

Rheinische Friedrich-Wilhelms-Universität Bonn

The imprint of inhomogeneous Hell reionization on the HI and Hell Lyα forest

(arXiv:1306.5745)

Michele Compostella (AlfA)

Sebastiano Cantalupo (UCSC), Cristiano Porciani (AlfA)

Intergalactic Interactions: A Higgs Centre Workshop on the Intergalactic Medium Edinburgh, 27.06.2013

Outline

Numerical Methods:

- Hydrodynamical simulations
- Calibration of the sources
- Radiative Transfer

Global ionization history:

• Bimodal distribution of the temperature

> Observational implications:

Combining datasets with different ionization history

Methods

Calibration of the sources of UV radiation

Global Ionization History

Reionization histories

Large volumes 1.0 L1, L1b: PLE model 0.8 L2 : PDE model 0.6 0.4 Helll filling factor L1 L2 0.2 L1b 0.0 **Small volumes** 0.8 PLE model for all 0.6 simulations 0.4 S1H (S1, S2, S2b) S2H 0.2 S2Hb 0.0 3.0 3.5 2.5

(Compostella et al. 2013)

 \mathbf{Z}

4.0

Reionization history

HellI: 00%

The imprint of inhomogeneous Hell reionization on the HI and Hell Lya forest

Reionization history

Bimodal equation of state

In case you missed it

Global Ionization History

Simulated spectra

Hell effective optical depth

100 spectra, $\Delta z = 0.04$

Flux-transmission windows

Observational Implications

 \mathbf{Z}

Similar reionization histories

Large volumes 1.0 L1, L1b: PLE model 0.8 L2 : PDE model 0.6 0.4 Helll filling factor L1 L2 0.2 L1b 0.0 **Small volumes** 0.8 PLE model for all 0.6 simulations 0.4 S1H (S1, S2, S2b) S2H 0.2 S2Hb 0.0 3.0 3.52.5

Increased scatter in the HI effective optical depth

Doppler *b* parameters

(Compostella et al. 2013)

spectra in the S1H (red) and S2Hb (blue) log (N_{HI}) \leq 14.0 cm⁻² $\Delta b \leq$ 10 km/s

The curvature is sensitive to Hell reionization

The curvature is sensitive to Hell reionization

Summary of the results

- i. Hell reionization is patchy and extended in redshift ($\Delta z \ge 1$). ΔT_0 from z=4 to z=3 between 9,000 and 10,000 K.
- ii. "Normal" equation of state:

iii. Initial stages of Hell reionization are characterized by:

- Increased scatter in the HI effective optical depth
- Increased scatter of the cumulative distributions of the doppler b parameters.
- Decrease of the mean absolute curvature in bins of high transmissivity

For all the details check arXiv:1306.5745