The MiniBooNE Anomaly

Kevin J. Kelly, CERN (with help from Ivan Esteban, OSU, and Joachim Kopp, JGU Mainz/CERN) Mini SBN-TH Workshop, 13 December, 2021

The MiniBooNE* Anomaly

Kevin J. Kelly, CERN (with help from Ivan Esteban, OSU, and Joachim Kopp, JGU Mainz/CERN) Mini SBN-TH Workshop, 13 December, 2021

Outline

MiniBooNE (and other) anomalies 101 Sterile-neutrino Interpretation

Outline

MiniBooNE (and other) anomalies 101 Sterile-neutrino Interpretation

MiniBooNE Anomaly 201
Characteristics of the Excess

Outline

MiniBooNE (and other) anomalies 101 • Sterile-neutrino Interpretation

 MiniBooNE Anomaly 201 • Characteristics of the Excess

 MiniBooNE Anomaly 301 • Other new-physics explanations for MiniBooNE et al?

An incomplete set of oscillation experiments

An incomplete set of oscillation experiments

Liquid Scintillator Neutrino Detector (LSND)

Liquid Scintillator Neutrino Detector (LSND)

Liquid Scintillator Neutrino Detector (LSND)

Observed excess - $87.9 \pm 22.4 \pm 6.0 \longrightarrow P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \approx 2.6 \times 10^{-3}$

Neutrinos (mostly) from pion/muon decay-at-rest — O(30) MeV, roughly 50 meter baseline length.

MiniBooNE Designed to test the LSND anomaly — very different L, E, but similar L/E

MiniBooNE Designed to test the LSND anomaly — very different L, E, but similar L/E

MiniBooNE Designed to test the LSND anomaly — very different L, E, but similar L/E

MiniBooNE Collab., [2006.16883]

Anomalous Appearance – Fourth Neutrino

MiniBooNE Collab., [2006.16883]

- IF coming from oscillations, the results from LSND and MiniBooNE require a new mass eigenstate around the eV scale.
- Combined with the observed invisible width of the Z-boson (LEP), any additional light neutrino(s) must be sterile gauge singlets.

Invoking a New (sterile) Neutrino

$$P\left(\nu_{\mu} \to \nu_{e}\right) = \sin^{2}\left(2\theta_{\mu e}\right)\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E_{\nu}}\right)$$

• Add in a new (fourth) neutrino mass eigenstate with a significantly larger mass than the three "light" ones. This extends the Leptonic mixing matrix to 4x4 instead of 3x3.

Invoking a New (sterile) Neutrino

$$P\left(\nu_{\mu} \to \nu_{e}\right) = \sin^{2}\left(2\theta_{\mu e}\right)\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E_{\nu}}\right)$$

 Add in a new (fourth) neutrino mass eigenstate with a significantly larger mass than the three "light" ones. This extends the Leptonic mixing matrix to 4x4 instead of 3x3.

$$\sin^2 \left(2\theta_{\mu e} \right) \equiv 4 \left| U_{e4} \right|^2 \left| U_{\mu 4} \right|^2$$

 Electron-neutrino appearance is driven by a product of the new matrix elements. Each of these being non-zero predicts electron-neutrino and muonneutrino disappearance at the same neutrino energy/distance.

Consistency in MiniBooNE with four flavours

Two important features overlooked in "simple" appearance assumptions:

- Expectation of appearance signal is predicted based on muon-neutrino background observation (which is modified if muon neutrinos are disappearing) — panel (a) to panel (b).
- Expectation of intrinsic electron- and muon-neutrino backgrounds should be modified if those backgrounds can oscillate — panels (c) and (d).

Electron-Neutrino Disappearance?

Key Challenge: Flux Uncertainties

 $P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 4}|^2 \left(1 - |U_{\alpha 4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$

Key Challenge: Flux Uncertainties

Experiments measure *rates* (product of flux, cross section, and oscillation probability), not probability directly. Constraints on the mixing angle will therefore be limited by uncertainties on fluxes, cross sections, etc.

