Boosted Dark Matter Event Generation at SBN

Joshua Berger Colorado State Univeristy

Yun-Tse Tsai SLAC

December 15, 2021

SBN-Theory Mini-workshop

BSM Targets at ν Facilities

Astrophysical Sources

NASA Acciarri et. al.: 1503.01520

What Are We Generating?

Astrophysical Sources:

DM Distribution Annihilation Rate Flux

Beam Sources:

Direct Production Meson-based Production Flux

Interactions in Detector:

DM-Nucleus scattering at scale $Q \in [0.1, 10]$ GeV At low end: Nuclear effects very important At high end: Inelastic nucleon scattering

Beam Production

- SBN experiments sensitive to neutral, long-lived particles produced in the beam
- Several targets of opportunity to complement the neutrino program

Beam Production Tools

- Direct Production:
 BdNMC and MadDump
- Short-lived meson decay: BdNMC and MadDump
- Long-lived meson decay: Modify g4 beam simulation

deNiverville et. al.: PRD95 (2017), 035006 Buonocore et. al.: JHEP05(2019)028 Batell et. al.: PRD104 (2021), 075026 Batell, JB, Ismail: PRD100 (2019), 115039

Gauge Mediator: Broad Class of Models

$$egin{aligned} J^{\mu}_{Z',\psi} &= \overline{\psi} \, \gamma^{\mu} (\, Q^{\psi}_L \, P_L + \, Q^{\psi}_R \, P_R) \, \psi \ \mathcal{L}_{ ext{int}} &= g_{Z'} \, Z'_{\mu} \, J^{\mu}_{Z',\psi} \ \psi &= \{ \chi, u, d, s, c, e \} \end{aligned}$$

Parameters: charges $Q_{L,R}^{\psi}$, $g_{Z'}$, Z' mass, DM mass Scalar DM interactions analogous (only one charge) Includes models such as vector portal mediator and axial coupling DM

A New Tool

Similar, adapt from GENIE

Based on GENIE neutrino Monte Carlo! JB: 1812.05616

Anatomy of Event Generation

- $1. \ \mbox{Add}$ the DM-nucleus initial state
- 2. Add a selected nucleon, vertex in nucleus
- 3. Give nucleon nuclear kick
- 4. Generate interaction kinematics
- 5. Add the outgoing DM
- 6. Figure out the hadronic final state
- 7. Pauli blocking
- 8. Hadron transport through nuclear remnant

Structure of Cross-section

$$rac{\sigma}{dQ^2 \, dW^2} \propto rac{g_{Z'}^4 \, M_N^2}{4 \, \pi \left(E^2 - M_\chi^2
ight)} \, \Delta_{\mu
ho} \, \Delta_{
u\sigma} \, L^{\mu
u} \, W_{
ho\sigma}$$

- $L^{\mu
 u}$: DM squared matrix element with Z' current
- $\Delta_{\mu\nu}$: Z' mediator propagator
- W^{μν}: Hadronic squared matrix element with Z' current Summed over all hadronic final states Challenging to model!

Three Different Processes

All processes could be important

Nuclear Effects: Distortion of Signal

Initial state:

- Nucleons are not at rest ($p \sim 240 \text{ MeV}$)
- Nuclei are dense with fermions: Pauli blocking

Final state:

Hadrons can scatter off nuclear remnant

Resulting Distributions

 $\cos(\theta)$

Berger et. al.: PRD 103, 095012 (2021)

 $\cos(\theta)$

Sample Event

ENIE	GHEP Event Record	d (pri	int level: 3]]											
Idx	Name	Ist	∣ ₽DG	мо	ther	Daug	hter	 Px		Ру		Pz			 I m
0	chidm	0	2000010000	-1	-1	4	4	0.000		0.000	1	7.321	1	20.000	10.000
	Ar40	0	1000180400			2	i 3 i	0.000		0.000		0.000		37.216	37.216
	neutron	11	i 2112 i				i 5 i	-0.020		-0.071		0.205		0.929	**0.940
	Ar39 I	2	1000180390 i			16	i 16 i	0.020		0.071		0.205		36.286	I 36.286
4	chidm	1	2000010000 j				1 i	-0.614		0.353		5.958		18.846	10.000
	HadrSyst	12	2000000001				1 8 1	0.594		-0.424		1.158		2.083	**0.000
	neutron	14	2112				. 9 j	0.273		-0.296		0.574		1.172	0.940
	pi+	14	211					0.148		0.053		0.049		0.216	0.140
	pi-	14	-211				j 15 j	0.172		-0.181		0.633		0.695	0.140
	HadrClus	16	200000300				12	0.273		-0.296		0.574		1.172	**0.000
	proton	1	2212					-0.182		-0.362		0.153			0.938
	proton	1	2212					0.353		-0.071		0.109		1.011	0.938
	neutron	1	2112					0.102		0.137		0.312		1.005	0.940
	pi+	1	211				-1	0.038		-0.107		0.039		0.184	0.140
	neutron	1	2112					-0.080		0.228		0.019		0.970	0.940
	pi-	1	-211					0.172		-0.181		0.633		0.695	0.140
	HadrBlob		2000000002					0.210		0.004		0.136		33.472	**0.000
	Fin-Init:							0.000	1	-0.000	1	0.000	1	0.000	 I
	Vertex:	chi_	dm @ (x =	0.000	00 m, y		0.000	00 m, z	=	0.000	100 m			0.00000	 De+00 s)
Err	flag [bits:15->0]	: 000	000000000000000000000000000000000000000	 I	lst a	set:									none
Err	mask [bits:15->0]	: 11:	1111111111111111		Is ur	nphysi	cal:	NO	Acc	cepted:	YES				
sig	Ev) = 5.685	27e-3	5 cm^2 d2si	q (x, y	;E)/dx0	iy =		66546e-3	3 0	cm^2		Weigh	t =		1.00000

