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Abstract

These notes consist of 5 lectures on celestial holography given at the Higgs
summer school 2022. After an introduction to soft theorems, we discuss the infrared
problem in QED and show that asymptotic symmetries provide a new perspective
and a potential resolution to the problem. We then review how semiclassically, the
subleading soft graviton theorem implies an enhancement of the Lorentz symmetry
of scattering in four-dimensional asymptotically flat spacetimes to Virasoro. This
leads to the construction of celestial amplitudes as S-matrices computed in a basis
of boost eigenstates. Both massless and massive asymptotic states are recast as
insertions on the celestial sphere transforming as global conformal primaries under
the Lorentz SL(2,C). We finally review celestial symmetries and the constraints
they impose on celestial scattering and show how the celestial perspective provides
new insights into gravity in asymptotically flat spacetimes.
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1 Introduction

AdS/CFT [1–3] provided a concrete realization of the holographic principle [4,5]: a theory
of gravity in an arbitrary number of dimensions should be dual to a quantum theory in one
dimension less. A concrete realization of this duality in any but asymptotically negatively
curved backgrounds remains an important open problem. The goal of these lectures is
to review some of the recent developments addressing this problem in asymptotically flat
spacetimes (AFS).

In the past decade we learned that gravity and gauge theory in AFS are governed
in the infrared by a triangular equivalence: soft theorems can be recast as conservation
laws associated with large gauge symmetries [6,7], while memory effects are an observable
signature thereof [8, 9]. (See [10] for a detailed review.) These developments lead to
the proposal that gravity in four-dimensional (4D) AFS may be dual to a theory living
on the “celestial sphere” at infinity [11]. Among others, this proposal is backed up by
evidence that the Lorentz symmetry of scattering in 4D AFS is enhanced to Virasoro [12],
as well as the existence of a stress tensor constructed from a particular subleading soft
graviton mode in the bulk [13]. In the first lecture we will see how this follows from the
subleading soft graviton theorem. In the second lecture we formulate scattering in AFS
in terms of a new observable: the celestial amplitude. We show how celestial amplitudes
re-express the S-matrix in a basis of boost eigenstates [14,15]. (In contrast, conventional
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scattering amplitudes are computed in a plane wave basis.) Such a construction exists for
scattering of both massive and massless particles which is illustrated with a calculation
of the tree-level celestial amplitude of two massless and one massive scalars [16]. In the
final lecture we describe some recent developments centered around the theme of celestial
symmetries. We show that both bulk translation symmetry as well as the soft theorems
imply the existence of celestial currents which constrain the celestial amplitudes. We will
see for example that Poincaré symmetry can be used to completely fix celestial three-point
functions and constrain four-point functions [17,18], while subleading and subsubleading
soft theorems can be used to completely fix the leading OPE coefficients in a collinear
expansion of gluons and gravitons [19]. We finally show that celestial theories contain an
infinity of soft currents and compute their algebra in some examples [20,21].

We have tried to give a self-contained overview of this rapidly growing field by choos-
ing a particular path through the subject. Many fascinating recent developments have
been left out. Explicit constructions of tree-level celestial amplitudes have appeared
in [11, 14, 22–27]. Loop corrections were addressed in [28–30] while properties of bulk
scattering such as the double copy and connections to ambitwistor strings have been
worked out in [31–34]. Celestial symmetries in both gravity and gauge theories, as well as
their constraints on celestial amplitudes have been discussed in [17,18,20,21,35–47]. An-
alytic properties of celestial four-point functions in the complex boost-weight plane have
been worked out in [48, 49] and conformal block expansions were computed in [50–53].
Infrared divergences and related aspects were discussed in [54–62]. We hope these lectures
provide a bridge between the earlier developments reviewed in [10] and more recent results.

Lecture 1 outline:

• Basics of QFT: fields and quantization (basis of solutions to KG, plane wave expan-
sions, comments on curved spacetimes?);

• S-matrix definition and assumptions;

• Symmetries and Ward identities → soft theorems!

2 QFT basics

2.1 Free particles

Consider the equations of motion for a spin−s free field Φ(x)

D · Φ(x) = 0, (2.1)

where D is a differential operator and Φ(x) :M→ F is a map from spacetimeM to field
space F . In these lectures we will restrict to 4-dimensional spacetimes. In quantum field
theory, M = R1,3. In (quantum) gravity, M is a manifold (locally R1,3). Examples (in
flat space)

s = 0 : D = � +m2, Φ(x) = φ(x),

s = 1/2 : D = γµ∂µ +mI, Φ(x) = ψ(x).
(2.2)
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Comment: D can always be traded for a (in general matrix-valued) second order differ-
ential operator, while Φ(x) can also be an s-index symmetric traceless tensor field. We
work in mostly + metric signature in which case (in flat space) � = −ηµν∂µ∂ν .

In Minkowski space the space of solutions to (2.1) splits as

S = Sp ⊕ S̄p, (2.3)

where Sp and S̄p are positive and negative frequency subspaces. To see this, note that
Minkowski space can be foliated with constant time (Cauchy) slices Σt. The solutions to
(2.1) are completely specified by data (Φ, ∂tΦ) on such a Cauchy slice (say Σ0). With any
Cauchy slice we then associate an inner product (Klein-Gordon)

(α, β) = 〈α, β〉KG =

∫
d3xnaja(α, β), (2.4)

where ∇aja = 0 and na is the normal to Σ. This condition (+ Stokes’ theorem) ensures
that (2.4) is independent on the slice,∫

Σi

d3xnaja(α, β)−
∫

Σf

d3xnaja(α, β) =

∫
M∗

d4xna∇aj
a = 0. (2.5)

figure. j is defined by
j = −i(α∗dβ − β∗dα) (2.6)

and for complex scalar fields reduces to the familiar expression

ja = −i(φ∗∂aφ− φ∂aφ∗). (2.7)

Note that
(α, β) = −(β∗, α∗) (2.8)

therefore, the inner product is not positive definite on the whole solution space. The
positive frequency subspace is the subspace of S on which (2.4) is positive definite.

For the scalar KG equation, positive frequency modes are

φp(x) = eip·x, p0 =
√
~p2 +m2 (2.9)

and form a basis for Sp. Similarly, φ∗p form a basis for S̄p. A generic solution φp can then
be expanded as

φ(x) =

∫
d3p

(2π)32p0

(
a†pφp + apφ

∗
p

)
. (2.10)

What singles out the basis (2.9) is that the φ(x) diagonalize the momentum generators P.
(In fact, the expansion (2.10) could have been derived by imposing Poincaré symmetries
alone!) We will see later that a different choice exists that diagonalizes the Lorentz
generators instead.
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2.2 S-matrix

The S-matrix is a fundamental observable in quantum field theory (and we think quan-
tum gravity too). This matrix computes the amplitude for a collection of particles in the
far past to evolve into a collection of particles in the far future. In QFT one assumes that:

• Particles are freely moving in the far past and the far future; a consequence of the
fact that:

• Interactions are localized in space and time;

Formally, an S-matrix element is the overlap between in and out states |Ψ−α 〉, |Ψ+
β 〉

defined at t→ ±∞ respectively, namely

Sαβ = 〈Ψ+
β |Ψ

−
α 〉. (2.11)

Here Ψ are taken to be non-interacting and hence transform under the homogeneous
Lorentz group as a product of one-particle states

U(Λ, a)Ψp1,σ1;··· = e−iaµ((Λp1)µ+··· )
∑
σ′1···

D
(j1)

σ′1σ1
· · ·ΨΛp1,σ′1;··· (2.12)

where pi, σi are momentum and helicity and we have suppressed the dependence on any
other quantum numbers. Λ, a are Lorentz elements and translation parameters respec-
tively. For massive particles, D are SO(3) little group elements. For massless particles,
they are simply phases.

Exercise 2.1. i) Let Pµ, Lµν be the translation and Lorentz generators of the Poincaré
algebra. Using the standard commutation relations of this algebra, show that

P 2 ≡ PµP
µ, W 2 ≡ WµW

µ, Wµ = −1

2
εµνρσL

νρP σ (2.13)

are Casimirs of the Poincaré algebra (ie. they commute with all generators).
ii) Show that when acting on a rest frame eigenstate of Pµ, p̄µ = (m, 0, 0, 0) Wµ reduces
to wµ where

w0 = 0, wi =
1

2
mεijkLjk ≡ mJi, w2 → m2J2. (2.14)

iii) Find an additional operator that commutes with P and deduce that massive states in
Poincaré representations are labelled by |m, s; ~p, λ〉 where λ is an eigenvalue of J · ~p.
iv) Show that massive Poincaré states transform as in (2.12).

Exercise 2.2. i) Show that {J3, L1 ≡ J1 + K2, L2 ≡ J2 − K1} leave massless momenta
q = ω(1, 0, 0, 1) invariant.
ii) Show that L2

1 + L2
2 is a quadratic Casimir and argue that massless states ought to be

annihilated by L1, L2 and are hence specified by their eigenvalue under J3 only. (Hint:
Note that [J3, L±] = ±L±, where L± = L1 ± iL2.)
iii) Conclude that massless states transform as in (2.12) where the Wigner rotation D is
simply a phase.
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Ψ+,Ψ− live in the same Hilbert space: out states can be expanded in terms of in
states and vice-versa. Sαβ are the coefficients in this expansion. Completeness of in/out
states implies that the S-matrix is unitary,∫

dβS∗βγSβα = 〈Ψ+
γ |Ψ+

α 〉 = δ(γ − α). (2.15)

Note that (2.11) is written in the Heisenberg picture and hence Ψ do not depend on time:
all time dependence is in the operators.

It will be convenient to rewrite (2.11) in terms of matrix elements of free particle
states, Φ1

Ψ(±∞) = Ω(±∞)Φ (2.16)

and define an S-operator such that

〈Φout|S|Φin〉 ≡ 〈Ψ+
β |Ψ

−
α 〉 =⇒ S = Ω†(+∞)Ω(−∞) = U(∞,−∞). (2.17)

Moreover
U(τ, τ0) = eiH0τe−iH(τ−τ0)e−iH0τ0 . (2.18)

We will see later that:

• In theories with massless particles, asymptotic states are never really free;

• It is important to distinguish between timelike and null infinities: symmetries man-
ifest at null infinity, much larger than Poincaré;

• It seems like a good idea to look for asymptotic states that make these symmetries
manifest;

• Gains: a better understanding of IR divergences, observables that live on the sphere
- trade 4D bulk for CFT2 like theory, use CFT tools to better understand the bulk.

3 Soft theorems

Soft theorems arise as conservation laws associated with asymptotic/large gauge symme-
tries [6,7,63,64]. In this section we illustrate this connection by studying the (tree-level)
subleading soft graviton theorem and the implied Virasoro symmetry of the S-matrix.
This section is a review of [12] and [13].

We start by introducing a universal2 relation obeyed by scattering amplitudes in any
theory with massless particles. For simplicity, we focus on tree-level scattering. In grav-
ity and gauge theory, the scattering of high-energy charged particles is accompanied by
radiation. The radiation can be described as a collection of quanta (photons, gravitons,
...) of different energies. When the energy carried away by one such quantum is small,
the scattering amplitude factorizes [65,66]

lim
ω→0
A±n+1(q) =

[
S(0)±
n + S(1)±

n +O(ω)
]
An. (3.1)

1Free in that they always evolve with the free Hamiltonian.
2Universal here means independent of the nature of other particles involved in the scattering process.
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Figure 1: The soft limit relates an amplitude with a low-energy massless particle to the
same amplitude without the massless particle.

Here An+1 is a scattering amplitude of n generic particles of four-momenta p1, ..., pn and
one massless particle of four-momentum q = (ω, ~q) and positive or negative helicity. An
is the same scattering amplitude in the absence of the massless particle. This limit is
illustrated in figure 1 and will be referred to as the soft limit.

S
(0)±
n and S

(1)±
n are the leading and subleading soft factors respectively, which take

the form [65–67]

S(0)±
n =

κ

2

n∑
k=1

(pk · ε±(q))
2

pk · q
, S(1)±

n = −iκ
2

n∑
k=1

ε±(q) · pk
pk · q

q · Jk · ε±(q) , κ =
√

32πG

(3.2)

in gravity3 and

S(0)±
n =

n∑
k=1

Qk
pk · ε±(q)

pk · q
, S(1)±

n = −i
n∑
k=1

Qk
q · Jk · ε±(q)

pk · q
(3.3)

in quantum electrodynamics. G and Qk are Newton’s constant and the charges of the n
particles respectively. We expressed the polarization tensor ε±µν of the graviton as 4

ε±µν(q) = ε±µ (q)ε±ν (q), (3.4)

where ε±µ (q) is the polarization of a helicity-1 particle obeying

ε±(q) · q = 0, ε±(q) · ε±(q) = 0, ε±(q) · ε ∓(q) = 1. (3.5)

Jk is the total angular momentum of particle k. For simplicity, we will work in units
where

8πG = 1, κ =
√

32πG = 2. (3.6)

3In gravity there is also a sub-subleading soft theorem [67] with S
(2)±
n = −κ4

∑n
k=1

(q·Jk·ε±)2

q·pk .
4We pick a gauge in which the graviton is transverse and traceless, qµεµν = qνεµν = εµµ = 0.
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Figure 2: In the soft limit, the amplitude will include contributions from Feynman dia-
grams where the soft particle attaches to external and internal lines. Diagrams where the
soft particle attaches to an internal line are subleading in the soft limit.

Exercise 3.1. Restricting to massless scalars k = 1, · · ·n and using the parameterizations
(6.3) for massless momenta and ε+ ∝ ∂zq(z, z̄), ε− ∝ ∂z̄q(z, z̄) (with normalization of ε±

to be determined) show that the soft factors in QED are

S(0)+
n =

n∑
k=1

Qk

ω(z − zk)
, S(1)+

n =
n∑
k=1

Qkηk
ωk(z − zk)

(ωk∂ωk + (z̄ − z̄k)∂z̄k) . (3.7)

Deduce the expressions for the leading and subleading soft graviton factors in this param-
eterization.

Notice that the soft theorem (3.1) captures the behavior of the scattering amplitude
in an expansion around ω = 0. The leading term in (3.1) has a simple pole at ω = 0 which
can be understood by considering the Feynman diagrams contributing to the scattering
of n + 1 particles, as shown in figure 2. In particular, as ω → 0, the leading order
contribution comes from diagrams where the massless particle attaches to an external
line. In this limit, an internal propagator goes on-shell and the amplitude develops a pole
in q

lim
ω→0
An+1(q) =

[
n∑
k=1

−iVk(ε, pk)
2pk · q

+O(ω0)

]
An, (3.8)

where Vk(ε, pk) is the leading term as ω → 0 in the (momentum-space) coupling at vertex
k. The remaining diagrams, where the massless particle attaches to an internal line remain
finite as ω → 0.

The analysis of subleading terms in the (tree-level) soft expansion was carried out
explicitly in gauge theory [65] and, more recently in gravity using on-shell amplitudes
techniques [67] . The “brute-force” computation is lengthy and subtle,5 yet a number of

5This is not only because of many sources of subleading corrections coming from both classes of
diagrams in figure 2, but also because at subleading order in the soft expansion, momenta of other
external particles have to be deformed to obey overall momentum conservation.
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apparently miraculous cancellations yield the final result (3.1) universal in gravity [68,69],6

with the subleading soft graviton factor taking the simple form in (3.2).
It is often the case in physics that simple answers found as a result of complicated

calculations point towards an underlying symmetry of the theory. Indeed, as we will
review in section 5.5, the subleading soft graviton theorem is nothing but a consequence
of an infinite-dimensional enhancement of the Lorentz symmetry of the S-matrix [12].
Moreover, a certain mode of the soft graviton will be identitfied with the generator of
this symmetry in section 5.6 by recasting the subleading soft graviton theorem as the
Virasoro-Ward identities of an insertion of the stress-tensor in a 2D conformal correlation
function [13].