 $P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 4}|^2 \left(1 - |U_{\alpha 4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$

The Reactor Antineutrino (Rate) Anomaly

Using flux predictions from Mueller et al [1101.2663] and Huber [1106.0687] — significant rate deficit across many baselines.

$$P\left(\nu_{\alpha} \to \nu_{\alpha}\right) = 1 - 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right) \to 1 - 2|U_{e4}|^2 \left(1 - |U_{e4}|^2\right)$$

Giunti et al, [2110.06820]

(large mass-squared splitting)

Flux Re-evaluations

Overall rate anomaly seems to have vanished — larger predicted-flux uncertainties, etc.

Giunti et al, [2110.06820]

Avoiding Uncertainties

source, movable detector, segmented detector...

Make and compare measurements at a variety of distances — movable

Reactor Global Picture

No significant* deviation from expectation!

PROSPECT STEREO DANSS Neutrino 4 NEOS

Muon-Neutrino Disappearance?

MINOS + IceCube

MINOS/MINOS+, [2002.00301]

IceCube Collaboration, [2005.12942]

MINOS + IceCube

MINOS/MINOS+, [2002.00301]

IceCube Collaboration, [2005.12942]

Sterile Neutrino Global Fits ca 2019

17

Dentler et al, [1803.10661]

MiniBooNE Excess Characteristics

Excess with respect to Neutrino* Energy

Excess with respect to Neutrino* Energy

MiniBooNE Collab., [2006.16883]

Excess with respect to Neutrino* Energy

MiniBooNE Collab., [2006.16883]

Excess with respect to Outgoing Lepton Direction

Excess with respect to Outgoing Lepton Direction

MiniBooNE Collab., [2006.16883]

MiniBooNE-DM Operation

MiniBooNE-DM Operation

No Excess Observed!

MiniBooNE-DM Operation

No Excess Observed!

Combined with angular/energy distributions, allows for one to exclude a significant subset of new-physics explanations for the LEE. This includes explanations that arise from neutral meson decays, continuum processes, etc. See Jordan et al, [1810.07185] for more.

Two-Dimensional Distributions

Data

Does this excess follow the expectation from your favorite new-physics explanation?

Excess

Two-Dimensional Distributions

Data

Does this excess follow the expectation from your favorite new-physics explanation?

MiniBooNE Collab., [2006.16883]

Excess

Recent Experimental Results – MicroBooNE

MicroBooNE Photon Analysis

MicroBooNE Collaboration, [2110.00409]

MicroBooNE disfavors the $\Delta \to N\gamma$ explanation of the MiniBooNE anomaly at 94.8% CL.

MicroBooNE Electron Analyses

[2110.13978]

"Inclusive"

MicroBooNE Electron Analyses

"Inclusive"

Complementarity of Inclusive/CCQE

"Inclusive"

[2110.13978]

- Large electron-neutrino and muon-neutrino (not shown) samples.
- Large (expected) excess from muon-neutrino to electron-neutrino oscillation

"CCQE"

[2110.14080]

- Very pure sample, low background expectations.
- Expected excess from muon-neutrino to electron-neutrino oscillation is (relatively) large

Complementarity of Inclusive/CCQE

"Inclusive"

[2110.13978]

- Large electron-neutrino and muon-neutrino (not shown) samples.
- Large (expected) excess from muon-neutrino to electron-neutrino oscillation

"CCQE"

[2110.14080]

- Very pure sample, low background expectations.
- Expected excess from muon-neutrino to electron-neutrino oscillation is (relatively) large

MicroBooNE and Sterile Neutrinos

Argüelles, KJK, et al, [2111.10359]

MicroBooNE and Sterile Neutrinos $P\left(\nu_{\mu} \to \nu_{e}\right) = \sin^{2}\left(2\theta_{\mu e}\right)\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E_{\nu}}\right)$

Argüelles, KJK, et al, [2111.10359]

 $P\left(\nu_{\mu} \to \nu_{e}\right) = \sin^{2}\left(2\theta_{\mu e}\right)\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E_{\nu}}\right)$

 $P(\nu_{\mu} \to \nu_{e}) = 4|U_{\mu4}|^{2}|U_{e4}|^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E_{\nu}}\right)$

$$P\left(\nu_{\mu} \to \nu_{e}\right) = 4|U|$$

Anomalous appearance *requires* disappearance!

$$P(\nu_{\mu} \to \nu_{\mu}) = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

 $P(\nu_e \to \nu_e) = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\mu}}\right)$

 $P\left(\nu_{\mu} \to \nu_{\mu}\right) = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\mu4}}\right)$

Anomalous appearance *requires* disappearance!

