Conformal Field Theories

Tutorial 3

Higgs School 2022

Exercise 3.1. Compute the correlation function of two scalar fields on the cylinder. In order to to this, recall the relation between the flat metric and the cylinder metric

$$ds^{2} = dr^{2} + r^{2} d\Omega_{d-1} = e^{2\tau} \left(d\tau^{2} + d\Omega_{d-1} \right)$$
(3.1)

and the fact that, in absence of Weyl anomalies, the correlation functions of a theory with $T^{\mu}_{\mu} = 0$ satisfy the nice relation

$$\langle \mathcal{O}_1(x) \dots \mathcal{O}_n(x) \rangle_{g_{\mu\nu}} = \left(\prod_{i=1}^n \Omega(x_i)^{\Delta_i}\right) \langle \mathcal{O}_1(x) \dots \mathcal{O}_n(x) \rangle_{\Omega^2 g_{\mu\nu}}.$$
 (3.2)

Using the above relation with $g_{\mu\nu}$ the cylinder metric, it allows to compute the correlation function of operators on the cylinder. Show that

$$\langle \mathcal{O}(\tau_1, \vec{n}_1) \mathcal{O}(\tau_2, \vec{n}_2) \rangle_{cyl} = \sum_n c_n e^{-(\Delta + n)\tau_{21}}$$
(3.3)

where τ is the time on the cylinder and \vec{n} is a unit vector on the sphere S_{d-1} . Interpret the coefficients c_n and the exponent $\Delta + n$.

Exercise 3.2. Consider the function $C_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_3}(x_{12},\partial_2)$ describing the OPE of two scalars and a third scalar

$$\mathcal{O}_1(x_1) \times \mathcal{O}_2(x_2) \sim C_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3}(x_{12}, \partial_2) \mathcal{O}_3(x_2) + \dots$$
(3.4)

Find the form of $C_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_3}$ (stop at oder $O(x_{12}^2)$) by comparing with the three point function of scalars $\langle \mathcal{O}_1\mathcal{O}_2\mathcal{O}_3 \rangle$

Exercise 3.3. Compute the unitary bound for scalars $\Delta \ge (d-2)/2$ starting from the positivity of the second descendant of a scalar O_{Δ} with dimension Δ : $||P^2|O_{\Delta}\rangle||^2 = 0$.