAT MULCHAEY et al (1996) predicted

```
\begin{array}{ll} \log T = 6.1 \ \text{K} & \log T = 6.3 \ \text{K} \\ \text{(based on b}_{\text{HI}} \approx 100 \ \text{km/s)} & \text{(based on } \sigma \approx 100 \ \text{km/s)} \\ \log N_{\text{H}} = 19.9 \ \text{cm}^{-2} & \log N_{\text{H}} \approx 20 \ \text{cm}^{-2} \end{array}
```

```
assumed size (radius) \approx 400 \text{ kpc} inferred gas mass \approx 10^{10-11} \text{ M}_{\odot}
```

THEN: For the # density of spiral-rich galaxy groups ≈ 10⁻³ Mpc⁻³

→Ω_b ≈ 20% of total {SOLVES SPIRAL GALAXY BARYON DEFICIT PROBLEM & HELPS SOLVE COSMIC BARYON PROBLEM}

1. A few BLAs and broad shallow OVI absorbers have been found in high-S/N spectra.

For example, here is an unusual example with very broad, shallow OVI and NO HI Lyman alpha \rightarrow T \approx 10^{6.0-6.5} K (Savage et al. 2010 ApJ 719, 1526).

Preliminary & uncertain very broad (b > 85 km/s) BLA accounting yields

dN/dz (BLAs) = 2—6 → estimated size of absorbing region at 100% covering factor is R ~ 500—1000 kpc, assuming that all spiral galaxy groups have such gas (ρ ~ 10⁻³ Mpc⁻³).

- 1. A few BLAs and broad shallow OVI absorbers have been found in high-S/N spectra.
- 2. Warm, photo-ionized CGM clouds have relatively constant internal pressures out to a virial radius away from their nearest galaxies → in pressure equilibrium with a hotter, diffuse gas which has a relatively constant pressure over a region > virial radius in extent (see Fang, Bullock & Boylan-Kolchin 2013 ApJ for application to the Local Group)

- 1. A few BLAs and broad shallow OVI absorbers have been found in high-S/N spectra.
- 2. Warm, photo-ionized CGM clouds have relatively constant internal pressures .
- 3. Observational extrapolation from elliptical-dominated small groups whose hot gas is observed in X-ray bremsstrahlung at $\log L_x = 40.3-43$ ergs s⁻¹ (Mulchaey 2000 Ann Revs Astr Ap). Observed properties below are obtained by very different methods:

MASS IN SOLAR MASSES	ELLIPTICAL GROUPS	SPIRAL GROUPS
MASS IN STARS	4 X 10 ¹¹ TO 3 X 10 ¹²	3 X10 ¹⁰ TO 9 X 10 ¹¹
MASS IN GAS	5 X 10 ¹⁰ TO 2.5 X 10 ¹²	2 X10 ¹⁰ TO 7 X 10 ¹¹
TOTAL DYNAMICAL	~ 1013	~ 10 ¹³
TOTAL BARYONS	~ 1012.3	~ 1012.3
METALLICITY	FROM 10-20% TO 50-60%	<10% TO >100% Solar
TEMPERATURE	5 x 10 ⁶ to 5 x 10 ⁷ K	7 x 10 ⁵ to 5 x 10 ⁶ K
Velocity dispersion	100—600 km/s	50—150 km/s
Extent	0.1—0.6 R(virial)	~ R(virial)

- 1. A few BLAs and broad shallow OVI absorbers have been found in high-S/N spectra.
- 2. Warm, photo-ionized CGM clouds have relatively constant internal pressures .
- 3. Observational extrapolation from elliptical-dominated small groups.
- 4. Theoretical Expectations (e.g., McGaugh et al. 2000; Klypin et al. 2001) are that spiral galaxy groups should be nearly "closed boxes" and so should contain the cosmic ratio (5:1) of dark matter to baryons.

*** LITTLE INDICATION FOR GAS ESCAPING OR FALLING IN AT LARGE VELOCITIES
SPIRAL GALAXY GROUP GAS PROBABLY COMES FROM GALAXIES IN THE GROUP

Is Absorbing Gas Infalling or Outflowing?

3D orientation + assumption that cloud motion is nearly perpendicular to galaxy disk + sign of galaxy/cloud velocity difference → definitive infall/outflow discrimination.

Ways to Determine Orientation:

- 1.High-res Imaging to look at distribution of H II regions (numbers and integrated luminosities).
- 2. GALEX NUV/FUV image ratio.
- 3. High-res Spectroscopy to look at Balmer decrement as a function of position in the galaxy.

SUMMARY

- 1. HST/COS & STIS UV SPECTRA SAMPLE THE CGM OF LOW-Z GALAXIES at very high probability given b < R_virial
- 2. BARYON CENSUS IN MASSIVE (~2L*) SPIRALS:
- 20% STARS & DISK GAS (Fukugita, Hogan & Peebles)
- 15% CGM WARM AND OVI-ABSORBING GAS (COS/GTO + Tumllinson et al 2011)
- < 10% CORONAL GAS (Anderson & Bregman 2013)</p>
- → ~50% "MISSING" BUTHOT GAS AT 10⁵ °K FILLING SPIRAL GROUPS !! (Savage et al 2010; Stocke et al . 2013; Stocke et al. in prep)
- 3. HOT SPIRAL GROUP ICM CAN CONTRIBUTE ≥ 20% TO COSMIC BARYON INVENTORY
- 4. BASICS OF GALACTIC CHEMICAL EVOLUTION CONFIRMED:
- LARGE RESERVOIR OF CGM GAS FOR ACCRETION.
- RECYCLING ("GALACTIC FOUNTAINS"), UNBOUND OUTFLOW ("WINDS") & INFALL ("COLD ACCRETION") ALL DETECTED AT ~ 1 M_o PER YEAR FOR A MILKY WAY SIZE GALAXY *** can determine infall/outfow specifically in some cases.
- SPECULATION: Development of hot intra-group medium inhibits accretion of cold clouds which causes rapidly declining SFR from z = 1 to 0 (Keres et al.).