Exercise 3.2. Derive the leading soft graviton theorem.

4 Infrared issues

Outline Lecture 1 (second half) and Lecture 2:

• The IR problem; the standard solution; FK dressed states;

• Revisiting the assumptions: motivate the infinity of charges and vacua!

• A new resolution, comments on general gauge theories

• Next: What are these charges? Transition to gravity.

4.1 The problem

In gauge theory and gravity low energy photons, gluons, gravitons running in loops give
rise to infrared divergences. Let us specialize to QED. Note that amplitudes with and
without N virtual exchanges are related by the addition of N pairs of soft factors (3.3)
“glued” together by N factors of the photon propagator

Πµν =
−iηµν
q2 − iε

. (4.1)

We hence find that an N− loop diagram is related to the tree level diagram by a factor

1

N !

(
1

2

∫
d4q

(2π)4
A

)N
, (4.2)

where

A =
∑
n,m

QnQm
−iηµν
q2 − iε

pµmp
ν
n

(pm · q + iε)(pn · q − iε)
(4.3)

and the signs distinguishing between incoming and outgoing hard momenta have been
absorbed in the definition of pn. The sign of q is left manifest and leads to the difference

6The subleading soft photon theorem may receive non-universal corrections from a short list of oper-
ators [69,70].
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in the the sign of the iε prescription. Note that since one sums over all permutations of
how internal lines can be attached, division by the appropriate symmetry factor

2NN ! (4.4)

is necessary. Power counting shows that the integral in (4.3) is soft infrared divergent and
diverges as ∫ Λ

λ

ω3dω
1

ω4
∝ log

Λ

λ
, (4.5)

where Λ, λ are UV and IR cutoffs respectively. We see that summing over all N leads to
exponentiation of these divergences. Because the remaining angular integral in (4.3) has
a real part coming from when the propagator is put on shell

−iηµν
q2 + iε

→ πδ(q2), (4.6)

the exponentiation sets all scattering amplitudes to zero []. This is illustrated in figure ??
Figure. (A proper justification of (7.10) requires one to evaluate the integral in (4.3) using
contours. Careful consideration of which sides the contour can be closed is necessary -
see [].) For completeness we give here the result of the real part of the exponent (which
can be checked to be manifestly negative and divergent)

− α ln
Λ

λ
≡ Re

[∫
d4q

(2π)4
A

]
= − 1

8π2

∑
n,m

QmQnηnηmβ
−1
mn log

(
1 + βmn
1− βmn

)
ln

Λ

λ
, (4.7)

with

βmn =

√
1− m2

nm
2
m

pm · pn
(4.8)

the relative velocity of a particle in the rest frame of the other. α and its generalization in
non-abelian gauge theories is called the cusp anomalous dimension as it can be reproduced
by a cuspy Wilson line computation [].

A similar analysis applies to gravity. A much more complicated (and yet unsolved)
story can be told for QCD (or more generally non-abelian gauge theories). See [].

Exercise 4.1. Analyze the pole structure of the integrand A given in (4.3). In which
cases do we get real and imaginary contributions?

4.2 The standard solution

The textbook resolution to the IR problem in QED is to accept that S-matrices are IR
divergent and eliminate the IR divergences at the level of observable cross-sections. By
observable we mean the following: in the real world, cross-sections or the probability
for a certain number of electrons and positrons to scatter are not measurable since any
such scattering process is accompanied by the emission of infinite numbers of photons
with energies below the sensitivity of detectors. Observables are instead inclusive cross-
sections that sum over all processes involving arbitrary soft photons emissions [Figure.]
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Order by order in perturbation theory, it can be shown that such inclusive cross-sections
are infrared finite. The soft theorem (3.2) is instrumental in this analysis.

The lack of an S-matrix is bothersome for a theorist for many reasons. To list a few

• In practical applications, causality, unitarity and crossing imply constraints on low-
energy effective field theories. These analysis rely on the existence of the S-matrix,
eg. no meaningful bounds on low-energy couplings can be obtained otherwise [].

• In quantum gravity, we believe the S-matrix is a unitary operator. IR divergences
preclude the definition of such an operator. Non-perturbative scattering amplitudes
should diagnose the black hole information problem.

4.3 The Faddeev-Kulish (FK) proposal

An IR-finite definition of the S-matrix in QED was proposed in []. It relies on the ob-
servation that photons, gravitons, etc. mediate long range forces. As such, the standard
assumption in QFT that asymptotic states are non-interacting fails. To see this consider
the standard QED interaction describing the coupling of photons to electrons

V =

∫
jµ(x)Aµ(x) = −e

∫
: ψ̄(x)γµψ(x) : Aµ(x) d3x (4.9)

in the interaction representation. We can rewrite this in terms of the quantized fields

ψ(x) =
1

(2π)4

∫ ∑
n

(
m

p0

)∑
n

(
bn(~p)wn(~p)e−ip·x + d†n(~p)vn(~p)eip·x

)
d3p (4.10)

ψ̄(x) =
1

(2π)4

∫ ∑
n

(
m

p0

)∑
n

(
b†n(~p)w̄n(~p)eip·x + dn(~p)v̄n(~p)e−ip·x

)
d3p (4.11)

Aµ(x) =
1

(2π)4

∫ (
a†µ(~k)eik·x + aµ(~k)e−ik·x

) d3k

2k0

(4.12)

where ψ is a fermion field and Aµ is a photon field. The resulting expression for V (t) is

an integral over the momenta ~p, ~q and ~k of the fermions and photons, which are related
by the equation ~p+ ~k = ~q.

FK then study the asymptotic behavior of this expression for |t| → ∞. In this limit,
all the terms in (4.9) can be split into two groups. The terms of the first group contain two
creation operators or two annihilation operators of charged particles. The argument of the
exponential function characterizing the time dependence of these terms is proportional to

(~p2 +m2)1/2 + ((~p+ ~k)2 +m2)1/2 ± k0 (4.13)

which is non-zero for all ~p and ~k. Such terms therefore decrease sufficiently rapidly as
|t| → ∞. The terms of the second group have an argument of the exponential function
proportional to

(~p2 +m2)1/2 − ((~p+ ~k)2 +m2)1/2 ± k0 (4.14)

which vanishes for ~k = 0 for all ~p. These terms are the ones that determine the desired
asymptotic behavior of the operator V (t). Note that ~k → 0 corresponds to the soft
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regime, so it is the soft photons that are responsible for the long-range interactions. We
can therefore set ~k = 0 in all the slowly varying functions, i.e., in the creation and
annihilation operators bn and dn and the spinors. In addition, the expressions for the
latter simplify considerably because of the orthogonality conditions for solutions of the
Dirac equation. As a result, one arrives at a simple expression for the interaction potential
(4.9) as |t| → ∞

Vas(t) =
1

(2π)4

∫
Jµas(

~k, t)
[
a†µ(−~k) + aµ(~k)

] d3k

(2k0)
(4.15)

where

Jµas(
~k, t) = −e

∫
pµe

i p·k
p0
t
ρ(~p)

d3p

p0

(4.16)

and
ρ(~p) =

∑
n

[b†n(~p)bn(~p)− d†n(~p)dn(~p)] = ρ−(~p)− ρ+(~p). (4.17)

Exercise 4.2. Work out the details leading to (4.15).

FK note that the expression for the asymptotic current only depends on the charge
distribution of the particles and is therefore universal: a similar formula can be obtained
in the case of charged particles with arbitrary spin, the corresponding density ρ(~p) is
replaced by a sum over the charged particles in the system.

The operator of the asymptotic current Jµas(
~k, t) has a simple physical meaning. A

state of charged particles with given momenta

Ψ(p1, s1, . . . pn, sn|q1, l1, . . . qm, lm) = b†s1(~p1) . . . b†sn( ~pn)d†l1(~q1) . . . d†lm(~qm)|0〉 (4.18)

is an eigenstate for this operator; the corresponding eigenvalue

jµ(~k, t|~p1, . . . , ~pn; ~q1, . . . , ~qm) =
m∑
j=1

jµ(~k, t|qj)−
n∑
j=1

jµ(~k, t|pj) (4.19)

where

jµ(~k, t|p) = e
pµ
p0

exp

[
i
~k~p

p0

t

]
(4.20)

is the classical current of point charges moving along straight lines with momenta pi, qj, i =
1, . . . , n; j = 1, . . . ,m. In this sense, the asymptotic interaction operator is a relativistic
generalization of the nonrelativistic asymptotic Coulomb potential []. The asymptotic
dynamics of the system is hence effectively governed by the operator

Has(t) = H0 + Vas(t) (4.21)

where H0 is the free Hamiltonian of photons and fermions. FK proceed by solving the
Schrodinger equations for this asymptotic interacting Hamiltonian. The upshot is that so-
lutions turn out to be coherent states of soft photons. They argue that IR finite scattering
amplitudes are obtained by evaluating the S-matrix in this basis.

12



4.3.1 Asymptotic Dynamics

To find the asymptotic dynamics, FK proceed to solve the Schrodinger equation governing
the evolution of the asymptotic states

i
d

dt
|Ψas(t)〉 = Has(t)|Ψ(t)〉, |Ψ(t)〉 = U(t)|Ψ0〉. (4.22)

If Has = H0 (like in the previous lecture), then |Ψ0〉 would be the same as |Φ〉 (defined
in eq. (2.16)). Instead, |Ψ0〉 is a Heisenberg picture state that evolves according to the
asymptotic Hamiltonian, U = Uas in (4.34). We can determine U by noting that (4.22)
translates into a differential equation for the asymptotic evolution operator

i
d

dt
U(t) = Has(t)U(t). (4.23)

Switching to the interaction picture, we let

Uas(t) = e−iH0tZ(t) (4.24)

in which case the equation for Z(t) reduces to

i
d

dt
Z(t) = V I

as(t)Z(t) (4.25)

where
V I
as(t) = eiH0tVas(t)e

−iH0t. (4.26)

This expression for the operator V I
as(t) differs from formula (4.15) only by the presence of

the factors eik0t and e−ik0t multiplying a†µ(k) and aµ(k).
Since V I

as(t) is linear in photon operators, the commutator

[V I
as(t1), V I

as(t2)] = Q(t1, t2) (4.27)

is a c-number and trivially commutes with V I
as(t) for all t, t1, t2. This property enables

one to disentangle the T-product explicitly and to find the general solution of Eq. (4.31)

Z(t) = T exp

[
−i
∫ t

V I
as(τ)dτ

]
, (4.28)

namely

Z(t) = exp

[
−i
∫ t

V I
as(τ)dτ − 1

2

∫ t

dτ

∫ τ

dsQ(τ, s)

]
. (4.29)

FK choose initial conditions such that∫ t

eisτdτ =
1

is
eist, (4.30)

which amounts to discarding terms that do not commute asymptotically with the mo-
mentum.
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The solution to (4.23) is therefore

Z(t) = exp[R(t)] exp[iΦ(t)] (4.31)

where

R(t) =
e

(2π)3/2

∫
pµ
p · k

[
a†µ(~k)e

i k·p
p0
t − aµ(~k)e

−i k·p
p0
t
]
ρ(~p)d~p

d~k

(2k0)1/2
(4.32)

and

Φ(t) =
e2

8π

∫
: ρ(~p)ρ(~q) :

p · q
((p · q)2 −m4)1/2

sign[t] ln
|t|
t0
d~pd~q. (4.33)

The evaluation of the integrals leading to Eq. (4.33) can be found in the appendix of [].
It is natural to call Φ the phase operator. This phase is related to the imaginary part
of Weinberg’s exponentiated IR divergence (4.3). As for the first contribution to (4.31),
it can be shown that it is responsible for the cancellation of infrared divergences arising
from photon loops!

Thus, the final expression for the operator of the asymptotic dynamics has the form

Uas(t) = exp[−iH0t] exp[iΦ(t)] exp[R(t)] (4.34)

where the operators R(t) and Φ(t) are defined by formulas (4.32) and (4.33), respectively.
We note that these operators commute. Following the steps leading to the definition of
the S-matrix in section 2.2, in the presence of long range interactions, the S-matrix must
be defined as the limit of the operator

S(t1, t2) = U †as(t1) exp[−iH(t1 − t2)]Uas(t2) (4.35)

as t1 →∞ and t2 → −∞. The expression on the right hand side differs from the Dyson
S-matrix for finite times (cf. (2.18))

SD(t1, t2) = exp[iH0t1] exp[−iH(t1 − t2)] exp[−iH0t2] (4.36)

by the outer factors of the type exp[R(t)+ iΦ(t)]. Equivalently, scattering amplitudes can
be interpreted as evaluating the standard Dyson S-matrix in a basis of coherent states of
soft photons. Order by order in perturbation theory, the soft photon clouds can be shown
to cancel the contributions from virtual photons discussed before.

Questions remain:

• Tedious argument, some of the steps sketchy (eg. the stationary phase/large times
argument);

• The new S-matrix takes us out of the Fock space (or equivalently the coherent states
don’t live in the Fock space because of IR divergences). [Revisit this argument]

• Massless particles don’t live at t→ ±∞.

• In gravity and QCD there are non-linearities and collinear divergences - argument
needs refinement, not known if refinement exists [].

• Comments on Wald’s new paper;

14



4.4 An alternate symmetry-inspired derivation

In this section we present a new take on infrared divergences and the construction of
infrared finite S-matrices. So far we learned that theories with massless particles typi-
cally have long-range interactions. This implies the textbook (quantum mechanics/QFT)
assumption in scattering theory, namely that interactions only happen over finite regions
and time intervals is invalidated. Asymptotic states don’t just consist of free particles,
but include also coherent states of soft photons.

There is another simple observation which together with the soft theorem can be
used to construct a simple, more intuitive argument for why we should scatter coherent
states instead of free particle states: in theories with massless particles, the vacuum is
not unique. To see this consider a state consisting of a superposition of soft photons with
different polarizations

|Ω〉 = lim
ω→0

∫
d2zΩ(z, z̄)a†(ωq̂(z, z̄))|0〉 is such that

{
H|Ω(z, z̄)〉 = H|0〉 = 0

〈Ω(z, z̄)|0〉 = 0.
(4.37)

We hence see that |Ω〉 has both zero energy and is orthogonal to the vacuum! There is a
functions on the sphere worth of states degenerate with the vacuum. We will show in the
next lecture that the soft theorem

lim
ω→0
〈out|a±(ωq̂)S|in〉 = S

(0)
± 〈out|S|in〉+O(ω0), (4.38)

where the leading soft factor was given in (3.3) can be re-expressed as the Ward identity
for the conservation of large gauge charge, namely

〈out|Q+S − SQ−|in〉 = 0. (4.39)

Here |in〉, |out〉 consist of finite energy particles only and the charges can be split into two
components

Q± = Q±S +Q±H , (4.40)

where

QS ↔ soft photon operator,

QH ↔ operator whose action on asymptotic states ∝ soft factor
(4.41)

and the superscripts are to distinguish action on incoming and outgoing states (not to be
confused with helicities).

By a similar argument to the one above

QS|Ω0〉 (4.42)

can be shown to be degenerate to the vacuum |Ω0〉 (physically, QS creates a soft photon
and states differing by the number of zero energy photons are orthogonal), unless |Ω0〉
happens to be an eigenstate of QS. But recall that in textbook QFT, the vacuum is
assumed to be unique. The only option then is that |Ω0〉 is an eigenstate with eigenvalue
qS

QS|Ω0〉 = qS|Ω0〉. (4.43)
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Now rewriting (5.54) using (4.40)

〈out|Q+
SS − SQ

−
S |in〉 = S(0)〈out|S|in〉 (4.44)

and applying (4.43) on the LHS, we find(
qout
S − qin

S

)
〈out|S|in〉 = S(0)〈out|S|in〉. (4.45)

But since the vacuum is typically assumed unique, qout
S = qin

S and so the only way for
(4.45) to be obeyed is if the scattering amplitude vanishes! But this is the same as the
statement that IR divergences exponentiate in QED and set scattering amplitudes to zero!