Current Status

- Arbitrary flavor-dependent Z' charges
- Scalar and fermionic dark matter
- Elastic, Deep Inelastic, & Electron scattering
- Preliminary version in official GENIE v3
- Update with remaining features soon!

Further Directions

- Resonant scattering: implementation & validation
- More models: inelastic DM, your favorite model?
- Can we better treat nuclear unknowns?
- BSM models with other simulation needs?

BSM Analysis Strategy

- Time of flight (for heavy particles)
- Selection of neutral-current (NC) interaction (for NC-like signal)
 - μ - π separation
- Efficient reconstruction of particles not along the standard beam line
- Correct vertex location (reducing cosmic rays or atmospheric v, etc.)
- 4-momentum reconstruction

BDM Search Example

DUNE Studies by L. Peres 18

BDM Search in DUNE

 Phenomenological studies: Smearing the final state visible particles according to DUNE CDR

Berger et. al.: PRD103, 095012 (2021)

- Reconstructed studies:
 - Assume 100% separation of charged-current and NC events
 - Assume vertices are reconstructed correctly, but not necessarily precisely
 - Only reconstruct contained tracks
- Similar sensitivities

Detection Threshold

Outlook

- ν experiments use proton beams so hadronic signals of great interest
- Hadronic scattering is challenging to model due to resonant baryon production & nuclear effects
- Hadronic (& electronic) scattering are now simulated in GENIE
- Reconstruction strategies are dependent on the specific signals and require further study
- Plenty more models to consider at SBN and beyond

Backup

Fixed Target Kinematics Primer

$$p = (M_N, 0, 0, 0)$$

X: N for elastic, mess of hadrons for inelastic

$$q^2 = -Q^2 = (p'-p)^2$$
 & $W^2 = p'^2$
 $0 \le Q^2 \le 4p_{1,\mathrm{CM}}^2$ & $M_N \le W \le \sqrt{s} - M_\chi$
Inelastic can begin at $\gamma \gtrsim 1 + M_\pi/M_N$

Elastic Scattering Cross-section

▶ Four form factors required to describe elastic

$$\langle J^{\mu}_{Z',q}
angle \propto F_1(q^2) \, \gamma^{\mu} + rac{1}{2 \, M_N} \, F_2(q^2) \, \sigma^{\mu
u} \, iq_{
u} + F_A(q^2) \, \gamma^{\mu} \, \gamma^5 + F_P(q^2) \, rac{q^{\mu}}{2 \, M_N} \, \gamma^5$$

► Assume the standard dipole form

 $F\propto 1/(1+Q^2/M_{V,A}^2)^2$

- $F_1(0)$ constrained by charge conservation
- ▶ $F_2(0)$ given by anomalous magnetic moments
- ▶ $F_A(0)$ fit from data or lattice (spin form factors)
- \blacktriangleright F_P related to F_A by PCAC

DIS: Cross-section

$W^{\mu u} \propto$ Parton distribution functions

W² traded for conventional x = Q²/Q² + W² - M_N²
 Use GRV98LO PDFs tuned to low E scattering

► Calculation is inclusive (but we need exclusive)

DIS: Specifying Final State

- ► Low *W*: empirical Koba-Nielsen-Olesen model
 - Imported from νN data, so inaccurate
- ► High *W*: simplified Pythia model
 - ▶ Treats beam remnant as a diquark
 - ► Fragments & hadronizes FS quark-diquark pair
 - ▶ Radiation not handled correctly-relevant at high W

Resonant Scattering: General Consideration

Amplitudes calculated for each MINERvA:PRD92 (2015) 092008 baryon resonance

Resonant Scattering for DM

Amplitude for each resonance in terms of up to 6 helicity amplitudes for V,A currents

$$d\sigma \propto |\langle \textit{N}',\lambda'|\textit{V}^{\mu}-\textit{A}^{\mu}|\textit{N},\lambda
angle|^2$$

- ▶ Dominated by spin 3/2 baryon △, but 17 other excited baryons included!
- Challenging to validate and test
- Amplitudes implemented, but not validated

Nuclear Effects: FSI

Interaction of hadronic FS with nuclear remnant

2 Charge exchange 4 Inelastic 3 Elastic 5 Absorption 8 Pion Production π

Recoil Kinematic Features

Different Nuclear Models

