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Introduction

—

A short intro to LArTPCs - how they work, and which ones we’re talking about
Particle Interactions with matter - what do we expect when photons and
electrons interact in argon?

Electron Photon/separation - methods of telling one from the other

Validation with other samples: Pi-naughts/Michels?

Thoughts on what reconstruction can or cannot do.

Thoughts on future.
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LArTPC operation

Anode wire planes:
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Particle Interactions with Matter (electrons)
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https://arxiv.org/abs/1910.02166

Particle Interactions with Matter (photons)
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https://arxiv.org/abs/1910.02166

Normalised No. Particles

Electron-Photon Separation in Truth: Conversion Gaps

Gap between photon creation and showering follows expected exponential
distribution (Radiation length 14.1 cm) which can be used to differentiate them
from electrons
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What that means in our EM Shower searches

Photon Shower:
Pair Production

Electron Shower Photon Shower:
Compton Scatter

p \p \p
Charged particle Track
track (proton or Track rac

pion) - not always
there



Reality of low energy showers

Event displays of HE and LE showers

15 HE, shower clearly visible.

LE, shower almost looks
like a track.
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dE/dx and gap as shower discrimination

Electron / photon separation
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dE/dx + gap continued

Fully automated reconstruction

dE/dx seems more powerful than gap

New reconstruction available.

Selection stage Electrons  Photons  Other
EM shower selection 951 771 273

dE/dx (only) 65% 27% 52%
Shower-vertex distance (only) 89% 72% 73%
Combined 59% 19% 39%
Shower-vertex distance 89% 53% 64%

(Only, =1 track)
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How things can go wrong (vertex activity, DIC)
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dE/dx: Recent MicroBooNE LEE Results

Energy deposited per length (dE/dx) at start of shower
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Pi® and Photon reconstruction examples
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7%s: What They Look Like

- Two photons, though sometimes not both
easy to find.

- Detached from neutrino interaction point

- In BNB O(50-300) MeV photons.

E, spectrum for v, CC n® events

[ photon spectrum
[ leading photon
[ subleading photon

MicroBooNE Simulation

Fraction of Events
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7° Reconstruction - Status

n° selection
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150 1 B Cosmics Uncertainty t ti
+ wather 4 BNB Data reconstruction...
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- Few degree angular resolution
- 10-20% energy resolution.

Entries / 10 MeV/c?
=
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50 Energy reconstruction in particular still
largely driven by reconstruction
25 1 N inefficiencies.
0 .
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Search for an anomalous excess of charged-current ve\nu_eve interactions without
pions in the final state with the MicroBooNE experiment [2110.14065 hep-ex]


https://inspirehep.net/literature/1954070
https://inspirehep.net/literature/1954070
https://arxiv.org/abs/2110.14065
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Multiple reconstruction paradigms leveraging different techniques and tools.

Examples here are from MicroBooNE LEE analyses, building on EM shower (and =° in particular) reconstruction development
in ICARUS & ArgoNeuT
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https://arxiv.org/abs/2110.11874
https://arxiv.org/abs/2110.13978
https://arxiv.org/abs/2110.14080

Qualitatively same picture for all reconstruction
paradigms: upturn in efficiency where still BNB flux

7° Reconstruction - Limitations of low-energy photons is very high!

Improvements — very large payoff in BSM mis-ID
reduction.

E, spectrum for v, CC n° events 1.0

1 photon spectrum
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Reconstruction and Measurement of O(100) MeV Energy Electromagnetic Activity from m°—yy Decays in the MicroBooNE LArTPC [JINST 15 (2020)
02, P02007 1910.02166 hep-ex]


https://inspirehep.net/literature/1757716
https://arxiv.org/abs/1910.02166

Things that can affect our reconstruction

Recombination
Lifetime/impurities while drifting
Diffusion while drifting
Dynamically Induced Charge
Vertexing

Collecting all of the charge
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Things that can affect our reconstruction
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Things that can affect our reconstruction

MicroBooNE Preliminary

T 2201 okt
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MICROBOONE-NOTE-1026-PUB

Uncalibrated, leads to a position-dependent variation in energy response.

Large impurity concentration — higher effective thresholds further away from TPC wires.

Similar story for Space-Charge effects.

smearing, if uncalibrated
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1026-PUB.pdf

Things that can affect our reconstruction

e Diffusion while drifting

Diffusion changes the shape of pulses on wires.
More diffusion — wider, less peaked pulses.

Impacts pattern-recognition, hit-threshold, and consequently
EM-shower identification and energy reconstruction.

