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Exercise 3.1. Compute the correlation function of two scalar fields on the cylinder. In
order to to this, recall the relation between the flat metric and the cylinder metric

ds2 = dr2 + r2dΩd−1 = e2τ
(
dτ 2 + dΩd−1

)
(3.1)

and the fact that, in absence of Weyl anomalies, the correlation functions of a theory with
T µµ = 0 satisfy the nice relation

〈O1(x) . . .On(x)〉gµν =

(
n∏
i=1

Ω(xi)
∆i

)
〈O1(x) . . .On(x)〉Ω2gµν . (3.2)

Using the above relation with gµν the cylinder metric, it allows to compute the correlation
function of operators on the cylinder. Show that

〈O(τ1, ~n1)O(τ2, ~n2)〉cyl =
∑
n

cne
−(∆+n)τ21 (3.3)

where τ is the time on the cylinder and , ~n is a unit vector on the sphere Sd−1. Interpret
the coefficients cn and the exponent ∆ + n.

Exercise 3.2. Consider the function CO1O2O3(x12, ∂2) describing the OPE of two scalars
and a third scalar

O1(x1)×O2(x2) ∼ CO1O2O3(x12, ∂2)O3(x2) + . . . (3.4)

Find the form of CO1O2O3 (stop at oder O(x2
12) ) by comparing with the three point function

of scalars 〈O1O2O3〉

Exercise 3.3. Compute the unitary bound for scalars ∆ ≥ (d − 2)/2 starting from the
positivity of the second descendant of a scalar O∆ with dimension ∆: ||P 2|O∆〉||2 = 0.

1


