Conformal Field Theories

Tutorial 1

Higgs School 2022

Exercise 1.1. The purpose of this exercise is to find the most general infinitesimal transformation $x^{\prime \mu} \simeq x^{\mu}+\epsilon^{\mu}(x)$ that defines conformal transformations as the set of diffeomorphisms that leave the metric unchanged up to a overall scale factor, which in general can be coordinate dependent.

Let us consider the metric tensor $g_{\mu \nu}(x)$ of a d-dimensional space-time. Show that the above definition of "conformal transformations" requires:

$$
\begin{equation*}
g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\rho}}{\partial x^{\prime \mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime} \nu} g_{\rho \sigma}(x)=\Omega(x)^{2} g_{\mu \nu}(x) . \tag{1.1}
\end{equation*}
$$

Another way to phrase this in the flat case is that the Jacobian of the transfomation is an orhogonal metric times a coordinate dependent prefactor.

$$
\begin{equation*}
\frac{\partial x^{\rho}}{\partial x^{\prime \mu}}=\Omega(x) R_{\mu}^{\rho} \tag{1.2}
\end{equation*}
$$

Expand Eq. (1.1) at linear order in $\epsilon^{\mu}(x)$ (assuming $\Omega \simeq 1-O(\epsilon)$) and obtain the "Killing equation" (we restrict to constant metric $\left.\gamma_{\mu \nu}=\eta_{\mu \nu}\right)$)

$$
\begin{equation*}
\partial_{\rho} \epsilon_{\mu}+\partial_{\mu} \epsilon_{\rho}=\frac{2}{d}\left(\partial^{\sigma} \epsilon_{\sigma}\right) \eta_{\mu \rho} \tag{1.3}
\end{equation*}
$$

Deriving a second time, permuting the indices and taking linear combinations show that

$$
\begin{equation*}
\partial_{\rho} \partial_{\nu} \epsilon_{\mu}=\frac{1}{d}\left(\partial_{\nu} \partial^{\sigma} \epsilon_{\sigma} \eta_{\mu \rho}-\partial_{\mu} \partial^{\sigma} \epsilon_{\sigma} \eta_{\nu \rho}+\partial_{\rho} \partial^{\sigma} \epsilon_{\sigma} \eta_{\mu \nu}\right) . \tag{1.4}
\end{equation*}
$$

Finally, contracting the indices and applying ∂_{ν} to the resultinh equation and \square to eq. (1.3), obtain:

$$
\begin{align*}
& \partial_{\nu} \square \epsilon_{\mu}=\frac{2-d}{d} \partial_{\mu} \partial_{\nu}\left(\partial^{\sigma} \epsilon_{\sigma}\right), \\
& \partial_{\nu} \square \epsilon_{\mu}+\partial_{\mu} \square \epsilon_{\nu}=\frac{2}{d} \square \partial^{\sigma} \epsilon_{\sigma} \eta_{\mu \nu} \tag{1.5}
\end{align*}
$$

Symmetrizing the first equation show that

$$
\begin{equation*}
(2-d) \partial_{\mu} \partial_{\nu}\left(\partial^{\sigma} \epsilon_{\sigma}\right)=g_{\mu \nu} \square \partial^{\sigma} \epsilon_{\sigma} \tag{1.6}
\end{equation*}
$$

and taking the trace show that $f(x) \doteqdot\left(\partial^{\sigma} \epsilon_{\sigma}\right)$ satisfies the following second order differential equation:

$$
\begin{equation*}
(d-1) \square f(x)=0 \tag{1.7}
\end{equation*}
$$

Inserting the above constraint in eq.(1.6) argue that for $d>2$ it must be $f(x)=A+B_{\mu} x^{\mu}$, which translates in the general expression

$$
\begin{equation*}
\epsilon^{\mu}=c^{\mu}+a_{\mu \nu} x^{\nu}+b_{\mu \nu \rho} x^{\nu} x^{\rho} \tag{1.8}
\end{equation*}
$$

Plugging the general solution into eq. (1.4) we observe that the coefficient $b_{\mu \nu \rho}$ can be expressed in terms of only one vector $b_{\mu} \equiv b_{\sigma \mu}^{\sigma}$:

$$
\begin{equation*}
b_{\mu \nu \rho}=\frac{1}{d}\left(b_{\sigma \nu}^{\sigma} \eta_{\mu \rho}+b_{\sigma \rho}^{\sigma} \eta_{\mu \nu}-b_{\sigma \mu}^{\sigma} \eta_{\nu \rho}\right) \tag{1.9}
\end{equation*}
$$

Finally, using eq. (1.3) show that the symmetric part of $a_{\mu \nu}$ is proportional to the matrix $\eta_{\mu \nu}$, while the antisymmetric one is completely unconstrained.

