lhe First Billion Years Simulation SN FFEDBACK AND METAL ENRICHMENT

Claudio Dalla Vecchia Sadegh Khochfar, Jarrett Johnson, Jan-Pieter Paardekooper Andrew Davis, Bhaskar Agarwal

Martin et al., 2005 Murray et al., 2005

Springel & Hernquist, 2003

Dalla Vecchia & Schaye, 2008

formation of the first mini-haloes via molecular cooling transition from pop-III to pop-II star formation formation of the first galaxies and their contribution to reionization early enrichment of the universe

SIMULATIONS

	L [Mpc]	$(N_{GAS})^{1/3}$	$(N_{\rm DM})^{1/3}$
FiBY	8	1368	1368
FiBY-S	4	684	684
ide FiBY-M	8 July 1	684	684
FiBY-X	16	684	684
Fiby-XL	32	684	684
FiBY-LW	4	684	684
Fiby-EQ		684	1521

SIMULATIONS

	L [Mpc]		
FiBY	8	$m_{\rm gas}$	-2h
FiBY-S	4	$1.25 \times 10^3 { m M}_{\odot}$	$4.7 \times 10^1 \mathrm{\ pc}$
Fiby-M	8 th	$1.00 \times 10^4 { m M}_{\odot}$	$9.4 \times 10^1 \mathrm{\ pc}$
FiBY-X	16	$8.02 \times 10^4 { m M}_{\odot}$	$1.9 \times 10^2 \text{ pc}$
FiBY-XL	32	$6.42 \times 10^5 \ \mathrm{M}_{\odot}$	$3.7 \times 10^2 \text{ pc}$
FiBY-LW	4		- the second
Fiby-EQ	4	XX +	

S. Khochfar

S. Khochfar

SIMULATION CODE

Gadget-2, OWLS/GIMIC (Schaye et al, 2010)

pressure dependent SFR (Schaye & Dalla Vecchia, 2008)

enrichment by SN Ia, SN II, AGB (Wiersma et al, 2009)

> metal line cooling (Wiersma, Schaye & Smith, 2009)

kinetic SN II feedback (Dalla Vecchia & Schaye, 2008)

SIMULATION CODE

H₂/HD formations and cooling self-shielding pop-III star formation, yields thermal PISN/SN II feedback (Dalla Vecchia & Schaye, 2012) dust yields, sputtering pop-III BH remnants

Total SN II energy from a SSP

$$\epsilon_{\rm SNII} = 8.73 \times 10^{15} \ {\rm erg \ g}^{-1} \left(\frac{n_{\rm SNII}}{1.736 \times 10^{-2} \ {\rm M}_{\odot}^{-1}} \right) E_{51} \qquad (6 < M_{\rm SNII} / {\rm M}_{\odot} < 100)$$

$$\Delta T = 4.23 \times 10^7 \text{ K} \left(\frac{n_{\text{SNII}}}{1.736 \times 10^{-2} \text{ M}_{\odot}^{-1}} \right) \left(\frac{\mu}{0.6} \right) E_{51} \frac{m_*}{m_{\text{g,heat}}}$$

Total SN II energy from a SSP

$$\epsilon_{\rm SNII} = 8.73 \times 10^{15} \ {\rm erg \ g}^{-1} \left(\frac{n_{\rm SNII}}{1.736 \times 10^{-2} \ {\rm M}_{\odot}^{-1}} \right) E_{51} \qquad (6 < M_{\rm SNII} / {\rm M}_{\odot} < 100)$$

$$\Delta T = 4.23 \times 10^7 \text{ K} \left(\frac{n_{\text{SNII}}}{1.736 \times 10^{-2} \text{ M}_{\odot}^{-1}} \right) \left(\frac{\mu}{0.6} \right) E_{51} \frac{m_*}{m_{\text{g,heat}}}$$

only parameter in the model

Avoiding over-cooling

$$\frac{t_{\rm cool}}{t_{\rm sound}} = 4.5 \times 10^2 \, F(\mu, N_{\rm ngb}, X_{\rm H}) \left(\frac{n_{\rm H}}{0.1 \, {\rm cm}^{-3}}\right)^{-2/3} \left(\frac{T}{10^{7.5} \, {\rm K}}\right) \left(\frac{\langle m \rangle}{7 \times 10^4 \, {\rm M}_{\odot}}\right)^{-1/3}$$

$$n_{\rm H}(t_{\rm cool} = t_{\rm sound}) = 9.7 \times 10^2 \left[F(\mu, N_{\rm ngb}, X_{\rm H}) \right]^{3/2} \left(\frac{T}{10^{7.5} \text{ K}} \right)^{3/2} \left(\frac{\langle m \rangle}{7 \times 10^4 \text{ M}_{\odot}} \right)^{-1/2}$$

Avoiding over-cooling

$$\frac{t_{\rm cool}}{t_{\rm sound}} = 4.5 \times 10^2 \, F(\mu, N_{\rm ngb}, X_{\rm H}) \left(\frac{n_{\rm H}}{0.1 \, {\rm cm}^{-3}}\right)^{-2/3} \left(\frac{T}{10^{7.5} \, {\rm K}}\right) \left(\frac{\langle m \rangle}{7 \times 10^4 \, {\rm M}_{\odot}}\right)^{-1/3}$$

$$n_{\rm H}(t_{\rm cool} = t_{\rm sound}) = 9.7 \times 10^2 \left[F(\mu, N_{\rm ngb}, X_{\rm H}) \right]^{3/2} \left(\frac{T}{10^{7.5} \text{ K}} \right)^{3/2} \left(\frac{\langle m \rangle}{7 \times 10^4 \text{ M}_{\odot}} \right)^{-1/2}$$

density criterion

gas mass density

metal mass density

region centred on the most massive galaxy, evolved from $z\sim30$ to z=6

FIBY

z =6

Stellar Mass Function

Khochfar et al 2013

FIBY

MPE

$$\dot{M}_{\rm gas} = \dot{M}_{\rm acc} - \dot{M}_* + \dot{M}_{\rm *, yield} - \dot{M}_{\rm out}$$

$$\eta = \frac{M_{\rm out}}{\dot{M}_*}$$

 $\dot{M}_{\rm Z,gas} = \dot{M}_{\rm Z,acc} - \dot{M}_{\rm Z*,lock} + \dot{M}_{\rm Z*,prod} - \dot{M}_{\rm Z,out}$

 $\log_{10}\eta = -2$

FUNDAMENTAL PLANE (?)

METALLICITY EVOLUTION

(fits from Maiolino et al., 2008)

METALLICITY EVOLUTION

(Mannucci et al., 2010)

 $12 + \log(O/H) = 8.75$

 $\log_{10} \mathrm{SFR}/(\mathrm{M}_{\odot}/yr) = 2$

 $\log_{10}(M_*/M_{\odot}) = 10.5$

SUMMARY

Feedback model is parameter-free Hint of a feedback fundamental plane No evolution of the metallicity-mass relation FMR is established at z>4