Drift Time (us)
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Things that can affect our reconstruction

e Dynamically Induced Charge

Systematic Source Relative Uncertainty [%]
Interaction 10

(Detector Response 23 ]

Beam Flux 22

POT Counting 2

Cosmic Simulation 4
Out-of-Cryostat Simulation 6

Total 34

After Noise Filtering
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Impact of detector systematics (dominated by DIC in MicroBooNE's first v, MicroBooNE, JINST 13 (2018) 07, P07006 1802.08709

xsec on NuMI

MicroBooNE, Phys.Rev.D 104 (2021) 5, 052002 2101.04228 [hep-ex]

[physics.ins-det]
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https://arxiv.org/abs/2101.04228
https://arxiv.org/abs/1802.08709

Things that can affect our reconstruction

e \ertexing

Correctly reconstructed interaction vertex and EM shower
start-point are key to the primary deliverables hoped for:

- e/ly separation

- Characterization of hadronic activity

- Accurate energy reconstruction

10 cm

BNB Run: 16341 Subrun: 27 Event: 1359
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true y energy [90,100] MeV

Things that can affect our reconstruction o,

175 MicroBooNE simulation
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JINST 15 (2020) 02, P02007 1910.02166 hep-ex]

e Collecting all of the charge
o Multi-Gaussian fitting can perform poorly when multiple energy deposits overlap
o Some charge is below threshold and not picked up by the hit finding
o Some, primarily low enelgy, photons can travel a long distance before interacting and leave
isolated energy deposits {ar from the main shower

Demonstration of MeV-Scale Physics in
Liquid Argon Time Projection Chambers Using ArgoNeuT 26

Phys. Rev. D 99, 012002 (2019), arXiv:1810.06502v1


https://arxiv.org/abs/1910.02166
https://arxiv.org/abs/1810.06502v1

Reconstruction in Development
- Using truth studies to tell us where reconstruction will
be limited by physics and detector construction.

27



Electron-Photon Separation in Truth: dE/dx

Look at the dE/dx for electrons (left) and photons (right) by calculating the median
dE/dx over the wires within 3 cm of the shower start
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Fraction of photons

Electron-Photon Separation in Truth: dE/dx

Compton scatters dominate at low energies
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Electron-Photon Separation in Truth: Angular Dependence

Explore the fraction of single MIP pair-producing photons across detector angles:
Poor performance when particles are (almost) parallel to drift field (0,, = 90°)

Normalised Entries

g—f < 3.0 MeV cm'!

% > 3.0 MeV cm’’

0.045

0.04

0.035 SBND Preliminary Mci

0.03

11 lIII]II

0.025

0.02
0.015
0.01
0.005

00 10 20 30 40 50 60 70 80 90

6y []

Angle WRT beam within the wire plane

Normalised Entries

22 NS LU B U
3—5 < 3.0 MeV cm'!

% > 3.0 MeV cm’’

0.045

0.04

0.035 SBND Preliminary MCS

0.03

0.025

IlIIlIIIlllI]qI

0.02

0.015
0.01
0.005

o0 10 20 30 40 50 60 70 80 90

0yl []

Angle WRT beam in compared to drift field 30



Electron-Photon Separation in Truth: Angular Dependence

Particles (almost) parallel to drift field smear out the dE/dx distribution
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Electron-Photon Separation in Truth: Energy Dependance

When the sub-leading election of the pair-produced is low energy it can travel < 3
cm and create a single MIP peak
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Electron-Photon Separation in Truth: Energy Dependance

This effect strongly correlates with the initial photon energy, degrading
performance at low energy
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Electron-Photon Separation in Truth: Energy Dependance

The overall background rejection for photons is very dependant on energy:
Integrated over BNB energies yields 83% rejection with 95% electron acceptance
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Reconstruction in Development
- Current status of SBN reconstruction

35



Reconstructed Shower Diagram

e Each circle represents a “Hit” (Charge
deposition on a wire)

e Pattern recognition clusters together hits and
matches across planes to create 3D
reconstructed objects (e.g. red hits grouped to ®
make a track) [

e High level reconstruction extracts characteristics
from these 3D objects

e “Cheated” Reconstruction clusters hits based on
underlying Monte Carlo simulation

Shower Start and
Initial Track Hits
Used for dE/dx

*
Vertex and Track ® o

® Shower axis
® .. PY used to o
® o calculate @
o o
° direction
o 000
o Cone defined by
'Y L [ 1 shower length and
o opening angle
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Classification Metrics

Each 3D object is classified as either a track or a shower
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Normalised No. Particles

“Cheated” Reconstruction
clusters hits based on
underlying Monte Carlo

Shower Reconstruction Topological Metrics simulation

Compare the performance between the Current reconstruction and the cheated
pattern recognition (Running the same high level reconstruction algorithms)