On the other hand, if we allow for vacuum degeneracy, and moreover, vacuum transi-
tions (ie. distinct incoming and outgoing vacua)

qout
S 6= qin

S (4.46)

we can have a non-vanishing S-matrix together with a selection rule

qout
S − qin

S = S(0). (4.47)

But this condition implies the asymptotic states are coherent states of soft photons as
constructed by Faddeev and Kulish. To see this, as we will see later

QS ∝ lim
ω→0

ω(a†(ωq̂) + a(ωq̂)) (4.48)

and the eigenvalue equation
QS|Ω0〉 = qs|Ω0〉 (4.49)

implies |Ω0〉 has to be coherent, of FK type. In the discussion session we will study the
properties of these coherent states and the implications for observables in QED.

Exercise 4.3. Show explicitly that FK dressings allow one to construct eigenstates of the
soft charge with different eigenvalues.

Lecture 3

• Boundaries and gauge symmetries

• AFS, null boundaries and asymptotic symmetries

• Stationary phase argument, symmetry/conservation law =⇒ soft theorem.

5 Asymptotic symmetries

5.1 Gauge symmetries and boundaries

In gauge theories physical states are subject to constraints

G0[ξ]|Ψphys〉 = 0. (5.1)
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For example, Gauss’s law in free E&M requires that all physical states obey∫
Σ

ξd ? F |Ψphys〉 = 0 ⇐⇒
∫

Σ

ξnµ∇νFµν |Ψphys〉 = 0, (5.2)

where Σ is a Cauchy slice in spacetime and nν is normal to Σ. The constraints should
generate gauge transformations

{G0[ξ], A} = dξ. (5.3)

In the presence of boundaries however, the generator of gauge transformations may nor
be G0 but instead

G = G0 −B (5.4)

where B is a boundary contribution. While G0 was such that

{G0[ξ], G0[ρ]} = G0[[ξ, ρ]] (5.5)

and hence imposing that G0 vanishes on physical states is consistent with this algebra,

{G[ξ], G[ρ]} = G[[ξ, ρ]] +K. (5.6)

This implies that G is non-vanishing and is hence promoted to a symmetry generator.
In E&M (5.2) can be rewritten as

G0[ξ]|Ψphys〉 =

(∫
∂Σ

ξ ? F −
∫

Σ

dξ ? F

)
|Ψphys〉 = 0 (5.7)

or in coordinates

G0[ξ]|Ψphys〉 =

(∫
∂Σ

dxνξnµFµν −
∫

Σ

∇νξnµFµν

)
|Ψphys〉 = 0 (5.8)

and one can indeed show that it is G = G0 − B that generate gauge transfrormations.
Since G acts non-trivially on physical states as G|Ψphys〉 = −B|Ψphys〉, they should be
thought of as true charges.

The take-home message is that in the presence of boundaries, gauge transformations
get promoted to true symmetries, aka large gauge transformations. In the next lecture we
will study an example of this phenomenon in gravity in 4D asymptotically flat spacetimes.
We will see how asymptotic diffeomorphisms can be associated with charges whose action
on phase space is non trivial and whose conservation laws implies Ward identities which
are equivalent to the soft theorems discussed before.

5.2 Penrose diagram of Minkowski space

Penrose diagrams are a convenient tool for studying physics at “infinity” as they preserve
the causal structure of spacetime while mapping “infinity” to the boundary of a finite
region. In this section we review how this works for Minkowski spacetime.

The Minkowski metric takes the form

ds2 = −dt2 + d~x2 = −dt2 + dr2 + r2dΩ2
2, (5.9)
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Figure 3: Penrose diagram of Minkowski space.

where
dΩ2

2 = dθ2 + (sin θ)2dϕ2 (5.10)

is the metric on the unit two-sphere. It will be convenient to introduce retarded and
advanced coordinates u, v

u = t− r, v = t+ r, (5.11)

and coordinates (z, z̄) related to the angular coordinates (θ, φ) by a stereographic projec-
tion

z = cot
θ

2
eiϕ, z̄ = cot

θ

2
e−iϕ. (5.12)

In retarded coordinates (u, r, z, z̄) the metric (5.9) becomes

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄, γzz̄ =
2

(1 + zz̄)2
(5.13)

and similarly, in advanced coordinates (v, r, z, z̄)

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄. (5.14)

The asymptotic structure of (5.9) can be understood by introducing coordinates (T,R)
related to (t, r) by

u = tanU, v = tanV, T = U + V, R = V − U, (5.15)

in which case (5.9) reduces to

ds2 = Ω2(T,R)
(
−dT 2 + dR2 + 2r2(R, T ) sin2Rγzz̄dzdz̄

)
,

Ω−2(T,R) = 4 cos2 1

2
(T −R) cos2 1

2
(T +R).

(5.16)
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Figure 4: Penrose diagram of Minkowski space where each pair of points represents a
two-sphere. Massive particles come in from i− and go out at i+, while massless particles
enter and exit spacetime at I±.

In the original coordinates, Minkowski space is covered by r > 0, −∞ < u < v < ∞,
therefore the ranges of the new coordinates are −π

2
< U < V < π

2
and 0 < R < π. This

is illustrated in figure 3.

Exercise 5.1. a) Plot the lines of constant r and t in the (R, T ) plane.

b) Plot the lines of r−r0
t

for different values of r0 in the (R, T ) plane.

It will be convenient to unfold this diagram to represent antipodal points on the
spheres. Future null infinity (I+) is defined by taking r →∞ for fixed u, while past null
infinity (I−) is reached by taking r →∞ for fixed v. In a free theory, massless particles
follow lines of unit slope and cross points on the spheres at I∓ at retarded times v, u.
This is illustrated in figure 4. Massive particles never reach I±, but only past and future
timelike infinities i∓ (t→ ∓∞).

5.3 Asymptotically flat spacetimes

Asymptotically flat spacetimes have the same causal structure as Minkowski space at
infinity. An asymptotically flat spacetime admits an expansion in powers of r−1 around
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the Minkowski metric (5.13) near I+7

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄,

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 + 2guzdudz + 2guz̄dudz̄ + ....

(5.17)

Solving the Einstein equations8

Rµν −
1

2
gµνR = TMµν (5.18)

order by order in a large-r expansion9 one finds [71]

guz =
1

2
DzCzz +

1

6r
CzzDzC

zz +
2

3r
Nz +O(r−2), (5.19)

where Dz is the covariant derivative associated with γzz̄. Here mB and Nz are the Bondi
mass aspect and angular momentum aspect respectively, while

Nzz = ∂uCzz (5.20)

is the outgoing news tensor. They are all functions of (u, z, z̄).
mB, Czz, Nz are not all independent. They are related by constraint equations.10 The

uu constraint gives [71]

∂umB =
1

4
D2
zN

zz +
1

4
D2
z̄N

z̄z̄ − 1

2
TM(2)
uu − 1

4
NzzN

zz, (5.21)

while the uz constraint reduces to

∂uNz =
1

4
Dz

(
D2
zC

zz −D2
z̄C

z̄z̄
)
− TMuz + ∂zmB +

1

16
Dz∂u (CzzC

zz)

− 1

4
(N zzDzCzz +NzzDzC

zz)− 1

4
Dz (CzzNzz −N zzCzz) .

(5.22)

We defined
TM(2)
uu = lim

r→∞
r2TMuu . (5.23)

Exercise 5.2. **Optional** Verify (5.21) and (5.22).

The square of Nzz measures the energy carried by gravitational radiation. We learn
from (5.21) that the Bondi mass (the integrated Bondi mass aspect over the sphere) is
roughly speaking a measure of the net energy contained in spacetime excluding the parts
carried off to infinity by null matter and gravitational waves: as energy is radiated away,
the Bondi mass decreases. Similarly, the change in Nz with retarded time (integrated over
the sphere) measures the amount of angular momentum carried away by null matter and
gravitational radiation.

The analogous equations near I− can be found in [12].

7We are working in Bondi gauge defined by ∂rdet
(
gAB

r2

)
= 0 and grr = grA = 0 where A,B run

over the transverse indices z, z̄. In these coordinates gravitational waves propagate radially outwards
(equivalently, lines of constant u, z, z̄ are null) and the wavefronts are spherical.

8We set κ = 2.
9The leading terms in the uu and uz components of the matter stress tensor are taken to be O(r−2).

10These are the components of (5.18) along the tangent to I+.
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5.4 Asymptotic symmetries

The asymptotic symmetry group of (5.17) has beeen proposed to be the extended BMS+

group in [71]. This is generated by vector fields ξ+ that preserve the asymptotic fall-off
of (5.17) with r namely

Lξ+gur = O(r−2), Lξ+guz = O(1), Lξ+gzz = O(r), Lξ+guu = O(r−1). (5.24)

Solving (5.24) order by order in a large-r expansion, such vector fields are found to be of
the form [12,71]

ξ+ =
(

1 +
u

2r

)
Y +z∂z −

u

2r
Dz̄DzY

+z∂z̄ −
1

2
(u+ r)DzY

+z∂r +
u

2
DzY

+z∂u + c.c.

+ f+∂u −
1

r

(
Dzf+∂z +Dz̄f+∂z̄

)
+DzDzf

+∂r + ...,
(5.25)

where f+(z, z̄) is an arbitrary function on S2 and Y +(z, z̄) is a conformal Killing vector
on S2

∂z̄Y
+z = 0. (5.26)

Exercise 5.3. Use (5.24) and (5.17) to derive (5.25).

One easy way to see that (5.26) ought to hold is to notice that under Lorentz trans-
formations,

LY +gz̄z̄ = 2r2γzz̄∂z̄Y
+z +O(r). (5.27)

Imposing that (5.24) are obeyed immediately leads to (5.26).
Globally, (5.26) admits six solutions

Y +z
12 = −iz, Y +z

13 =
1

2
(1 + z2), Y +z

23 =
i

2
(1− z2),

Y +z
03 = −z, Y +z

01 =
1

2
(1− z2), Y +z

02 =
i

2
(1 + z2)

(5.28)

corresponding to the three Lorentz rotations and three boosts (see appendix B). Locally,
there are infinitely many solutions Y z ∝ zn.

For the remainder of this section, we restrict to the subgroup of asymptotic symmetries
generated by (5.25) with f = 0 which are known as superrotations [72].11 In this case,
the vector fields (5.25) that map I+ to itself are

ξ+
∣∣∣
I+

= Y +z∂z +
u

2
DzY

+z∂u + c.c.. (5.29)

The infinitesimal BMS+ transformations (5.29) act on the metric components as follows

δY +Czz =
1

2

(
DzY

+z +Dz̄Y
+z̄
)

(u∂u − 1)Czz + LY +Czz − uD3
zY

+z,

δY +Nzz = ∂uδY +Czz =
u

2

(
DzY

+z +Dz̄Y
+z̄
)
∂uNzz + LY +Nzz −D3

zY
+z.

(5.30)

11Conversely, supertranslations are the subset of symmetries (5.25) with Y + = 0 and f 6= 0.

21



Upon quantization, (5.30) imply the existence of “charges”12 under which an outgoing
Fock state13 transforms as

Q+(Y +)|out〉 = iδY +|out〉, (5.31)

where
Q+(Y +) = Q+

H +Q+
S (5.32)

and [72]

Q+
H =

1

4

∫
I+

dud2zγzz̄ (uDzY
zNzzN

zz − Y zDz(CzzN
zz)− 2Y zCzzDzN

zz + matter) + c.c.,

Q+
S = −1

2

∫
I+

dud2zD3
zY

+zuN z
z̄ + c.c..

(5.33)

We show in appendix A that (5.33) reproduce the symmetry action (5.30). Using the
canonical commutation relations [73]

[Nz̄z̄(u, z, z̄), Cww(u′, w, w̄)] = 2iγzz̄δ
(2)(z − w)δ(u− u′), (5.34)

it then follows that for transformations parameterized by Y + = (Y z, 0) [12]

Q+
H |out〉 = i

∑
k∈out

(
LY +zk −

ωk
2
DzkY

+zk∂ωk

)
|out〉. (5.35)

Similar formulas hold near I−.

5.5 Recovering the Virasoro symmetry from the soft theorem

An independent action of BMS+ and BMS− on I+ and I− leads to an ambiguity in defining
scattering in AFS. In particular, upon specifying data at I+, the S-matrix provides a map
between in and out states up to a BMS transformation.

A solution to this problem was proposed in [63] where it was shown that the grav-
itational scattering problem in AFS becomes well defined upon imposing the antipodal
matching conditions

f(z, z̄)
∣∣∣
I+
−

= f(z, z̄)
∣∣∣
I−+
, Y +(z, z̄)

∣∣∣
I+
−

= Y −(z, z̄)
∣∣∣
I−+
. (5.36)

Here, points on the sphere at I+
− are antipodally related to points at I−+ , (z, z̄)

∣∣∣
I+
−

=

(−1
z̄
,−1

z
)
∣∣∣
I−+

. Moreover, upon imposing the boundary condition14

Nz(z, z̄)
∣∣∣
I+
−

= Nz(z, z̄)
∣∣∣
I−+
, (5.37)

12We haven’t shown these are conserved yet; conservation will be implied by the subleading soft graviton
theorem.

13The radiative data consists of the modes of Nzz hence the action of Q+ on the radiative part of |out〉
is related to the commutator [Q+, Nzz] [6].

14Using the constraint (5.22) the superrotation charges can be put into the simpler form Q+(Y +) =∫
d2z (Yz̄Nz + YzNz̄) [10].
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the charges at I−+ and I+
− obey

Q+ = Q−. (5.38)

It then makes sense to study the constraint imposed by conservation of Q on the S-matrix,
namely

〈out|Q+S − SQ−|in〉 = 0. (5.39)

Using the split (5.32) into soft and hard parts, (5.39) is equivalent to

〈out|Q+
SS − SQ

−
S |in〉 = −〈out|Q+

HS − SQ
−
H |in〉. (5.40)

5.5.1 Stationary phase interlude

How do we go from the classical expressions for the charges (5.33) to computing their
action on asymptotic particle states? The key is that metric perturbations such as Czz are
(asympotically) related to gravitons upon quantization. Consider the Fourier expansion

hout
µν =

∑
α=±

∫
d3~q

(2q0)(2π)3

[
ε∗αµνa

out
α (~q)eiq·x + εαµνa

out†
α (~q)e−iq·x

]
(5.41)

of the the linearized perturbation hµν about a Minkowski background

gµν = ηµν + κhµν . (5.42)

Here the creation and annihilation operators obey the standard commutation relations

[aout
α (~q), aout†

β (~q′)] = δαβ2q0(2π)3δ3(~q − ~q′). (5.43)

Now using the parameterization

q(ω, z, z̄) = ωq̂(z, z̄) =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (5.44)

for massless momenta together with

x = (u+ r, rx̂) , x̂ =
1

1 + ww̄
(w + w̄,−i(w − w̄), 1− ww̄) , (5.45)

we find
q · x = −(u+ r)ω + ω~q(z, z̄) · x̂(w, w̄) = −uω − ωr(1− cos θ). (5.46)

Then

hout
µν =

∑
α=±

1

8π2

∫ ∞
0

dωω

∫ π

0

dθ sin θ
[
ε∗αµνa

out
α (~q)e−iωu−iωr(1−cos θ) + εαµνa

out†
α (~q)eiωu+iωr(1−cos θ)

]
(5.47)

and at large r → ∞ one can apply the stationary phase approximation to deduce that
the exponents are dominated by cos θ = 1 and so

hout
µν (u, r, x̂) =

∑
α=±

1

8π2

∫ ∞
0

dωω

∫ π

0

dθθ
[
ε∗αµν(x̂)aout

α (x̂)e−iωu+iωr θ
2

2 + εαµν(x̂)aout†
α (x̂)eiωu−iωr

θ2

2

]
=

1

8π2ir

∑
α=±

∫ ∞
0

dω
[
ε∗αµν(x̂)aout

α (x̂)e−iωu − εαµν(x̂)aout†
α (x̂)eiωu

]
.

