Measuring the Jeans Scale of the IGM with Close Quasar Pairs

Alberto Rorai, Joseph Hennawi, Martin White

arXiv:1305.0210

Baryons in the IGM and the Lyman- α Forest

Dark Matter

Credit: R. Cen

The Jeans Scale as a Thermal Record

$$\lambda_J = \frac{c_s}{1+z} \sqrt{\frac{\pi}{G\rho}} \approx 1.1 \text{ Mpc} \left(\frac{T}{10^4 \text{K}}\right)^{1/2} \left(\frac{1+z}{1+3}\right)^{-1/2}$$

T increases with reionization events \rightarrow Jeans scale increases

Small-scale-structure growth and Galaxy formation suppressed
Filtering mass: 4 – 13

$$M_F = \frac{4}{3}\pi\bar{\rho}\lambda_J^3$$

• Clumpiness of the IGM decreased by truncating power spectrum

$$C = 1 + \sigma_{\rm IGM}^2 \equiv 1 + \int d\ln k \, \frac{k^3 P_{\rm IGM}(k)}{2\pi^2}$$

• The Jeans filtering scale depends on the *whole* thermal history (Gnedin & Hui, 1998), because the sound-crossing time λ_J/c_s is comparable to the Hubble time $\lambda_J^2(t) = \int_0^t f(T(t'))dt'$

•It is a source of uncertainty in IGM studies

The Thermal State of the IGM

The temperature of the IGM provides little information of early reionization events

Probing the IGM with Quasar Pairs

We have a sample of ~ 300 pairs at 1.6 < z < 4.3 (Hennawi et al. 2004,2006,2009)

The effect of temperature on the Lyman- α forest is highly uncertain:

Resolving the Jeans scale in real space can give independent constraints

Methodology: Simulations and Parameter Study

Dark matter only simulation, snapshot at z=3

(Box=50 Mpc/h, n=1500^3)

- 2. Mimic pressure support by a smoothing density with a kernel of radius λ_J
- 3. Definition of the equation of state

$$T(\rho) = T_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma-1}$$

Sensitivity of the LOS Power Spectrum to 1D smoothing

Sensitivity of the LOS Power Spectrum to 1D smoothing

Sensitivity of the LOS Power Spectrum to 3D smoothing

1D Degeneracies Broken by Pairs

Different thermal models compatible with the measured line-of-sight power

The Jeans scale dominates the transverse coherence

Is Cross Power the Optimal Statistic?

Cross power defined in Fourier space as: $\pi_{1,2}(k, r_{1,2}) \propto \Re\{\tilde{F_1}^*(k)\tilde{F_2}(k)\}$

Problem: what is the best estimator for the angular component?

Probability Distribution of Phases

We need a model for the probability distribution

Statistical Distribution of the Phases: Ansatz

• A filament produce absorption features in two close spectra

• Phase differences are driven by the orientation of these filaments

 If the orientation φ is uniformly distributed, then the phase Θ follows a wrapped Cauchy distribution

$$P_{WC}(\theta;\zeta) = \frac{1}{2\pi} \frac{1-\zeta^2}{1+\zeta^2 - 2\zeta\cos(\theta)}$$

Defines a 1-parameter family of functions

Probability Distribution of Phases

Wrapped-Cauchy fits well our simulations

Dependencies of the Phase Distributions

A Bayesian Likelihood for the Phase PDF

1 - A quasar pair data set provides a set of phase differences $\{\Theta(k_i, r_j)\}$

2 - We predict the probability of measuring those phases for each of the 500 thermal models *(Likelihood function)*

$$L(\{\theta\}|T_0,\gamma,\lambda_J)=\prod_{i,j}P(\theta(k_i,r_j)|T_0,\gamma,\lambda_J)$$

3 - Via MCMC techniques, we do a Bayesian analysis of parameter space, estimating:

- Degeneracies between parameters
- Accuracy of a measurement

Estimated Constraints on Thermal Parameters

We assume a sample of 20 spectra (LOS power) 20 pairs (phase difference)

Jeans scale measurements are independent on the equation of state

Accuracy of the Jeans Scale Measurement

We can achieve a precision up to 5% with only 20 pairs

Phase difference statistic is by far more efficient than LOS power and cross-power

Typical precision of IGM temperature measurements is ~ 30%

Noise decreases the precision by few %

Nice Properties of Phase Differences

• Invariant under convolution with symmetric Kernel W

$$W(k) = \int W(x)\cos(kx) + i \int W(x)\sin(kx) = \text{real} \longrightarrow \text{No change in phases}$$

even odd

- <u>Thermal Broadening</u> has very small effect
- <u>Resolution</u> does not need to be precisely modeled
- Sensitive to the Jeans scale also at low k
 - High-resolution spectra are not required if we resolve the Jeans scale in the transverse dimension

$$P(k) = \int_{k}^{\infty} 2\pi k' P_{3D}(k') dk'$$

• Invariant under rescaling of the *normalized* flux

$$\theta_{12}(k) = \arccos\left(\frac{\Re[\tilde{F}_{1}^{*}(k)\tilde{F}_{2}(k)]}{\sqrt{|\tilde{F}_{1}(k)|^{2}|\tilde{F}_{2}(k)|^{2}}}\right)$$

• Robustness to uncertainties in <u>continuum fitting</u>

Sensitivity to the Equation-of-State Parameters

Phases are almost independent of the equation of state

Summary

- The Jeans scale is a key quantity for galaxy formation, reionization and thermal history
- Close QSO pairs will provide a first accurate measurement of the Jeans scale

- The phase analysis is insensitive to the equation of state parameters T_0 and Υ

 Combining this with others ly-α forest statistic can break degeneracies and give tight constraints on the thermal history of the IGM