Recognize the transformations associated to the above parameters:

$$
\begin{align*}
& x^{\prime \mu}=x^{\mu}+c^{\mu}: \quad \text { translations } \\
& x^{\prime \mu}=x^{\mu}+\lambda x^{\mu}: \quad \text { dilatations } \\
& x^{\prime \mu}=x^{\mu}+a^{\mu} x^{\nu}: \quad \text { Lorentz rotations } \\
& x^{\prime \mu}=x^{\mu}+2\left(b_{\rho} x^{\rho}\right) x^{\mu}-x^{2} b^{\mu}: \quad \text { Conformal boosts } \tag{1.10}
\end{align*}
$$

Exercise 1.2. Show that in $d=2$, given the coordinates $\left(z^{0}, z^{1}\right)$ with a flat metric on the plane, and the transfomation $z_{i} \rightarrow w_{i}\left(z_{j}\right)$, the condition

$$
\begin{equation*}
g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\rho}}{\partial x^{\prime \mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime \nu}} g_{\rho \sigma}(x)=\Omega(x)^{2} g_{\mu \nu}(x) \tag{1.11}
\end{equation*}
$$

corresponds to

$$
\begin{align*}
& \left(\frac{\partial w^{0}}{\partial z^{0}}\right)^{2}+\left(\frac{\partial w^{0}}{\partial z^{1}}\right)^{2}=\left(\frac{\partial w^{1}}{\partial z^{0}}\right)^{2}+\left(\frac{\partial w^{1}}{\partial z^{1}}\right)^{2} \\
& \frac{\partial w^{0}}{\partial z^{0}} \frac{\partial w^{1}}{\partial z^{0}}+\frac{\partial w^{0}}{\partial z^{1}} \frac{\partial w^{1}}{\partial z^{1}}=0 \tag{1.12}
\end{align*}
$$

Show that the above conditions are equivalent to the Cauchy-Riemann equations for holomorphic (or anti-holomorphic) functions:

$$
\begin{equation*}
\frac{\partial w^{1}}{\partial z^{0}}= \pm \frac{\partial w^{0}}{\partial z^{1}}, \quad \frac{\partial w^{0}}{\partial z^{0}}=\mp \frac{\partial w^{1}}{\partial z^{1}} \tag{1.13}
\end{equation*}
$$

Conclude that conformal transformations in $d=2$ are those for which the function $w(z)$ is holomorphic, where

$$
\begin{equation*}
z=z^{0}+i z^{1}, \quad \bar{z}=z^{0}-i z^{1}, \quad w=w^{0}+i w^{1}, \quad \bar{w}=w^{0}-i w^{1} \tag{1.14}
\end{equation*}
$$

Exercise 1.3. Starting from the infinitesimal transformations we can define the differential form of the generators acting on functions. Given a coordinate transformation $x \rightarrow x^{\prime}=$ $\xi(x)$ (therefore $x=\xi^{-1}\left(x^{\prime}\right)$), we have $f(x) \rightarrow f^{\prime}(x)=f\left(\xi^{-1}(x)\right)$. The implementation of function can be implemented through differential generators J such that $f^{\prime}(x)=e^{J} f(x)$. In the case in exam we get:

$$
\begin{array}{lll}
\text { Translations: } & f^{\prime}(x)=f\left(x^{\mu}-c^{\mu}\right)=f(x)-c^{\mu} \partial_{\mu} f(x) & \Rightarrow P_{\mu}=\partial_{\mu} \\
\text { Lorentz: } & f^{\prime}(x)=f\left(x^{\mu}\right)-w_{\nu}^{\mu} x^{\nu} \partial_{\mu} f(x) & \Rightarrow M_{\mu \nu}=-\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \\
\text { Dilatations: } & f^{\prime}(x)=f\left(x^{\mu}\right)-\lambda x^{\mu} \partial_{\mu} f(x) & \Rightarrow D=x^{\mu} \partial_{\mu} \\
\text { Conf. boosts: } & f^{\prime}(x)=f(x)-\left(2 b^{\nu} x_{\nu} x^{\mu} \partial_{\mu}-x^{2} b^{\mu} \partial_{\mu}\right) f(x) & \Rightarrow K_{\mu}=\left(2 x_{\mu} x^{\rho} \partial_{\rho}-x^{2} \partial_{\mu}\right) \tag{1.15}
\end{array}
$$