 $P(\nu_e \to \nu_e) = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\mu}}\right)$

MicroBooNE, [2110.13978]

Four-Flavor Results

Four-Flavor Results

Four-Flavor, Appearance

Profiling over unseen mixing angle, how does sensitivity change?

Four-Flavor, Appearance

Profiling over unseen mixing angle, how does sensitivity change?

For better or worse, opens up parameter space for consistency between MiniBooNE and MicroBooNE — the MiniBooNE anomaly persists...

Beyond Sterile Neutrinos

Model-Building Explanations of LSND and/or MiniBooNE

From Pedro Machado, Neutrino2020

Model-Building Explanations of LSND and/or MiniBooNE

From Pedro Machado, Neutrino2020

Decaying Sterile Neutrino Hypothesis — Dentler et al, [1911.01427], de Gouvêa et al, [1911.01447]

Model-Building Explanations of LSND and/or MiniBooNE

From Pedro Machado, Neutrino2020

A nice, model-independent approach? Brdar et al, [2007.14411] An "Altarelli Cocktail" of backgrounds in MiniBooNE? Brdar and Kopp, [2109.08157]

Decaying Sterile Neutrino Hypothesis — Dentler et al, [1911.01427], de Gouvêa et al, [1911.01447]

"Dark" Neutrinos

Bertuzzo et al [1807.09877]

Idea: MiniBooNE is actually observing *di-electron* signals from new-physics contributions and can't tell this apart from a standard electron-neutrino signature. Logical next-step test for MicroBooNE after their single-photon and single-electron analyses.

Ballett et al [1808.02915]

Decaying Sterile Neutrinos

Challenging to explain MiniBooNE, LSND, Cosmology, and negative results simultaneously.

Global-fit region constrained by decaying solar neutrinos as well — Hostert and Pospelov, [2008.11851]

anomalous muon-neutrino to electron-neutrino oscillations.

At first glance, the MiniBooNE and LSND excesses appear to be driven from

- anomalous muon-neutrino to electron-neutrino oscillations.
- Under more scrutiny, there are tensions within the sterile-neutrino interpretation of these anomalies.

At first glance, the MiniBooNE and LSND excesses appear to be driven from

- At first glance, the MiniBooNE and LSND excesses appear to be driven from anomalous muon-neutrino to electron-neutrino oscillations.
- Under more scrutiny, there are tensions within the sterile-neutrino interpretation of these anomalies.
- More data and more information (breakdowns of the excess in different variables, etc.) allows for further scrutiny of the MiniBooNE excess.

- At first glance, the MiniBooNE and LSND excesses appear to be driven from anomalous muon-neutrino to electron-neutrino oscillations.
- Under more scrutiny, there are tensions within the sterile-neutrino interpretation of these anomalies.
- More data and more information (breakdowns of the excess in different variables, etc.) allows for further scrutiny of the MiniBooNE excess.
- With more scrutiny, we can consider more interesting explanations let's discuss these explanations next!

- At first glance, the MiniBooNE and LSND excesses appear to be driven from anomalous muon-neutrino to electron-neutrino oscillations.
- Under more scrutiny, there are tensions within the sterile-neutrino interpretation of these anomalies.
- More data and more information (breakdowns of the excess in different variables, etc.) allows for further scrutiny of the MiniBooNE excess.
- With more scrutiny, we can consider more interesting explanations let's discuss these explanations next!

Backup Slides

More MiniBooNE Distributions – Position

More MiniBooNE Distributions – Time