(5.48)
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Note that the coefficients are evaluated at θ = 0 or equivalently ~q = x̂ since ~q · x̂ = 1.
Moreover, the contribution from the θ = π limit of integration vanishes in the large r
limit upon introducing a regulator.

Exercise 5.4. Work out the details of the stationary phase approximation.

Finally

hww =
∂xµ

∂w

∂xµ

∂w
hout
µν = − ir

8π2
ε̂ww

∫ ∞
0

dω
[
aout

+ (x̂)e−iωu − aout†
− (x̂)eiωu

]
(5.49)

where we used that

∂wx
µε−µ =

√
2r

1 + ww̄
, ∂wx

µε+
µ = 0, ε̂ww = ∂wx

µε−µ ∂wx
νε−ν ≡

2

(1 + ww̄)2
(5.50)

and hence

Czz = lim
r→∞

κ

r
hzz = − iκ

8π2
ε̂zz

∫ ∞
0

dω
[
aout

+ (x̂(z, z̄))e−iωu − aout†
− (x̂(z, z̄))eiωu

]
. (5.51)

Comment on arguments z vs. w.
Returning to the definition of the soft charge, we note that it involves the integral∫

duuNz̄z̄ =

∫
duu∂uCz̄z̄ (5.52)

and using the mode expansion (5.51) we find [12]

N
(1)
z̄z̄ =

i

4π
ε̂z̄z̄ lim

ω→0
(1 + ω∂ω)

[
aout
− (ωx̂)− aout†

+ (ωx̂)
]
. (5.53)

Therefore QS picks out a particular subleading15 soft graviton mode!
For simplicity we now restrict to the case when all asymptotic particles but the soft

insertion are scalars. Using the subleading soft relation (3.2), the LHS of (5.40) reduces
to [12]

〈out|Q+
SS − SQ

−
S |in〉 = − i

4π

∫
d2zD3

zY
z ε̂z̄z̄S

(1)−〈out|S|in〉

= −i
∑

k∈in,out

(
Y zk∂zk −

ωk
2
DzkY

zk∂ωk

)
〈out|S|in〉.

(5.54)

In the second line, we integrated by parts and used the parameterizations (5.44) of mo-
menta for which the subleading soft factor of a negative helicity graviton becomes

S(1)− =
∑
k

(
(z − zk)(1 + zz̄k)

(z̄k − z̄)(1 + zkz̄k)
ωk∂ωk +

(z − zk)2

z̄k − z̄
∂zk

)
. (5.55)

But the RHS of (5.54) is nothing but the action of the hard chargeQH on scalar asymptotic
states. We conclude the subleading soft theorem implies conservation of the charges (5.32),
hence the enhancement of Lorentz symmetry to Virasoro.

151 + ω∂ω projects out the leading soft pole.
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5.6 A 2D stress tensor for 4D gravity

(5.54) also implies that gravity in AFS has a remarkable feature: the existence of a
subleading soft graviton mode whose insertions in the quantum gravity S-matrix behaves
like the stress tensor of a 2D CFT. To see this, we simply set

Y zk =
1

z − zk
(5.56)

in (5.54). Upon defining16

Tzz ≡ i

∫
d2w

1

z − w
D2
wD

w̄N
(1)
w̄w̄, (5.57)

(5.54) reduces to

〈TzzO1...On〉 =
n∑
k=1

[
ĥk

(z − zk)2
+

Γzkzkzk
z − zk

ĥk +
1

z − zk
∂zk

]
〈O1...On〉. (5.58)

This is the Ward identity of a stress tensor in a conformal field theory on a curved
background [74]. Note however that the weight17 ĥk = −1

2
ωk∂ωk is a differential operator

which acts non-diagonally on S-matrix elements in a basis of momentum eigenstates. In
the next section we will introduce a new basis of asymptotic states which diagonalize the
action of ĥk. The scattering problem in AFS will be then reformulated in terms of an
observable living on the celestial sphere: the celestial amplitude.

6 Celestial amplitudes

Lecture 4

• Conformal primary basis in relation to mode expansion (in first section)

• Massive, massless (already done, but revisit logic)

• Amplitudes structures and celestial symmetries; 4-point massless, higher points,
practical uses? Relation to twistors?

Cautionary note: In this section we will work in flat retarded coordinates in which
the Minkowski metric takes the form

ds2 = −dudr + 2r2dzdz̄ (6.1)

while null momenta

q(ω, z, z̄) =
1√
2
ωq̂(z, z̄) (6.2)

16Note that this operator is directly related to the soft charges Q±S evaluated at Y z = 1
z−w .

17For external states of spin sk, the weights generalize to ĥk =
sk−ωk∂ωk

2 and (5.58) gets corrected by
a spin connection term, see [13] for the general formula.
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are parameterized in terms of the null vector

q̂(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) . (6.3)

We start by introducing a basis for scattering in AFS which diagonalizes asymptotic
boosts as opposed to momentum generators. We show how to formulate scattering in this
basis, with celestial amplitudes defining observables living on the sphere at infinity. We
illustrate this construction by computing the celestial amplitude of two massless and one
massive scalars. This section is based on [14] and [15].

6.1 Conformal primary wavefunctions

Scalar conformal primary wavefunctions are solutions to the wave equation(
∇2 −m2

)
Ψ = 0, (6.4)

which are “highest weight” with respect to the Lorentz SO(1, 3). We start by identi-
fying the associated highest weight states, then impose they are solutions to (6.4). A
representation of the Lorentz generators is

Jµν = Lµν + Sµν , (6.5)

where
Lµν = − (xµ∂ν − xν∂µ) (6.6)

is the orbital angular momentum generator and Sµν is the spin generator. For simplicity,
we focus on scalars in which case Sµν = 0.

(6.6) consist of rotations

J1 = −(x2∂x3 − x3∂x2), J2 = x1∂x3 − x3∂x1 , J3 = −(x1∂x2 − x2∂x1) (6.7)

and boosts

K1 = −(x0∂x1 + x1∂x0), K2 = −(x0∂x2 + x2∂x0), K3 = −(x0∂x3 + x3∂x0). (6.8)

These generators obey the standard Lorentz algebra

[Ji, Jj] = εijkJk,

[Ki, Kj] = −εijkJk,
[Ji, Kj] = εijkKk,

(6.9)

while the linear combinations (B.1) of (6.7), (6.8) in appendix B obey the SL(2,C) com-
mutation relations

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n. (6.10)

We now notice that

Ψ∆ ∝
1

(x0 + x3)∆
(6.11)
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obeys
(L0 + L̄0)Ψ∆ = ∆Ψ∆, (L0 − L̄0)Ψ∆ = 0 (6.12)

as well as
L1Ψ∆ = L̄1Ψ∆ = 0. (6.13)

In other words, (6.11) diagonalizes boosts in the x3 direction and obeys the highest weight
condition (6.13).

One could have done the same analysis starting with a set of rotated bulk Lorentz
generators,

J ′i = RijJj, K ′i = RijKj, (6.14)

where

R =

cos ϕ̂ cos θ̂ sin ϕ̂ cos θ̂ − sin θ̂
− sin ϕ̂ cos ϕ̂ 0

cos ϕ̂ sin θ̂ sin ϕ̂ sin θ̂ cos θ̂

 ≡
n̂1

n̂2

n̂3

 .

Multiplication by an arbitrary function f of the Lorentz invariant x2 will preserve both
the eigenvalue and highest weight conditions (6.12), (6.13), hence in general, a highest
weight solution diagonal with respect to K ′3 will be18

Ψ∆(q̂;x) =
f(x2)

(q̂ · x)∆
, q̂ ∝ (1, n̂3) = q̂(z, z̄), (6.15)

with q̂(z, z̄) in (5.44).
Finally, we require that (6.15) obeys the wave equation. Plugging (6.15) into (6.4),

we find the following differential equation for f [15]

4x2f ′′(x2)− 4(∆− 2)f ′(x2)−m2f(x2) = 0. (6.16)

The solutions to (6.16) are linear combination of Bessel functions (of first kind)

f(x2) =
(√
−x2

)∆−1 [
c1I∆−1(m

√
x2) + c2I−∆+1(m

√
x2)
]
, (6.17)

where c1, c2 are (∆-dependent) constants. Imposing that (6.17) decays to 0 as x2 → ∞
picks out the linear combination proportional to the Bessel function of second kind

f(x2) ∝
(√
−x2

)∆−1

K∆−1(m
√
x2). (6.18)

We conclude that up to normalization, the massive conformal primary wavefunctions take
the form19

Ψ∆(q̂;x) ∝
(√
−x2

)∆−1

(q̂ · x)∆
K∆−1(m

√
x2). (6.19)

18(θ̂, ϕ̂) are related to z, z̄ via the stereographic projection.
19An iε prescription distinguishes between in and out states [15].
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Under Lorentz transformations, both q̂ and x transform linearly

q̂µ(z′, z̄′) =

∣∣∣∣∂~z′∂~z
∣∣∣∣1/2 Λµ

ν q̂
ν(z, z̄),

xµ
′
= Λµ

νx
ν

(6.20)

hence (6.19) obeys

Ψ∆(Λµ
νx; ~z′(~z)) =

∣∣∣∂~z′
∂~z

∣∣∣−∆/2

Ψ∆(x; ~z). (6.21)

Exercise 6.1. Show that the conformal primary wavefunctions obey (6.21).

In the next section we give an alternate derivation of (6.19) which will lead to a
representation of (6.19) as Fourier transforms of AdS3 bulk-to-boundary propagators.

6.2 Milne slicing

The conformal compactification of Minkowski space in section 5.2 obscures one aspect of
scattering in AFS: all massive particles enter (exit) spacetime at a point, i−(i+), so how
are we supposed to distingush between different asymptotics? The key is to resolve past
and future timelike infinities by introducing the new coordinates [75,76]

t2 − r2 = τ 2,

ρτ = r.
(6.22)

In (τ, ρ, z, z̄) coordinates, (5.9) becomes

ds2 = −dτ 2 + τ 2

(
dρ2

1 + ρ2
+ 2ρ2γzz̄dzdz̄

)
= −dτ 2 + τ 2dsH3 . (6.23)

We learn that slices of constant τ correspond to hyperboloids of radius τ , while ρ =

r

t

(
1− r2

t2

)−1/2

is constant whenever r/t is constant. Since t = τ
√

1 + ρ2, as τ → ∞,

t → ∞ for fixed (ρ, z, z̄). We illustrate the foliations of the past and future light-cones
(also known as Milne wedges) with H3 slices in figure 5.

Parameterizing the trajectory of massive particle of constant momentum ~p and energy
E by

~r = ~r0 +
t

E
~p, (6.24)

we find that as t→∞,

ρ→ |~p|
m
,

~r

r
→ ~p

p
. (6.25)

Hence at late times, massive particles asymptote to fixed (ρ, z, z̄), or equivalently points
on the unit hyperboloid at i+. Similarily, the Rindler wedges can be foliated with dS3

slices. This slicing is easily obtained by letting

τ = iτ̃ , ρ = −iρ̃ (6.26)
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Figure 5: Minkowski space split into four regions: the past and future lightcones are
covered by H3 slices while the causally disconnected Rindler regions are covered by dS3

slices.

in (6.23) in which case

ds2 = dτ̃ 2 + τ̃ 2

(
dρ̃2

1− ρ̃2
+ 2ρ̃2γzz̄dzdz̄

)
. (6.27)

This dS3 slicing won’t be discussed further herein, but see [77] for an analysis of associated
conformal primary solutions.

The proper, orthocronous Lorentz group acts as the group of isometries on the H3

slices for t > 0. To find solutions to (6.4) that preserve slices of constant τ it is convenient
to express ∇2 with respect to the coordinates in (6.23) .

Exercise 6.2. Using

∇2Ψ =
1
√
g
∂µ (gµν

√
g∂νΨ) (6.28)

show that in the coordinates (6.23), (6.4) becomes[
1

ρτ 2

((
3ρ2 + 2

)
∂ρ + ρ

(
ρ2 + 1

)
∂2
ρ − ρτ

(
3∂τ + τ∂2

τ

))
+

�S2

ρ2τ 2

]
Ψ = m2Ψ. (6.29)

Setting
ρ = sinh η, (6.30)

(6.29) becomes [
1

τ 2

(
∂2
η + 2 coth η∂η

)
− 3

∂τ
τ
− ∂2

τ +
�S2

sinh2 ητ 2

]
Ψ = m2Ψ. (6.31)
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This equation can be solved by separation of variables

Ψ = φp,l(η)ϕp(τ)Ylm(z, z̄) (6.32)

where (
∂2
η + 2 coth η∂η +

−l(l + 1)

sinh2 η
− p2

)
φp,l(η) = 0,(

−3
∂τ
τ
− ∂2

τ +
p2

τ 2
−m2

)
ϕp(τ) = 0

(6.33)

and
�S2Ylm = −l(l + 1)Ylm. (6.34)

Note that p is a free parameter which cancels in (6.31). We recognize the first equation in
(6.33) as the massive wave equation in AdS3 while the second equation has two linearly
independent solutions which can be taken to be

ϕp(τ) =
I√

1+p2(mτ)

τ
,

K√
1+p2(mτ)

τ
. (6.35)

Choosing the second solution as it decays at τ → ∞, we recover the τ dependence in
(6.19) upon identifying

∆− 1 =
√

1 + p2. (6.36)

Using (6.36) it is a standard exercise in AdS3 to show that the first equation in (6.33)
can be written in terms of the SL(2,C) generators (B.1) (upon an appropriate coordinate
transformation)(

4L2
0 − 2L−1L1 − 2L1L−1

)
φp,l =

(
4L̄2

0 − 2L̄−1L̄1 − 2L̄1L̄−1

)
φp,l = ∆(∆− 2)φp,l. (6.37)

Using the SL(2,C) commutation relations (6.10) and imposing that L1φp,l = 0, (6.37)
reduces to (6.12), (6.13) and we recover the solutions (6.19).

Note that (6.33) admit more general solutions which don’t obey the highest weight
condition (6.13). These can be used to construct the unitary principal series represen-
tations of SL(2,C). This complementary calculation is detailed for the dS slicing of
Minkowski space (6.27) in [77]. A discussion of conformal primary solutions of (6.4) in
(2, 2) signature can be found in [78].

6.3 Integral representation

The conformal primary wavefunctions (6.19) admit the Fourier representation

Ψ∆(x; ~z) =

∫
H3

d3p̂G∆(p̂; ~z)eimp̂·X , (6.38)

where the momenta

p̂(y, w, w̄) =
1

2y

(
1 + y2 + ww̄, w + w̄,−i(w − w̄), 1− y2 − ww̄

)
(6.39)
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are in one-to-one correspondence with points on the unit hyperboloid at i+ and

G∆(y, w, w̄; z, z̄) =

(
y

y2 + |z − w|2

)∆

(6.40)

is the bulk-to-boundary propagator in AdS3 [79]. As they are weighted integrals of plane
waves, they automatically solve the wave equation. That they transform as (6.21) under
SL(2,C) follows from the transformation property

G∆(p̂′; q̂′) =

∣∣∣∣∂~z′∂~z
∣∣∣∣−∆/2

G∆(p̂; q̂) (6.41)

of (6.40). The Fourier transform (6.38) can be evaluated to recover the conformal primary
wavefunctions (6.19).