15 ~— Current Reco. ﬂ 9:16 ~—— Current Reco.
= 2
= 5 0.14
i ——— Cheated Reco. a ——— Cheated Reco.
2 o —
' SBND Preliminary MC < 0.12 SBND Preliminary MC_
10 = @ ]
= 3 2 o4 -
B g © 7]
I - E 2
- - 2 0.08 — =
-2 | | =] & ]
e 3 0.06 — =
- . 0.04 =
i ’ﬂm o 0.02— =
C N 1 LT O N | .|...|.L-L FE 0: e, CTRA .
0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30 35 40 45 50
Distance from true to reco shower start [cm] Shower Reco-True Direction Difference [ °]

38



Normalised No. Particles

“Cheated” Reconstruction
clusters hits based on
underlying Monte Carlo

Shower Reconstruction dE/dx simulation

Compare the performance between the Current reconstruction and the cheated
pattern recognition (Running the same high level reconstruction algorithms)
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Shower Reconstruction Energy Resolution

“Cheated” Reconstruction
clusters hits based on
underlying Monte Carlo
simulation

Compare the performance between the Current reconstruction and the cheated
pattern recognition (Running the same high level reconstruction algorithms)
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Razzle PID

SBND has developed a Multi-Class
BDT(G) to perform shower PID

This combines the dE/dx, conversion gap,
opening angle and density of a shower
Calculates a score for every shower for

three hypotheses:
o  Electron
o  Photon
o  Other (dominated by misclassified tracks)

Confusion matrix shows performance
when taking hypothesis with largest score
Accompanying track BDT: Dazzle

PID Class

Other

Photon

Electron

SBND Preliminary MC

Other
True Class
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Fraction of True Particles
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First look at e+/e- pairs
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First look at e+/e- pairs

e Simulated e+e- pairs in the SBND
detector

e Fixed 600 MeV and 400 MeV initial
momenta
Fixed, shared starting position

e Varied the opening angle between the
e+/e- pair

e Initial track-like sections of the shower
separate at higher angles, but the shower
cascade can still easily overlap




Future Developments in Shower Reconstruction

45



Future Developments in (SBND) Shower Reconstruction

e Dedicated studies to look at performance of isolated showers

o Pandora heavily relies on hadronic activity for to identify the vertex
o Isolated showers are interesting for both v-e scattering and BSM studies

e Studies on overlapping showers (as shown in the event displays) to study the
separation at which the showers become individually resolvable
e Improvements to the pattern recognition:
o Ongoing work to improve the vertex finding used to “grow the event”
o Exploration of targeted deep learning to augment existing pattern recognition algorithms

m E.g. Semantic segmentation tags hits as track-like or shower-like allowing more
aggressive shower merging whilst protecting track reconstruction quality
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Conclusions

We've gone a long way in EM shower reconstruction.
It is a difficult problem, so we still have a way to go, but situation is promising.
Multiple ideas in reconstruction are progressing:

e we presented primarily Pandora here, but WireCell and Deep Learning
efforts are going on in parallels (some paper links on the next slide).
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Articles Relevant to EM Shower Reconstruction

- First Measurement of Inclusive Electron-Neutrino and Antineutrino Charged Current Differential Cross Sections in Charged Lepton Energy on Argon in
MicroBooNE [2109.06832 hep-ex]

- Measurement of the flux-averaged inclusive charged-current electron neutrino and antineutrino cross section on argon using the NuMI beam and the
MicroBooNE detector [ Phys.Rev.D 104 (2021) 5, 052002, 2101.04228 hep-ex]

- First measurement of electron neutrino scattering cross section on argon [ Phys.Rev.D 102 (2020) 1, 011101 2004.01956 hep-ex]
- First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber [ Phys.Rev.D 95 (2017) 7, 072005 1610.04102 hep-ex]

- Electromagnetic Shower Reconstruction and Energy Validation with Michel Electrons and 1° Samples for the Deep-Learning-Based Analyses in
MicroBooNE [2110.11874 hep-ex]

- Wire-Cell 3D Pattern Recognition Techniques for Neutrino Event Reconstruction in Large LArTPCs: Algorithm Description and Quantitative Evaluation
with MicroBooNE Simulation [2110.13961 physics.ins-det]

- Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE [Phys.Rev.D 103 (2021) 5, 052012
2012.08513 physics.ins-det]

- Electromagnetic Shower Reconstruction and Energy Validation with Michel Electrons and 1° Samples for the Deep-Learning-Based Analyses in
MicroBooNE [2110.11874 hep-ex]

- Reconstruction and Measurement of O(100) MeV Energy Electromagnetic Activity from °—yy Decays in the MicroBooNE LArTPC [JINST 15 (2020)
02, P02007 1910.02166 hep-ex]

- The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
[Eur.Phys.J.C 78 (2018) 1, 82 1708.03135 hep-ex]
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