27.06.2013 IGM workshop Edingburgh

The Helium Reionization Epoch

Keri Dixon

Steve Furlanetto, Andrei Mesinger

What to look forward to...

Background material

Efficient simulations of large-scale structure

Fluctuations in the He-ionizing background

Interpreting the Hell observations

Why care about helium reionization?

Plenty of helium

~Doubles the IGM temperature

Increases mean free path of EUV photons

Learn about quasars

The advantages of helium

The action is lower redshift

Better understanding of IGM

Know more about quasars

COS to directly observe this epoch

The advantages of helium

The action is lower redshift

Better understanding of IGM

Sources + environment = no problem, right?

Know more about quasars

COS to directly observe this epoch

Quasars live in ~ $10^{12} M_{\odot}$ halos

See also observations

How much light?

-2 -6 -8 z = 2.0 -10 -2 -6 log($\phi(L)$) [Mpc⁻³ log(L)⁻¹] -8 -10 z = 3.0 -2 -4 -6 -8 z = 4.0 -10 -2 -6 -8 z = 5.0 -10 43 44 45 46 47 log(L_{15μ}) [erg s⁻¹] 12 14 -18 -20 -22 -24 -26 -28 41 42 43 44 45 46 41 42 43 44 45 46 8 10 log(L_{2-10 keV}) [erg s⁻¹] log(L_{bol}/L_o) M_B $log(L_{0.5-2 \text{ keV}})$ [erg s⁻¹]

Hopkins et al (2007)

Quasars have range of a

Exact shape of power law?

Telfer et al (2002)

How far does this light go?

Need the mean free path, which is difficult. See every other talk this week.

Efficient methods for large-scale structure and helium reionization

Replace complexity with simplicity

Cooray, Sheth (2002)

(1) Create initial linear density and velocity fields

(2) Filter halo using the excursion-set formalism

(3) Adjust halo locations using their linear-order displacements

Find the dark matter halos

Mesinger, Furlanetto (2007) Based DexM for HI reionization

Adjust parameters to match N-body simulations at z = 3

Fast and efficient

Find the ionization field

Draw ionized spheres around the halos

Essentially, the number of ionizing photons > HeII atoms

Flexibility to vary the ionizingsource model

Size of bubbles depends on number density of hosts

250 Mpc

Active quasars - empirical approach

Find the number of quasars from QLF *Hopkins et al. (2007)*

Randomly sample QLF to get luminosity

Place in random halo above mass threshold

Active quasars - empirical approach

Find the number of quasars from QLF *Hopkins et al. (2007)*

Randomly sample QLF to get luminosity

Place in random halo above mass threshold

Calculate the Hell photoionization rate distribution

Calculating the photoionization rate

Add up the specific intensity from each quasar, using a frequency-dependent mean free path

$$J = \sum_{i} \frac{L_i}{(4\pi r_i^2)} e^{-r_i/\lambda_{\rm mfp}}$$

$$\lambda_{\rm mfp} = 60 \left(\frac{\nu}{\nu_{\rm HeII}}\right)^{1.5} \rm Mpc$$

Calculating the photoionization rate

Add up the specific intensity from each quasar, using a frequency-dependent mean free path

$$J = \sum_{i} \frac{L_i}{(4\pi r_i^2)} e^{-r_i/\lambda_{\rm mfp}}$$

$$\lambda_{\rm mfp} = 60 \left(\frac{\nu}{\nu_{\rm HeII}}\right)^{1.5} \rm Mpc$$

Integrate the usual over all frequencies above v_{min}

$$\Gamma = 4\pi \int_{v_{\min}}^{\infty} \frac{J\sigma}{hv} dv$$

Calculating the photoionization rate

Add up the specific intensity from each quasar, using a frequency-dependent mean free path

$$J = \sum_{i} \frac{L_i}{(4\pi r_i^2)} e^{-r_i/\lambda_{\rm mfp}}$$

$$\lambda_{\rm mfp} = 60 \left(\frac{\nu}{\nu_{\rm HeII}}\right)^{1.5} \rm Mpc$$

during: $\tau(v_{\min}) = 1$

 $v_{\rm min} > v_{\rm HeII}$

Integrate the usual over all frequencies above v_{min}

$$\Gamma = 4\pi \int_{v_{\min}}^{\infty} \frac{J\sigma}{hv} dv$$

post-reionization:

$$v_{\rm min} = v_{\rm HeII}$$

Photoionization rate distribution

Post-reionization is narrow and nearly analytic

Bimodal during reionization

By x_{HeII} = 0.50, low Γ from high-v photons dominates

Mean free path matters most

Wide \rightarrow narrow: $\lambda_{mfp} 15 \rightarrow 80$

Maybe also QLF

KD, Furlanetto, Mesinger (2013)

Post-reionization

80% ionized

What can we learn from observations during this era? Hell optical depth

Not-so-recent COS measurements

Large variations along LOS

Post-reionization

80% ionized

Significant spread post-reionization

Substantial tail at high τ develops at lower x_{HeIII}

Low τ also more likely

Scale matters!

$\tau >> \tau_{avg}$ above $z \sim 2.7$

But also lower!

Large **t** unlikely post-reionization

If $\langle \tau \rangle = 2$, p($\tau > 4$) ~ 5% post-reionization

> p(τ > 4) ~ 14% x_{HeII} = 0.20

Spread **increases** during reionization

KD, Furlanetto (2013)

Conclusions and summary

Consensus forming for z_{reion} ~ 2.8

Post-reionization:

Expect significant fluctuations in τ and Γ Large segments of low transmission unlikely

During reionization:

Greater fluctuations in τ and Γ High opacity measurements more likely

Present and future:

Many more COS lines of sight Other metal lines, proximity effect, heating...