6.4 Massless particles

The massless conformal primary wavefunctions can be obtained from (6.19) by taking the
m→ 0 limit (assuming Re(∆) > 1). Using the expansion

K∆−1(x) = x−∆
(
2∆−2Γ(∆− 1)x+O(x2)

)
+ x∆

(
2−∆Γ(1−∆)x−1 + 2−2−∆ Γ(1−∆)

∆
x+O(x2)

)
,

(6.42)

we find

ϕ∆(q̂;x) = lim
m→0

Ψ∆(q̂;x) ∝ 1

(q̂ · x)∆
. (6.43)

The integral representation of the massless conformal primary wavefunctions can also be
derived from (6.38) by taking the limit m→ 0 for fixed ω ≡ m/(2y). In this limit (6.39)
becomes null, (6.40) becomes proportional to [80]

lim
y→0

G∆(y, z, z̄;w, w̄) =
π

∆− 1
y2−∆δ(2)(z − w) +

y∆

(w − z)2∆
+O(y4−∆) (6.44)

and upon evaluating the integral in (6.38) we recover (6.43).20

Exercise 6.3. Evaluate (6.38) in the limit (6.44) and show that the massless conformal
wavefunction indeed reduces to (6.43).

6.5 Conformal primary wavefunctions: summary

In this section we summarize what we have learned so far. We have shown that there exist
solutions to the scalar wave equations that diagonalize Lorentz boosts in and rotations

20In fact (6.44) gives two contributions in the massless limit: the conformal primary (6.43) and its
shadow. Since these solutions are not linearly independent, [15] argued it is sufficient to restrict to (6.43).
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around a particular null direction or towards a point on the celestial sphere. In the massive
case these take the form

Ψ∆(q̂;x) ∝
(√
−x2

)∆−1

(q̂ · x)∆
K∆−1(m

√
x2). (6.45)

while in the massless case they reduce to

ϕ∆(q̂;x) = lim
m→0

Ψ∆(q̂;x) ∝ 1

(q̂ · x)∆
. (6.46)

For massless particles, the bulk energy effectively gets traded for a scaling dimension ∆.
The scaling dimension can be seen as a “Rindler energy” as it diagonalizes the Rindler
(or rather Milne) time evolution operator which is nothing but a boost.

In the same way as plane waves form a basis of on-shell one-particle states in Minkowski
in that any bulk (scalar) field can be decomposed as

Φ(x) =

∫
d3~q

(2π)3

[
aout(~q)eiq·x + aout†(~q)e−iq·x

]
(6.47)

massless scalar conformal primary wavefunctions also form a basis (at least) provided that
∆ = 1 + iλ, for λ ∈ R, namely

Φ(x) =

∫ ∞
−∞

dλ

∫
d2z
[
ãout
λ (q̂)ϕ1+iλ(q̂(z, z̄);x) + ãout†

λ (q̂)ϕ∗1−iλ(q̂(z, z̄);x)
]
. (6.48)

Here ã, ã† should be thought of boundary (CCFT) operators. For example aout
λ (q̂) creates

an outgoing state in the CCFT while ain† creates and incoming state in the CCFT and
can be extracted from the bulk field Φ(x) via the Klein Gordon inner product

ãout
λ (q̂) = 〈Φ(x), ϕ1+iλ(q̂;x)〉Σ (6.49)

where the Cauchy slice Σ is taken to be I+. This can be shown using the orthogonality
condition for massless outgoing conformal primary wavefunctions []

〈ϕ1+iν1 , ϕ1+iν2〉 = 8π4δ(ν1 − ν2)δ2(z1 − z2) (6.50)

Note that on the other hand

〈ϕ1+iν1 , ϕ
∗
1+iν2
〉 =

∫ ∞
0

dω1

∫ ∞
0

dω2ω
∆1−1
1 ω

∆∗2−1
2 〈eiω1q̂1·X , e−iω2q̂2·X〉 = 0. (6.51)

This construction can be generalized to both spinning and massive particles. For
massless spinning particles the story is simple: the CPW are simply obtained by dressing
the conformal primary wavefunctions by appropriate frame fields

mµ = εµ+ +
ε+ ·X

(−q ·X)
qµ , m̄µ = εµ− +

ε− ·X
(−q ·X)

qµ . (6.52)

which satisfy m ·m̄ = 1 and transform with ∆ = 0 and, respectively, J = +1 and J = −1.
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We define spin-one and spin-two conformal primary wavefunctions by

A∆,J=+1 = mϕ∆ , A∆,J=−1 = m̄ϕ∆ ,

h∆,J=+2 = mmϕ∆ , h∆,J=−2 = m̄m̄ϕ∆ .
(6.53)

An analogous construction for conformal primary wavefunctions with half-integer spin
using a decomposition of the null tetrad into a spin frame can be found in [84]. The case
of spinning massive particles is more subtle and less examples have been worked out so
far.

6.6 Celestial diamonds

An important role in the following will be played by conformal primary wavefunctions at
particular (half-)integer dimensions ∆. We first exploit tools from conformal field the-
ory to understand the possible representations arising in CCFT. An ubiquitous feature
of CCFT is the presence of primary descendant operators. These are constructed from
wavefunctions that (as the name suggests) are both primaries and descendants with re-
spect to the global conformal group. This is only possible at particular weights (h, h̄) and
we can find these values by imposing that

L1L
k
−1|h, h̄〉 = 0. (6.54)

We can now use an implication of the Lorentz algebra, namely that

[L1, L
k
−1] = k(L−1)k−1(2L0 + k − 1) (6.55)

to deduce that (6.54) implies

2h+ k − 1 = 0 =⇒ h =
1− k

2
, k ∈ N. (6.56)

The primary descendant has h = k+1
2

which correponds to h → 1 − h. One can run
the same argument for L̄ as well as for L, L̄ simultaneously. Note that the latter class is
typically not encountered in unitary CFT such primary descendats would be associated
with primary operators of

h =
1− k

2
, h̄ =

1− k̄
2

, k, k̄ ∈ N (6.57)

which are ruled out by unitarity. However, as we will see later, they play an important
role in CCFT.

Conformal primary wavefunctions for different dimensions give rise to symmetry gen-
erators in the celestial CFT. Let’s look at the s = 0 diamond associated with the leading
soft graviton theorem or supertranslation symmetry. At the left corner is the radiative
(leading) soft graviton, while at the right corner is its shadow transform. The shadow is an
intertwiner between SL(2,C) representations which maps primary operators to primary
operators

Õ1−h,1−h̄ =

∫
d2w

1

(z − w)2−2h(z̄ − w̄)2−2h̄
Oh,h̄. (6.58)
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at the bottom lies the supertranslation charge. A similar diamond exists for the canoni-
cally conjugate operators (or wavefunctions) which give rise to the Faddeev Kulish dress-
ings discussed before. For s = 1 we get a negative helicity subleading soft graviton at the
left, its shadow - stress tensor - at the right and the superrotation charge at the bottom.
For s = 2 the diamond degenerates to a line, while for s ≥ 3 we get the tower of soft
symmetries that will be discussed later in the course.

φ : (−1,−s)

∂s−2
z̄

∂2+s
z

Ns : (1− s,−2)

∂2+s
z

Ñs(z, z̄) : (s+ 1, 2)

∂s−2
z̄

Qs : (3, s)

Figure 6: Diamond associated with a negative helicity soft graviton of dimension ∆ = 1−s
for s ≤ 3. Operators connected by long edges have weights related by (h, h̄)↔ (1−h, h̄).
Operators connected by short edges have (h, h̄)↔ (h, 1− h̄). Diagonally opposite corners
are related by (h, h̄)↔ (1− h, 1− h̄).

Ns : (1− s,−2)

∂s−2
z̄

∂2+s
z

S[qs] : (−1,−s)

∂2+s
z

qs(z, z̄) : (3, s)

∂s−2
z̄

Ñs : (1 + s, 2)

Figure 7: Diamond associated with a negative helicity soft graviton of dimension ∆ = 1−s
for s ≥ 3. Operators connected by long edges have weights related by (h, h̄)↔ (1−h, h̄).
Operators connected by short edges have (h, h̄)↔ (h, 1− h̄). Diagonally opposite corners
are related by (h, h̄)↔ (1− h, 1− h̄).
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6.7 A conformal primary basis for scattering in AFS

Using the map (6.38) from plane wave solutions to conformal primary solutions of the
scalar wave equation, one can relate momentum space scattering amplitudes A to scat-
tering amplitudes Ã in a conformal primary basis

Ã(∆i, zi, z̄i) =
n∏
i=1

∫
H3

d3p̂i
p0
i

G∆i
(p̂i; zi, z̄i)A(εimip̂i), (6.59)

where εi = ±1 depending on whether the ith particle is incoming or outgoing. The
transformation of (6.21) under SL(2,C) implies that (6.59) transform as correlators of 2D
(global) conformal primary operators

Ã(∆i, ~z
′
i(~zi)) =

n∏
i=1

∣∣∣∣∂~z′i∂~zi

∣∣∣∣−∆i/2

Ã(∆i, ~zi). (6.60)

(6.59) is the defining relation of a celestial amplitude.
It can be shown that [15]

• The massive conformal primary wavefunctions (6.38) form a basis of solutions to
the wave equation provided ∆ = 1 + iλ, λ ≥ 0. For such ∆, these solutions are
complete, linearly independent and orthogonal.21

• The massless conformal primary wavefunctions form a basis of solutions to the wave
equation provided ∆ = 1 + iλ, λ ∈ R.

The construction of conformal primary wavefunctions and celestial amplitudes generalizes
for spinning particles. Photons and gravitons are discussed in [15, 81], fermions were
analyzed in [82,83] while arbitrary spins are addressed in [41,84].

6.8 Example: 2 massless and 1 massive scalars at tree–level

In this section we illustrate the construction of celestial amplitudes with a computation of
the tree-level celestial amplitude for two massless and one massive scalars [16]. We start
with the momentum space 3-point interaction

A(p̂i) = gδ(4)(ω1q̂1 + ω2q̂2 −mp̂). (6.61)

The associated celestial amplitude is then

Ã(∆i, zi, z̄i) = g
2∏
i=1

(∫ ∞
0

dωiω
∆i−1
i

)∫ ∞
0

dy

y3

∫
d2w

(
y

y2 + |z3 − w|2

)∆3

× δ(4)(ω1q̂1 + ω2q̂2 −mp̂).

(6.62)

21Notice that in this case, p2 (the effective “mass” on the AdS3 slices in (6.33)) will be complex
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Using the parameterizations of momenta

q̂ = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) ,

p̂ =
1

2y

(
1 + y2 + ww̄, w + w̄,−i(w − w̄), 1− y2 − ww̄

) (6.63)

and evaluating the integrals over y, ~w and ω2, (6.62) reduces to (see appendix C for details)

Ã(∆i, zi, z̄i) =
gm2∆2+∆3−4

22∆2−∆3−2|z12|2∆2−2∆3

∫ ∞
0

dω
ω∆1−∆2+∆3−1

(m2|z23|2 + 4|z12|2|z13|2ω2)∆3
. (6.64)

Upon a change of variables, the remaining integral becomes proportional to the standard
integral ∫ 1

0

dttα−1(1− t)β−1 =
Γ(α)Γ(β)

Γ(α + β)
≡ B(α, β) (6.65)

and we conclude

Ã(∆i, zi, z̄i) =
C(∆1,∆2,∆3)

|z12|∆1+∆2−∆3|z13|∆1+∆3−∆2|z23|∆2+∆3−∆1
,

C(∆1,∆2,∆3) = g
m∆1+∆2−4

2∆1+∆2−1
B

(
∆12 + ∆3

2
,
−∆12 + ∆3

2

)
.

(6.66)

7 Celestial symmetries

This section contains a review of celestial symmetries and the constraints they impose on
celestial amplitudes. The ideas and calculations summarized in this section are detailed
in [17–21,41,85].

Lecture 4, 5

• Symmetry, Ward identities, MHV and beyond.

• OPEs: soft symmetry algebras.

7.1 Poincaré action on the celestial sphere

We begin by discussing the Poincaré symmetry of celestial amplitudes. As shown in [17]
the Lorentz generators act on operators Oh,h̄(z, z̄) as

L0 = 2(z∂z + h), L− = ∂z, L+ = z2∂z + 2zh,

L̄0 = 2(z̄∂z̄ + h̄), L̄− = ∂z̄, L̄+ = z̄2∂z̄ + 2z̄h̄.
(7.1)

Lorentz symmetry of scattering in AFS is equivalent to global conformal symmetry of
celestial amplitudes

LIÃn = L̄IÃn = 0, (7.2)
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where An is an n-point celestial amplitude

LI =
n∑
k=1

LI,k, L̄I ≡
n∑
k=1

L̄I,k (7.3)

and I runs over −1, 0, 1. (7.2) is a familiar property of correlation functions in 2D CFT.
Additionally, bulk translation invariance implies that

PµÃn = 0, Pµ ≡
n∑
k=1

Pµ,k. (7.4)

Celestial translation generators act on massless particles as weight-shifting operators

Pµ,k = εkq̂µ(zk, z̄k)e
∂∆k , (7.5)

where εk = ±1 distinguishes between incoming and outgoing particles. To see this, we
can start with the momentum space action

P̂kA(q1, ..., qn) = εkωkq̂kA(q1, ..., qn) (7.6)

and rewrite it in a conformal primary basis by taking a Mellin transform

PkÃ(∆1, ...∆n) =
n∏
j=1

(∫ ∞
0

dωjω
∆j−1
j

)
εkωkq̂kA(q1, ..., qn)

=
n∏
j=1
j 6=k

(∫ ∞
0

dωjω
∆j−1
j

)∫ ∞
0

dωkω
∆k+1−1
k εkq̂kA(q1, ..., qn)

= εkq̂kÃ(∆1, ...,∆k + 1, ...,∆n).

(7.7)

We conclude that for massless scattering, (7.4) relates celestial amplitudes involving op-
erators of shifted weights

Ãn(∆1 + 1,∆2, ...,∆n) + Ãn(∆1,∆2 + 1, ...,∆n) + · · ·+ Ãn(∆1, ...,∆n + 1) = 0. (7.8)

For massive scalars, (7.5) are replaced by [18]

P µ =
m

2

[(
∂z∂z̄q

µ +
∂z̄q

µ∂z + ∂zq
µ∂z̄

∆− 1
+

qµ∂z∂z̄
(∆− 1)2

)
e−∂∆ +

∆qµ

∆− 1
e∂∆

]
. (7.9)

(7.9) is determined by imposing the on-shell condition

PµP
µ = −m2, (7.10)

as well as the Poincaré algebra

[Pµ, Pν ] = 0, [Mµν , Pρ] = ηµρPν − ηνρPµ. (7.11)

Exercise 7.1. Verify (7.9) satisfy (7.10) and (7.11).