Using the above representation compute all the commutation relations among the conformal algebra generators.
Exercise 1.4 (DIFFICULT). Recalling the definition of conserved charge

$$
\begin{equation*}
Q_{\epsilon}=-\int_{\Sigma} d S_{\mu} \epsilon_{\nu} T^{\mu \nu} \tag{1.16}
\end{equation*}
$$

where Σ is the boundary of some region $\Sigma=\partial B$ and $d S_{\mu}$ is the normal to the surface. The commutator with the Stress Tensor itself is fixed by symmeties:

$$
\begin{equation*}
\left[Q_{\epsilon}, T^{\mu \nu}\right]=\epsilon^{\rho} \partial_{\rho} T^{\mu \nu}+\left(\partial_{\rho} \epsilon^{\rho}\right) T^{\mu \nu}-\partial_{\rho} \epsilon^{\mu} T^{\rho \nu}+\partial^{\mu} \epsilon_{\rho} T^{\rho \nu} \tag{1.17}
\end{equation*}
$$

Contracting with $\epsilon^{\prime \mu}$ and integrating over a surface Σ^{\prime} shaw that :

$$
\begin{equation*}
\left[Q_{\epsilon}, Q_{\epsilon^{\prime}}\right]=Q_{-\left[\epsilon, \epsilon^{\prime}\right]} \tag{1.18}
\end{equation*}
$$

where $\left[\epsilon, \epsilon^{\prime}\right]=\left((\partial \cdot \epsilon) \epsilon^{\prime}-\left(\partial \cdot \epsilon^{\prime}\right) \epsilon\right)$ is the Lie bracket. [Hint: choose a smart surface, for instance a cube in flat coordinates and show that the integral of $(\epsilon \cdot \partial)\left(T_{\mu \nu} \epsilon^{\prime \nu}\right)-\left(\partial^{\rho} \epsilon_{\mu}\right)\left(T_{\rho \nu} \epsilon^{\prime \nu}\right)$ vanishes. To do this integrate by part and recall that $\epsilon, \epsilon^{\prime}$ satisfy the Killing equations].
Exercise 1.5. Using the definitions of the previous exercise, compute the algebra of conformal transformations by applying the Lie bracket. We write down the explicit form of ϵ^{μ}. We strip out the parameters of the transformation, which we collectively call f^{a}. Then $\epsilon^{\mu}=f^{a} \epsilon_{a}^{\mu}$. The nature of the index a depends on the kind of transformation considered:

- translations: $\epsilon_{a}^{\mu} \rightarrow \epsilon_{\nu}^{\mu}=\delta_{\nu}^{\mu}$
- rotations: $\epsilon_{a}^{\mu} \rightarrow \epsilon_{\nu \rho}^{\mu}=\delta_{\nu}^{\mu} x_{\rho}-\delta_{\rho}^{\mu} x_{\nu}$
- dilatations: $\epsilon_{a}^{\mu} \rightarrow \epsilon^{\mu}=x^{\mu}$
- SCT: $\epsilon_{a}^{\mu} \rightarrow \epsilon_{\nu}^{\mu}=2 x^{\mu} x_{\rho}-\delta_{\nu}^{\mu} x^{2}$

Let us see an example. Consider the ϵ the killing vector associated to dilatations and ϵ^{\prime} the one associated to translations. Then

$$
\begin{equation*}
\left[Q_{D}, Q_{P_{\rho}}\right] \rightarrow \frac{1}{d}\left(\partial_{\mu} x^{\mu}\right) \delta_{\rho}^{\nu}=\delta_{\rho}^{\nu} \rightarrow\left[D, P_{\rho}\right]=P_{\rho} \tag{1.19}
\end{equation*}
$$

Compute all the other commutation relations.