The momentum generators for spinning particles can be found in [41]. It is interesting
to notice that in addition to off-diagonal terms in dimension ∆ = h+ h̄, they also contain
off-diagonal terms in spin J = h− h̄.
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7.2 Constraints from Poincaré symmetry

(7.1) and (7.5) imply that any celestial 4-point function can be put into the form

Ã4 = Khi,h̄i(zi, z̄i)δ(z − z̄)fhi,h̄i(z, z̄), (7.12)

where

Khi,h̄i(zi, z̄i) =
4∏

i<j=1

z
h/3−hi−hj
ij z̄

h̄/3−h̄i−h̄j
ij , h =

4∑
i=1

hi (7.13)

and

z =
z13z24

z12z34

, z̄ =
z̄13z̄24

z̄12z̄34

(7.14)

are the 2D conformally invariant cross-ratios. For massless scattering, (7.14) are related
to the bulk variables (Mandelstam invariants) by

z = − t
s
, s = −(p1 + p2)2, t = −(p1 + p3)2. (7.15)

Additionally, in this case momentum conservation (7.4) implies that

4∑
j=1

Khj+
1
2
,h̄j+

1
2
(zi, z̄i)f

hj+
1
2
,h̄j+

1
2 (z, z̄) = 0. (7.16)

Exercise 7.2. Show that
4∑
j=1

Khj+
1
2
,h̄j+

1
2
(zi, z̄i) = 0. (7.17)

Since the conformally covariant factor (7.13) is translationally invariant by itself, (7.16)
can be non-trivially obeyed if

fhi+
1
2
,h̄i+

1
2 (z, z̄) = fhj+

1
2
,h̄j+

1
2 (z, z̄), ∀i, j. (7.18)

By induction it can be shown that (7.18) implies that

fhi,h̄i(z, z̄) = fβ,Ji(z, z̄), β =
4∑
i=1

(hi + h̄i) =
4∑
i=1

∆i. (7.19)

More generally, (7.4) will be obeyed by celestial amplitudes with both massive and
massless particles, provided Pµ,k are chosen appropriately. For example, consider the
three-point amplitude of two massless and one massive scalars computed in section 6.8.
The same result can be perhaps more easily recovered by considering the constraint(

P1 + P2 + P
(m)
3

)
Ã3(1, 2, 3(m)) = 0, (7.20)

where P1, P2 are the massless momentum generators in (7.5) while P
(m)
3 is the massive

momentum (7.9). Global conformal invariance fixes

Ã(1, 2, 3(m)) =
C(∆1,∆2,∆3)

|z12|∆1+∆2−∆3|z23|∆2+∆3−∆1|z13|∆1+∆3−∆2
, (7.21)

38



hence (7.20) leads to the following recursion relations on the 3-point coefficients [18](
∆2

12

4
− (∆3 − 1)2

4

)
C∆1,∆2,∆3−1 + ∆3(∆3 − 1)C∆1,∆2,∆3+1 = 0,

4ε2(∆3 − 1)C∆1,∆2+1,∆3 +mε3(∆3 − 1−∆12)C∆1,∆2,∆3−1 = 0,

4ε1(∆3 − 1)C∆1+1,∆2,∆3 +mε3(∆3 − 1 + ∆12)C∆1,∆2,∆3−1 = 0,

(7.22)

where ∆12 ≡ ∆1 −∆2.

Exercise 7.3. Show that (7.22) are solved by

C(∆1,∆2,∆3) = B

(
∆1 −∆2 + ∆3

2
,
∆2 −∆1 + ∆3

2

)
c∆1,∆2,∆3 , (7.23)

where

c∆1,∆2,∆3−1 = c∆1,∆2,∆3+1,

c∆1+1,∆2,∆3 = c∆1,∆2+1,∆3 ,

c∆1+1,∆2,∆3 = c∆1,∆2,∆3−1.

(7.24)

The first constraint in (7.24) implies c is perodic in ∆3 of period 2, the second implies
periodicity of period 1 in ∆1 and ∆2 up to dependence of ∆1 + ∆2 while additionally, the
last constraint implies c is periodic of period 1 in ∆1,∆3 up to dependence of

∑3
i=1 ∆i in

which case the period becomes 2. The periodic function is set to a constant by requiring
the inverse Mellin transform to be well defined.

7.3 Conformally soft symmetries

We saw in section 5.5 that the subleading soft theorem implies a conservation law asso-
ciated with an infinite-dimensional Virasoro symmetry. This is one example of a more
general equivalence between soft theorems and conservation laws associated with large
gauge symmetries. For example, it was shown in [7] that the leading soft photon the-
orem implies that soft photons behave as U(1) currents. As such, their insertions into
S-matrices obey Ward identities of the form

〈JzO1(ω1, z1, z̄1)...On(ωn, zn, z̄n)〉 ≡ lim
ω→0

ω〈O+(ω, z, z̄)O1(ω1, z1, z̄1)...On(ωn, zn, z̄n)〉

=
n∑
k=1

Qk

z − zk
〈O1(ω1, z1, z̄1)...On(ωn, zn, z̄n)〉.

(7.25)

Similarly, the leading soft gluon theorem can be recast as a Kac-Moody symmetry gener-
ated by non-abelian currents Jaz obeying the Ward identities [64]

〈JazO1(ω1, z1, z̄1)...On(ωn, zn, z̄n)〉 ≡ lim
ω→0

ω〈O+,a(ω, z, z̄)O1(ω1, z1, z̄1)...On(ωn, zn, z̄n)〉

=
n∑
k=1

1

z − zk
〈O1(ω1, z1, z̄1)...T akOk...On(ωn, zn, z̄n)〉.

(7.26)
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We would like to reexpress (7.25) and (7.26) in a conformal primary basis and iden-
tify the celestial representations of these symmetry generators. Since the currents were
constructed from low-energy limits of bulk photons and gluons, while celestial operators
involve integrals over photons and gluons of all energies, it is a-priori not immediately
obvious how to construct the celestial currents. One hint is that in conventional CFTd,
currents saturate unitarity bounds22 and hence the dimension of a spin-j current is con-
strained to be [86]

∆ = d+ j − 2. (7.27)

In particular, positive helicity conformally soft photons and gluons should correspond to
operators of weights23 (h, h̄) = (1, 0), while negative helicity ones should have (h, h̄) =
(0, 1). They should be associated with abelian and non-abelian symmetries on the celestial
sphere.

The simplest way to show that this guess is indeed correct is to start with the Mellin
representation

O+
∆(z, z̄) =

∫ ∞
0

dωω∆−1O+(ω, z, z̄) (7.28)

and notice that [85]

lim
∆→1

(∆− 1)O+
∆(z, z̄) = lim

∆→1

∫ ∞
0

dω(∆− 1)ω∆−1O+(ω, z, z̄)

= 2

∫ ∞
0

dωδ(ω)ωO+(ω, z, z̄) = lim
ω→0

ωO+(ω, z, z̄).

(7.29)

In the last line we have used the identity24

lim
ε→0

ε

2
|x|ε−1 = δ(x). (7.30)

More generally

lim
∆→−n

(∆ + n)O+
∆(z, z̄) = lim

∆→−n
(∆ + n)

∫ ω∗

0

dωω∆−1O+(ω, z, z̄)

= lim
∆→−n

(∆ + n)
∑
k

∫ ω∗

0

dωω∆+k−1O+
k (z, z̄)

= O+
n (z, z̄),

(7.31)

where we expanded

O+(ω, z, z̄) =
∑
k

ωkO+
k (z, z̄) (7.32)

for ω � ω∗ and assumed that insertions of O+(ω, z, z̄) into S-matrices have fast enough
falls offs with energy25 in which case the high-energy part of the Mellin integral will be

22No analog bounds are known to exist in CCFT. Moreover, as we will see there is an infinite tower of
negative dimension operators arising from soft limits in the bulk.

23The conformal weights are related to the conformal dimensions ∆ and the spin J by h = ∆+J
2 , h̄ =

∆−J
2 .
24This holds provided that x has compact support.
25An exponential fall-off limω→∞〈O(ω, z, z̄) · · · 〉 ∼ e−εω will ensure this limit is well defined for any

negative integer ∆.
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free of poles in ∆ + n. We conclude that the ∆ → −n limit of a celestial operator for
n = −1, 0, 1, ... picks out the O(ωn) term in an expansion around ω = 0. For example, a
subleading soft photon will correspond to the celestial operator

lim
∆→0

∆O+
∆(z, z̄). (7.33)

This infinity of soft currents has been studied in [20, 31, 87]. There exists a comple-
mentary tower of positive integer-dimension operators (also known as Goldstone modes),
canonically conjugate to the conformally soft modes above [88]. Their combined Ward
identities are expected to constrain celestial amplitudes, but a complete understanding of
these symmetries and their implications remains an important open problem. In the next
section we describe some instances in which soft celestial symmetries were used to derive
non-trivial properties of celestial amplitudes.

7.4 Applications

We conclude this section with a brief overview of recent work on soft constraints on
celestial amplitudes [19] and the infinite tower of soft currents [20, 21].

7.4.1 Celestial operator products of gluons

We start by assuming that positive helicity gluons admit the holomorphic collinear ex-
pansion

O+,a
∆1

(z1, z̄1)O+,b
∆2

(z2, z̄2) ∼ ifabc

z12

C(∆1,∆2)O+,c
∆1+∆2−1(z2, z̄2) + ..., (7.34)

where ... include contributions from SL(2,C) descendants. Here and in the next section,
z, z̄ are treated as real independent variables in which case the CCFT becomes Lorentzian
and SL(2,C) is replaced by SL(2,R)L× SL(2,R)R. The form of the OPE is fixed by the
leading soft theorem and SL(2,C) up to a coefficient C(∆1,∆2). We now show that the
subleading conformally soft gluon theorem determines this leading OPE coefficient up to
a normalization fixed by the leading soft gluon theorem [19].

The subleading soft gluon theorem can be recast as a “symmetry”26 under which
gluons transform as follows

δbO±,a∆ (z, z̄) = −(∆− 1± 1 + z∂z)if
a
bcO

±,c
∆−1,

δ̄bO±,a∆ (z, z̄) = −(∆− 1∓ 1 + z̄∂z̄)if
a
bcO

±,c
∆−1.

(7.35)

Acting with δ̄ on both sides of (7.34) and comparing the two sides, we deduce that
C(∆1,∆2) obey the recursion relation

(∆1 − 2)C(∆1 − 1,∆2) = (∆1 + ∆2 − 3)C(∆1,∆2). (7.36)

(7.36) has the unique27 solution

C(∆1,∆2) = B(∆1 − 1,∆2 − 1). (7.37)
26These have not been shown to be associated with asymptotic charges.
27By Wieland’s theorem, see appendix E of [19]. The normalization is fixed by the leading soft theorem.
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Exercise 7.4. Write down the action of δ̄ on (7.34) and deduce (7.36).

Similar recursion relations are also implied by the subsubleading soft graviton theorem
and can be shown to completely fix the leading OPE coefficients in Einstein-Yang-Mills
theory.

7.4.2 Holographic symmetry algebras

(7.34) can be generalized to include contributions from SL(2,R)R descendants. One finds

O+,a
∆1

(z1, z̄1)O+,b
∆2

(z2, z̄2) ∼ −if
ab
c

z12

∞∑
n=0

B(∆1−1+n,∆2−1)
z̄n12

n!
∂̄nO+,c

∆1+∆2−1(z2, z̄2). (7.38)

(7.38) follows by resuming contributions from the right-moving descendants through the
OPE block [20]

O+,a
∆1

(z1, z̄1)O+,b
∆2

(z2, z̄2) ∼ −if
ab
c

z12

∫ 1

0

dt
O+,c

∆P
(z2, z̄2 + tz̄12)

t2−∆1(1− t)2−∆2
. (7.39)

It is interesting to study the algebra of soft operators discussed in section 7.3. First notice
that if ∆1,∆2 ∈ {1, 0,−1, ...}, ∆1+∆2−1 ∈ {1, 0,−1, ...} and the algebra of soft operators
closes. Then mode expanding such an operator on the right, one finds for k = 1, 0,−1, ...

lim
ε→0

εO+,a
k+ε(z, z̄) = lim

ε→0

∑
n

εO+,a
k+ε,n(z)

z̄n+ k−1
2

. (7.40)

Defining
Rk,a(z, z̄) = lim

ε→0
εO+,a

k+ε(z, z̄), Rk,a
n (z) = lim

ε→0
εO+,a

k+ε,n(z), (7.41)

we see that for
k − 1

2
≤ n ≤ 1− k

2
, (7.42)

Rk,a
n (z) organize into (2− k)-dimensional SL(2,R)R representations as

∂̄2−kRk,a(z, z̄) = 0. (7.43)

Using (7.38) and (7.41), the OPE of soft currents is found to be

Rk,a(z1, z̄1)Rl,b(z2, z̄2) ∼ −if
ab
c

z12

1−k∑
n=0

(
2− k − l − n

1− l

)
z̄n12

n!
∂̄nRk+l−1,c(z2, z̄2). (7.44)

This follows from setting ∆1 = k + ε,∆2 = l + ε in (7.38) and using

lim
ε→0

ε
Γ(k + ε− 1 + n)Γ(l + ε− 1)

Γ(k + l + 2ε+ n− 2)
=

1

(1− l)!
Γ(3− k − l − n)

Γ(2− k − n)
. (7.45)

Finally, (7.44) can be used to derive the algebra of the soft operators [20]

[Rk,a
n , Rl,b

n′ ] = −ifabc
(

1−k
2
− n+ 1−l

2
− n′

1−k
2
− n

)(
1−k

2
+ n+ 1−l

2
+ n′

1−k
2

+ n

)
Rk+l−1,c
n+n′ , (7.46)
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which follows from

Rk,a
n (z) =

∮
dz̄

2πi
z̄n+ k−1

2
−1Rk,a(z, z̄) (7.47)

and the commutator of holomorphic operators

[A,B](z) =

∮
z

dw

2πi
A(w)B(z) (7.48)

applied to (7.44).
Notice that upon redefining [21]

R̂k,a
n ≡

(
1− k

2
− n

)
!

(
1− k

2
+ n

)
!Rk,a

n , (7.49)

(7.46) simplifies to
[R̂k,a

n , R̂l,b
n′ ] = −ifabcR̂

k+l−1,c
n+n′ . (7.50)

A similar analysis can be done for gravitons, where the analog of (7.50) was identified
with a w1+∞ algebra in [21]

[wpm, w
q
n] = [m(q − 1)− n(p− 1)]wp+q−2

m+n , (7.51)

with p, q running over positive, half-integral values p, q = 1, 3
2
, · · · . Working out the

implications of (7.51) for gravity in AFS remains a fascinating open problem.

8 New lessons about spacetime from CCFT

Lecture 5

• New charges, new algebras

• Solution space labeled by charges

• Comments on practical applications.

What is the spacetime interpretation of the tower of symmetries (7.51)? First notice
that p, q = 3

2
, 2 are associated with the leading and subleading soft symmetries. Recall

from ?? that provided the geometry relaxes to vacuum at I±± the corresponding asymptotic
charges

Qf =

∫
S2

d2zfmB(z, z̄), QY =

∫
d2zY ANA(z, z̄) (8.1)

can be re-expressed in terms of the Einstein constraint equations (5.21), (5.22) expanded
to O(r−2)

Guu = 0, GuA = 0. (8.2)

These govern the time evolution of the Bondi mass and angular momentum aspects
mB, NA respectively. One more “constraint” exists at the same order in the large−r
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expansion, namely GAB = 0. A brute force computation show this constraint reduces to
an evolution equation []

∂uEAB =
1

2
mBCAB+

1

3
D(ANB)−

1

6
γABDCN

C+
1

4
CABNCDC

CD− 1

8
ε CA CCBεDED

EDCC
CD,

(8.3)
where EAB appears at subleading order in an expansion of the transverse metric as

gAB = r2γAB + rCAB +DAB +
1

r
EAB +O(r−2) (8.4)

and εAB is the Levi-Civita tensor on the sphere. By analogy with (8.1) one can define a
new charge

Qt =

∫
S2

d2ztAB(z, z̄)EAB (8.5)

parameterized by a tensor field tAB on the sphere.
As before we use the evolution equation to extend (??) as an integral over I and

(hopefully) identify the linear contribution with the sub-subleading soft graviton and the
action of the quadratic contribution on asymptotic states (or equivalently the phase space)
with the sub-subleading soft factor. Note that since (8.3) depends explicitly on NA, the
direct calculation appears very tedious.

Potential issues:

• Boundary conditions needed to integrate (8.3) not clear;

• Naively, Qt takes us out of the phase space;

• There are qubic contributions to Qt which will lead to corrections to the soft theo-
rem!

Proceed by noting that there exsists a field redefinition mB → Q0, Nz → Q1, Ezz →
Q2 that turns the mess (8.3) into a simple recursive equation

∂uQ2 = DzQ1 +
3

2
CzzQ0. (8.6)

We should understand Q2 and Q1 as carrying two and one helicity indices respectively so
that the equation makes sense. A more covariant way of writing this is by introducing a
spacetime tetrad with mA, m̄A tangent vectors to the sphere at infinity. In these notes,
we will be focussing on the round sphere with metric

ds2 =
2dzdz̄

P 2
, P =

1 + zz̄√
2

(8.7)

and in which case for an arbitrary tensor SAB

SABm
AmB ↔ P−2Szz, SABm̄

Am̄B ↔ P−2Sz̄z̄. (8.8)
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Explicitly, we have

Q0 =

Q1 =

Q2 =

(8.9)

where

N̂ = NABm̄
Am̄B,

C = CABm
AmB,

DOS ≡ mAmA1 · · ·mAsDAOA1···As .

(8.10)

Note that we define N̂ and C such that they are canonically conjugate variables

{∂uN̂(u, z), C(u′, z′)} =
κ2

2
∂uδ(u− u′)δ(z, z′), (8.11)

with
δ(z, z′) = P−2δ(z − z′). (8.12)

The transformation properties of these objects under SL(2,C) are inherited from the
transformations of the frame fields

mA → write (8.13)

and the field redefinitions are determined by symmetry considerations. In particular, Qs

are found by requiring that on the u = 0 cut of I+ they transform like “primaries” under
the action of the homogeneous part of the extended BMS (ie under superrotations)

δ(Y,W )O(∆,s) = (LY + (∆− s)W )O(∆,s). (8.14)

For the extended BMS, W = 1
2
DAYA.

Exercise 8.1. Show that Q0, Q1 are primaries in the sense that they obey (8.14).

After a lot of work (see []), one finds that in terms of Qs, s = 0, 1, 2, the Guu, Guz, GAB

constraints reduce to

Q̇s = DQs−1 +
(1 + s)

2
CQs−2, Q−1 =

1

2
DN̂, Q−2 =

1

2
˙̂
N. (8.15)

These equations can be integrated provided that

N̂ = O(|u|−1−s−ε), u→ ±∞, ε > 0 (8.16)

and
lim
u→∞
Qs = 0. (8.17)

The solutions can be shown to take the form

Qs =
s+1∑
k=1

Q(k)
s , (8.18)
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where

Q(1)
s = D

(
∂−1
u D

)s+1
Q−2

Q(2)
s =

s∑
n=0

1 + n

2
(∂−1
u D)s−nC(∂−1

u D)nQ−2.
(8.19)

These will be sufficient in establishing the connection to soft theorems. The higher non-
linear contributions can be worked out, and lead to contact term contributions to the soft
theorems that need to be better understood (cf. dressings?).

Following ?? and using the canonical commutation relations (8.11) we can now com-
pute the action of the s = 2 charge on the shear (the s = 0, 1 charges generate super-
translations and superrotations respectively and can be shown give rise to the leading and
subleading soft graviton theorems discussed at the beginning)

8

κ2
{Q2(u, z, z̄), C(u′, z′, z̄′)} = −3

2
C2δ(z, z′)

+
u′2

2
{D2MC, C}+ 2u′Dz

[
CDzδ(z, z

′) +
1

2
Dz(Cδ(z, z

′))

]
− 3

2

∫ u′

u

du′′C(u′′){MC, C}+ u{DzP , C} −
u2

2
{D2MC, C}.

(8.20)

Note!! For s ≥ 1 and u→ −∞ this action is not well defined! Need to find a prescriptions
to subtract the u → −∞ divergences. From the expression above, we see that in this
limit the divergences arise manifestly from the terms in the last line. We can therefore
define a new operator

q2(z, z̄) =
8

κ2

1

3
lim

u→−∞

(
Q2 −

3

2

∫ u

∞
du′′C(u′′)Q0(u)− uDzQ1 +

u2

2
D2Q0

)
. (8.21)

Then

{q2(z, z̄), C(u, z′)} = −u
2

3
∂4
zδ +

[
u2

6
∂2
u + u∂u + 1

] ∫ u

C∂2
zδ

+

(
−2

3
u∂u − 2

)∫ u

∂z′C∂zδ + δ∂2
z′

∫ u

C − 1

2
∂u

(
C

∫ u

C

)
.

(8.22)

Remarkably, upon defining
2hk ≡ u∂u + 3, (8.23)

and dropping quadratic terms on the RHS (which amounts to truncating the s = 2 charge
to quadratic order in the fields) we find

lim
u→−∞

[q2(u), Cz′z′(u
′)] = −u

′2

12
D4
zδ

(2)(z − z′)

+
1

24

[
D2
zδ

(2)(z − z′)2hk(2hk − 1)− 4Dzδ
(2)(z − z′)2hk + 6δ(2)(z − z′)

]
×
∫ ∞
−∞

du′′Cz′z′(u
′′, z′, z̄′)Θ(u′ − u′′).

(8.24)
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By the convolution theorem, with F denoting the Fourier transform, we find that

F [

∫ ∞
−∞

du′′Cz′z′(u
′′, z′, z̄′)Θ(u′ − u′′)] = F [Cz′z′ ]F [Θ] ∝ 1

ω
C̃(ω). (8.25)

It remains to find the Fourier transform of u∂u + 3 namely∫
dueiωu(u∂u + 3)f(u) = (−i∂ω(−iω) + 3)f̃(ω) = (2− ω∂ω)f̃(ω) = 2hkf̃(ω), (8.26)

which is indeed 2hk for a field of helicity sk = 2 like C. One can show that (8.24) precisely
reproduces the sub-subleading soft theorem.

8.1 Renormalized charges for all spins

8.1.1 Linear

Generalizing (8.21) for all s ∈ Z+, we define the renormalized charges

qs(z) = lim
u→−∞

s∑
l=0

(−u)s−l

(s− l)!
Ds−l
z Ql(s). (8.27)

The soft component of the renormalized charge takes the form (see appendix ??)

q1
s(z) =

(−1)s+1

2

∫ ∞
−∞

(
us

s!
Ds+2
z N̂

)
. (8.28)

It will be convenient to write this as

Q̂1
s(z) =

(−1)s+1

2
Ds+2
z N (s), (8.29)

where

N (s) =
1

s!

∫
duusN = − κ

8πs!
(−i∂ω)s

(
ωaout
− + (−1)nωaout†

+

)
. (8.30)

8.1.2 Quadratic

The renormalized quadratic charge takes the form

q2
s(u, z) =

s∑
n=0

(−u)s−n

(s− n)!
Q2
n

=
1

4

s∑
n=0

n∑
l=0

(−u)s−n

(s− n)!
(l + 1)Ds−l

z (∂−1
u )n−l+1

[
C(∂−1

u D)lN
]
,

(8.31)

where is the last line we used (8.19). The action of (10.31) on C is computed in appendix
?? and we find

{Q̂2
s(z), C(u′, z′)} =

κ2

8

s∑
n=0

(−1)s+n
(n+ 1)(∆ + 2)s−n

Γ(s− n+ 1)
(∂−1
u′ )s−1Dn

z′C(u′, z′)Ds−n
z δ(z, z′).

(8.32)
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8.2 From conservation law to soft theorem for all spins

8.2.1 Soft insertion

Using the results of the previous section we find

〈out|[Q̂1
s, S]|in〉 = 〈out|Q̂1

sS − SQ̂1
s|in〉

=
κ

8π

1

2
D2+s lim

ω→0

[
is

s!
∂sω〈out|(ωaout

− (ωx̂))S|in〉
]
× 2

=
κ

8π

is

s!
lim
ω→0

[
∂sω〈out|(ωaout

− (ωx̂))S|in〉
]
.

(8.33)

8.2.2 Hard charge actions on modes

At the quantum level, [., .] = −i{., .} so

[∂uN(u, z), C(u′, z′)] = −iκ
2

2
∂uδ(u− u′)δ(z, z′) . (8.34)

This bracket is consistent with the standard mode commutator

[aout
− (ωx̂), aout†

− (ω′x̂′)] = 2(2π)3ω−1δ(ω − ω′)δ(z, z′). (8.35)

To see this, note that∫
dueiωu

∫
du′e−iω

′u′ [N̄(u, z), C(u′, z′)] = − κ

4π
ω × iκ

4π
[aout
− (ωx̂), aout†

− (ω′x̂′)]

= −i 16πG

2(2π)2
ω[aout

− (ωx̂), aout†
− (ω′x̂′)]

(8.36)

since κ2 = 32πG, while from (8.34), the LHS is∫
dueiωu

∫
du′e−iω

′u′ [N̄(u, z), C(u′, z′)] = −i16πGδ(ω − ω′)2πδ(z, z′). (8.37)

We can now compute the bracket of q2 with the modes starting with their canonical
action on C

{Q̂2
s(z), C(u′, z′)} =

κ2

8

s∑
l=0

(−1)s+l
(1 + l)(∆ + 2)s−l

Γ(1− l + s)
(∂−1
u′ )s−1Dl

z′C(u′, z′)Ds−l
z δ(z, z′),

(8.38)

where
∆ + 2 ≡ u∂u + 3. (8.39)

This directly implies upon Fourier transform the commutator

[q2
s(z), aout

+ ] = −iκ
2

8

s∑
l=0

(−1)s+l
(1 + l)(∆ + 2)s−l

Γ(1− l + s)
(−iω)−s+1Dl

z′a
out
+ (ωx̂′)Ds−l

z δ(z, z′).

(8.40)

48



or, upon insertion into the S-matrix,

〈out|[q2
s ,S]|in〉 = is

κ2

8

n∑
k=1

s∑
`=0

(−1)s+`
(1 + `)(2hk)s−`

(s− `)!
(εkωk)

−s+1Ds−`
z δ(z, zk)D

`
zk
〈out|S|in〉 .

(8.41)
The conservation law

〈out|[qs,S]|in〉 (8.42)

truncated to quadratic order in the charges then implies

1

π
lim
ω→0

(∂ω)sD2+sω〈out|aout
− (ωx̂)S|in〉+ κ

n∑
k=1

s∑
l=0

(−1)s+l(1 + l)(2hk)s−l(s)l(εkωk)
−s+1

×Ds−l
z δ(z, zk)D

l
zk
〈out|S|in〉 = 0.

(8.43)

Comments:

• Can show that the quadratic charge bracket agrees with that computed from the
celestial OPE (including L or R descendants). In this sense, conformal symmetry
in the CCFT implies a dynamical evolution equation for higher spin charges at I±.

• In the previous lessons we saw that (upon rescaling and redefinition) the conformally
soft currents obey a w1+∞ algebra. One can show that the charges qs also satisfy
w1+∞. To linear order, no restriction to the wedge is necessary.

• The charges can be extracted from the retarded time evolution of the Ψ0 ∝ CrArB
Weyl tensor components to all order in a large-r expansion (this is implied by
Einstein’s equations). The Ψ0 components can be identified in the s ≥ 3 celestial
diamonds as the shadow transforms of the conformally soft gravitons, while the
charges are their light transforms.

9 Open problems

• “Good” basis for CCFT and bulk interpretation: light/shadow transforms

• Massive particles

• Loops; quantum symmeries ?

• Relation to AdS/CFT; string worldsheet; intrinsic, non-perturbative definition?

• Entropy: one dimension lower than suggested by BH area

• IR divergences in QCD, observables?

• Bootstrap; unitarity, causality;
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10 Discussion Sessions

10.1 Properties of coherent states

Define the following state

|αi〉 = e−
1
2
|αi|2eαia

†
i |0〉 = e−

1
2
|αi|2

∑
n

(αia
†
i )
n

n!
|0〉, a†i =

∫
d3kfi(k)a†(k), (10.1)

where {fi(k)} is a complete, orthonormal set of functions defined over some region of
momentum space (or all of momentum space)∫

d3kfi(k)f ∗j (k) = δij. (10.2)

Using the canonical commutation relations for a(k), a†(k), together with (10.2), one finds
that ai, a

†
i obey the commutation relations

[ai, a
†
j] =

∫
d3k

∫
d3k′f ∗i (k)fj(k

′)[a(k), a†(k′)] =

∫
d3kf ∗i (k)fj(k) = δij (10.3)

and

[a(k), a†i ] = [a(k),

∫
d3k′fi(k

′)a†(k′)] = fi(k). (10.4)

Note that |αi〉 is an eigenstate of a(k) with eigenvalue αif(k),

a(k)|αi〉 = e−
1
2
|αi|2 [a(k), eαia

†
i ]|0〉 = e−

1
2
|αi|2

∑
n

αni
n!
nf(k)an−1

i |0〉 = αif(k)|αi〉. (10.5)

From (10.5) and (10.2), the expectation value of the number operator in a coherent state
is

〈αi|N̂ |αi〉 =

∫
d3k〈αi|a†(k)a(k)|αi〉 = |αi|2. (10.6)

Alternatively, we can build the coherent state by acting with a unitary operator on the
vacuum as follows

|αi〉 = U(αi)|0〉 = eαia
†
i−α

∗
i ai |0〉. (10.7)

We check this by using the BCH formula

eÂ+B̂ = e−
1
2

[Â,B̂]eÂeB̂, if [Â, B̂] ∼ c, (10.8)

where c is a number. Then

eαia
†
i−αiai = e−

1
2
|αi|2eαia

†
i e−α

∗
i ai (10.9)

and e−α
∗
i ai |0〉 = |0〉 which confirms (10.7). Note that coherent states are not orthogonal

〈αi|βi〉 = e−|αi−βi|
2

(10.10)

but nevertheless obey
1

π

∫
d2αi|αi〉〈αi| =

∑
ni

|ni〉〈ni| = I, (10.11)

implying that they form an overcomplete set of states.
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10.2 Coherent states and memory observables

We consider the FK state associated with a single massless particle []

|p〉FK = exp

{
ieQ)

2π

∫
d2wG(z0, w)D · Aw(v0, w)

}
. (10.12)

The action of the soft charge

Q =

∫
duFuz (10.13)

on this state is

Q|p〉FK =
eQ0

z − z0

|p〉FK . (10.14)

Then this state is such that

〈p|Q|p〉FK =
eQ0

z − z0

(10.15)

so this state carries memory.
On the other hand,

〈p|FuzFuz̄|p〉FK ∝ δ(u)δ(u)
e2Q2

0

(z − z0)(z̄ − z̄0)
(10.16)

and so ∫
du〈p|FuzFuz̄|p〉FK ∝ δ(0)

e2Q2
0

(z − z0)(z̄ − z̄0)
. (10.17)

This seems to imply that such FK states have infinite energy even before integrating over
the sphere. Put it differently, upon regulating the UV and IR divergences,

δ(0)→ ln
Λ

λ
. (10.18)

This calculation assumes that Fuz annihilates the vacuum, which is not true. We
instead repeat it for the modes. We have

|~p〉F.K. = N e−Q
∫
dωd2z p

µ

q̂·pa
†
µ(ω,z,z̄)|p〉 (10.19)

where N is such that 〈~p|~p〉F.K. = 1. Then using the near I+ mode expansion we have that

Fuz = NF

∫ ∞
0

dωω
[
a+e

−iωu + a†−e
iωu
]
. (10.20)

This implies that

E ≡
∫
duFuzFuz̄ = |NF |2

∫
du

∫ ∞
0

dωdω′ωω′
[
a+e

−iωu + a†−e
iωu
] [
a†+e

iω′u + a−e
−iω′u

]
= |NF |2

∫ ∞
0

dωω2
[
a†+a+ + a†−a−

]
+ E0.

(10.21)

Therefore

〈~p|E|~p〉F.K. = |NF |2
∫ ∞

0

dω

[
|p · ε+|2

|p · q̂|2
+
|p · ε−|2

|p · q̂|2

]
→∞ (10.22)

since the integrand is independent on ω.
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10.3 BMS(W) primaries

Show that mB doesn’t obey (8.14). Using the Bondi expansion of an asymptotically flat
metric (??), show that

M≡ mB +
1

8
CABN

AB (10.23)

does. What are ∆, s? Argue this is the unique combination that obeys (??) for these
values of ∆, s.

10.4 Linear and quadratic charges

Derive (8.19) from (8.15).

10.4.1 Linear

The soft component of the renormalized charge takes the form

Q̂1
s(z) = lim

u→−∞

s∑
l=0

(−u)s−l

(s− l)!
Ds−l
z Q1

l (s)

=
1

2
lim

u→−∞

s∑
l=0

(−u)s−l

(s− l)!
Ds−l
z (∂−1

u D)l+2∂uN̂

=
1

2

s∑
l=0

(−u)s−l

(s− l)!
(∂−1
u )l+1Ds+2

z N̂ =
(−1)s

2
∂−1
u

(
us

s!
Ds+2
z N̂

)
=

(−1)s+1

2

∫ ∞
−∞

(
us

s!
Ds+2
z N̂

)
.

(10.24)

From the mode expansions near I+ we have

− κ

4π
(−i∂ω)n(ωaout

+ (ωx̂)) = (−i∂ω)n
∫ ∞
−∞

dueiωuN̄(u, x̂) =

∫ ∞
−∞

duunN̄(u, x̂)

= −∂−1
u (unN̄(u, x̂)).

(10.25)

− κ

4π
(−i∂ω)n(ωaout

− (ωx̂)) = (−i∂ω)n
∫ ∞
−∞

dueiωuN(u, x̂) =

∫ ∞
−∞

duunN(u, x̂)

= −∂−1
u (unN(u, x̂)),

(10.26)

where N = ∂uC̄. Recall that C and N are canonically conjugate variables and hence N
corresponds to a negative helicity graviton. Then taking half of a linear combination of
the above and the hermitian conjugate of (10.25), we find

− κ

8π
(−i∂ω)n

(
ωaout
− + (−1)nωaout†

+

)
=

1

2
(−i∂ω)n

(
Nω + (−1)nN−ω

)
=

∫ ∞
−∞

duunN.

(10.27)
We defined

Nω =

∫
eiωuN. (10.28)
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Finally, comparing with (10.24), we find

Q̂1
s(z) =

(−1)s+1

2
Ds+2
z N (s), (10.29)

where

N (s) =
1

s!

∫
duusN. (10.30)

10.5 Quadratic

The renormalized quadratic charge takes the form

Q̂2
s(u, z) =

s∑
n=0

(−u)s−n

(s− n)!
Q2
n

=
1

4

s∑
n=0

n∑
l=0

(−u)s−n

(s− n)!
(l + 1)Ds−l

z (∂−1
u )n−l+1

[
C(∂−1

u D)lN
]
,

(10.31)

where is the last line we used (??). We can now compute the action of (10.31) on C.

{Q̂2
s, C(u′, z′)} =

κ2

8

s∑
n=0

n∑
l=0

(−u)s−n

(s− n)!
(l + 1)Ds−l

z (∂−1
u )n−l+1

[
C(u, z)(∂−1

u D)l∂uδ(u− u′)δ(z, z′)
]

=
κ2

8

s∑
n=0

n∑
l=0

(−u)s−n

(s− n)!
(l + 1)Ds−l

z (∂−1
u )n−l+1(−∂−1

u′ )l−1
[
C(u′, z)δ(u− u′)Dlδ(z, z′)

]
= −κ

2

8

s∑
n=0

n∑
l=0

(l + 1)Ds−l
z (−∂−1

u′ )l−1

[
C(u′, z)

(u− u′)n−l

(n− l)!
(−u)s−n

(s− n)!
Dlδ(z, z′)

]
=
κ2

8

s∑
l=0

(−1)l(l + 1)Ds−l
z (∂−1

u′ )l−1

[
C(u′, z)

(−u′)s−l

(s− l)!
Dlδ(z, z′)

]
,

(10.32)

where we have used (
∂−1
u

)a
δ(u− u′) = (−1)a(∂u′)

aδ(u− u′),(
∂−1
u

)b
δ(u− u′) =

(u− u′)b

b!

(10.33)

as well as

s∑
n=l

(−u)s−n(u− u′)n−l

(s− n)!(n− l)!
=

s−l∑
n=0

1

(z − n− l)!n!
(−u)s−n−l(u− u′)n

=
1

(s− l)!
(−u′)s−l.

(10.34)

We also swapped the sums,
s∑

n=0

n∑
l=0

=
s∑
l=0

s∑
n=l

. (10.35)
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The regularization is now done, we see that the expression is independent on u and we
can therefore safely take u→ −∞.

Now using the identity

C(z)Dlδ(2)(z − z′) = (−D′)l
(
C(z)δ(2)(z − z′)

)
=

l∑
n=0

(−1)l
(
l
n

)
Dn
z′C(z′)Dl−n

z′ δ
(2)(z − z′)

=
l∑

n=0

(−1)n
(
l
n

)
Dn
z′C(z′)Dl−n

z δ(2)(z − z′).

(10.36)

we have

{Qquadr.
s , C(u′, z′)} =

κ2

8

s∑
l=0

l∑
n=0

(−1)l+n
(
l
n

)
(l + 1)(∂−1

u′ )l−1Dn
z′

(
C(u′, z′)

(−u′)s−l

(s− l)!

)
×Ds−n

z δ(2)(z − z′),
(10.37)

Finally

∂αu′

(
u′k

k!
C(u′)

)
=

k∑
n=0

(α)n
n!

u′(k−n)

(k − n)!
∂α−nu′ C(u′) =

1

k!
(∆ + α− 1)k(∂u′)

α−kC(u′). (10.38)

The last equality can be proven by noting that

uk−n∂k−nu = uk−n−1u∂u∂
k−n−1
u = (u∂u− k+n+ 1)uk−n−1∂k−n−1

u = ... = (u∂u)k−n (10.39)

and
k∑

n=0

(α)n(u∂u)k−n
n!(k − n)!

=
(u∂u + α− 1)k

k!
, (10.40)

which was checked in the file “Bulk sum” in mathematica. In proving (10.39), we have
used that

[u, u∂u] = −u. (10.41)

We can thus write

{Q̂2
s(z), C(u′, z′)} =

κ2

8

s∑
`=0

∑̀
n=0

(−)s+n
(`+ 1)!

n!(`− n)!

(∆− `)s−`
(s− `)!

(∂−1
u′ )s−1Dn

z′C(u′, z′)Ds−n
z δ(z, z′) .

(10.42)

We can swap the sums and use that

s∑
`=n

(`+ 1)!

(`− n)!

(∆− `)s−`
(s− `)!

=
(∆ + 2)s−n(n+ 1)

Γ(s− n+ 1)
=

(∆ + 2)s−n(n+ 1)!

Γ(s− n+ 1)
. (10.43)
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We arrive at the final result

{Q̂2
s(z), C(u′, z′)} =

κ2

8

s∑
n=0

(−1)s+n
(n+ 1)(∆ + 2)s−n

Γ(s− n+ 1)
(∂−1
u′ )s−1Dn

z′C(u′, z′)Ds−n
z δ(z, z′).

(10.44)
Alternatively, after (10.37) one can go to the conformal primary basis (although one

can also use the pseudodifferential calculus - it’s equivalent) and replace

(∂−1
u′ )s−k−1

(
C(u′)

u′k

k!

)
→ 1

k!
(∆− s+ k)ke

−(s−1)∂∆C̃(∆). (10.45)

Plugging back into (10.37), swapping the sums and evaluating the sum over k

s−l∑
k=0

(s− k + 1)(s− k)!(∆− s+ k)k
(s− k − l)!k!

= −(2 + ∆)(1 + l)π csc(πs)2F
R
1 (1 + ∆− s, l − s;−s; 1)

(2 + ∆ + l − s)Γ(1− l + s))

= l!
1 + l

Γ(1− l + s)
(∆ + 2)s−l

(10.46)

where the last line holds for integer l ≤ s. We conclude

[Qquadr.
s , C(u′, z′)] =

1

2

s∑
l=0

(−1)s+l−1 (1 + l)(∆ + 2)s−l
Γ(1− l + s)

e−(s−1)∂∆Dl
z′C̃(∆, z′)Ds−l

z δ(2)(z − z′),

(10.47)

which agrees with (10.39).

10.6 Light-transform in CCFT

The light transforms of an operator in conformal field theory is a transformation that
takes primaries O of weights (h, h̄) to primaries of weights (1−h, h̄) or (h, 1− h̄), namely

L+[O](w, w̄) =

∫
dz

1

(w − z)2−2h
O(z, w̄),

L−[O](w, w̄) =

∫
dz̄

1

(w̄ − z̄)2−2h̄
O(w, z̄).

(10.48)

Exercise: Show that for half-integral negative weights (or 2− 2h > 0)

L+[O](w, w̄) =
2πi

(1− 2h)!
lim
z→w

∂1−2h

∂z1−2h
O(z, w̄). (10.49)

Solution: It follows immediately from the definition upon integration by parts and
using the residue theorem

L+[O](w, w̄) =

∫
dz

1

(w − z)2−2h
O(z, w̄) =

1

(1− 2h)!

∫
dz

1

(w − z)
∂1−2h
z O(z, w̄)

=
1

(1− 2h)!
lim
z→w

∂1−2h

∂z1−2h
O(z, w̄).

(10.50)
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A Charge commutators

In this section we compute the commutators of the charges (5.33) with Cww. Upon
integration by parts the hard charges can be rewritten as

Q+
H =

1

4

∫
I+

dud2zγzz̄

(
uDzY

+zNzzN
zz + uDz̄Y

+z̄Nz̄z̄N
z̄z̄ +DzY

+zCzzN
zz +Dz̄Y

+z̄Cz̄z̄N
z̄z̄

+ 2Dz(Y
+zCzz)N

zz + 2Y +z̄Nz̄z̄Dz̄C
z̄z̄
)

+ matter.

(A.1)

Then using the canonical commutation relations

[Nz̄z̄(u, z, z̄), Cww(u′, w, w̄)] = 2iγzz̄δ
(2)(z − w)δ(u− u′), (A.2)

one derives

[Q+
H , Cww(u′, w, w̄)] =

2i

4

(
uD · Y +Nww + (DwY

+w −Dw̄Y
+w̄)Cww + 2Dw(Y +wCww)

+ 2Y +w̄Dw̄Cww

)
= i
(u

2
D · Y +Nww −

1

2
D · Y +Cww

+ 2DwY
+wCww + Y +wDwCww + Y +w̄Dw̄Cww︸ ︷︷ ︸

LY+Cww

)
= iδHY +Cww.

(A.3)

Similarly,
[Q+

S , Cww] = −iuD3
wY

+w = iδSY +Cww. (A.4)

The commutator of Q+ with Nww is derived analogously.
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B Conformal primaries on Milne slices

The relation between the Lorentz generators Ji, Ki and the SL(2,C) generators Li, L̄i is

L0 = − i
2

(J3 + iK3), L1 = − i
2

(J1 + iK1 + i(J2 + iK2)), L−1 =
i

2
(J1 + iK1 − i(J2 + iK2)),

L̄0 =
i

2
(J3 − iK3), L̄1 =

i

2
(J1 − iK1 − i(J2 − iK2)), L̄−1 = − i

2
(J1 − iK1 + i(J2 − iK2)).

(B.1)

The Lorentz algebra (6.9) immediately implies that (B.1) obey the SL(2,C) algebra (6.10).
The form (6.23) of the Minkowski metric with ρ = sinh η can be obtained directly

from
ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (B.2)

via the coordinate transform

x0 = τ cosh η,

x1 = τ sin θ cosϕ sinh η,

x2 = τ sin θ sinϕ sinh η,

x3 = τ cos θ sinh η,

(B.3)

The isometries of (6.23) are inherited from isometries of (B.2) which preserve the
slices of constant τ and hence coincide with the Lorentz transformations (6.7), (6.8). In
(τ, η, θ, ϕ) coordinates, the Lorentz generators generators take the form

J3 = −∂ϕ, J1 = sinϕ∂θ + cosϕ cot θ∂ϕ, J2 = − cosϕ∂θ + sinϕ cot θ∂ϕ,

K3 = −(cos θ∂η − sin θ coth η∂θ),

K1 = −(cosϕ sin θ∂η + cos θ cosϕ coth η∂θ − coth η csc θ sinϕ∂ϕ),

K2 = −(sin θ sinϕ∂η + cos θ coth η sinϕ∂θ + coth η cosϕ csc θ∂ϕ).

(B.4)

In the limit η →∞, (B.4) reduce to

J3 = −∂ϕ, J1 = sinϕ∂θ + cosϕ cot θ∂ϕ, J2 = − cosϕ∂θ + sinϕ cot θ∂ϕ,

K3 = sin θ∂θ, K1 = −(cos θ cosϕ∂θ − csc θ sinϕ∂ϕ), K2 = −(cos θ sinϕ∂θ + cosϕ csc θ∂ϕ).

(B.5)

Equivalently in (z, z̄) coordinates28

z = − cot
θ

2
eiϕ, z̄ = − cot

θ

2
e−iϕ (B.6)

and using identities such as
1

(sin θ/2)2
= 1 + zz̄, (B.7)

28z → −z, z̄ → −z̄ is an automorphism of the Lorentz algebra. (B.6) yield formulas for the Lorentz
generators that match with [12] up to an overall sign. This overall sign is such that the standard Lorentz
algebra (6.9) is obeyed.
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(B.5) take the form

J3 = −i(z∂z − z̄∂z̄), J1 = − i
2

[
(z2 − 1)∂z − (z̄2 − 1)∂z̄

]
,

J2 = −1

2

[
(z2 + 1)∂z + (z̄2 + 1)∂z̄

]
, K3 = −(z∂z + z̄∂z̄),

K1 = −1

2

[
(z2 − 1)∂z + (z̄2 − 1)∂z̄

]
, K2 =

i

2

[
(z2 + 1)∂z − (z̄2 + 1)∂z̄

]
.

(B.8)

These precisely agree with (5.25) with f = 0 and Y +z given in (5.28).
As before,

Ψ∆ =
f(τ 2)

(x0 + x3)∆
=

f(τ 2)

(τ(cosh η + cos θ sinh η))∆
(B.9)

obeys
(L0 + L̄0)Ψ∆ = ∆Ψ∆, (L0 − L̄0)Ψ∆ = 0 (B.10)

and
L1Ψ∆ = L̄1Ψ∆ = 0. (B.11)

(B.9) diagonalizes boosts along the x3 axis and obeys the highest weight condition (B.11).

C Celestial 3-point example

In this appendix we spell out the steps involved in evaluating the integral (6.62). We first
notice that on the support of the momentum-conserving delta function,

ω2 =
m2

4ω1|z12|2
, y =

2mω1|z12|2

m2 + 4ω2
1|z12|2

,

w =
m2z2 + 4ω2

1z1|z12|2

m2 + 4ω2
1|z12|2

, w̄ =
m2z̄2 + 4ω2

1 z̄1|z12|2

m2 + 4ω2
1|z12|2

.

(C.1)

The Jacobian for the transformation from (ωiq̂i,mp̂) to (ω2, y, w, w̄) is

|J | = m3(y2 + |w − z2|2)

2y4
. (C.2)

We then find that

1

y3

1

|J |

(
y

y2 + |w − z3|2

)∆3

δ

(
ω2 −

m2

4ω1|z12|2

)
δ

(
y − 2mω1|z12|2

m2 + 4ω2
1|z12|2

)
× δ(2)

(
w − m2z2 + 4ω2

1z1|z12|2

m2 + 4ω2
1|z12|2

)
=

2

m3

m

2ω1|z12|2

(
2mω1|z12|2

4ω2
1|z12|2|z13|2 +m2|z23|2

)∆3

× δ(4).

(C.3)

The integrals over y, w, w̄ are now trivial and the celestial 3-point amplitude becomes

Ã(∆i, zi, z̄i) = g

(
m2

4|z12|2

)∆2−1
(2m|z12|2)∆3

m2|z12|2

∫ ∞
0

dω1
ω∆1−∆2+∆3−1

1

(4ω2
1|z12|2|z13|2 +m2|z23|2)∆3

=
gm2∆2+∆3−4

22∆2−∆3−2|z12|2∆2−2∆3

∫ ∞
0

dω1
ω∆1−∆2+∆3−1

1

(4ω2
1|z12|2|z13|2 +m2|z23|2)∆3

,

(C.4)
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which precisely agrees with (6.64).
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