Status of BMWc's work on hadronic vacuum polarization

Laurent Lellouch CNRS & Aix-Marseille U.

Special thanks to Andrey Kotov, Sophie Mutzel, Balint Toth and Finn Stokes for their help in preparing this talk

Laurent Lellouch Fifth Plenary Workshop of the Muon g-2 Theory Initiative

Current situation

- 4.2σ: WP'20 vs FNAL'21 & BNL'04
- 1.5σ: BMWc'20 vs FNAL'21 & BNL'04
- 2.1σ: BMWc'20 vs WP'20

- 3.7σ: BMWc'20 vs data-driven
- Recent lattice results confirm our high value: RBC/UKQCD? FNAL/HPQCD/MILC?

Reduce dominant, continuum-extrapolation source of error: New finer lattice w/ a = 0.048 fm

Simulations

- Tree-level Symanzik-improved gauge action
- $N_f = 2 + 1 + 1$ staggered fermions
- Stout smearing 4 steps, $\rho = 0.125$

β a[fm] $L \times T$ #con	ſ
$3.7000 0.1315 48 \times 64 904$	4
3.7500 0.1191 56 × 96 2072	2
3.7753 0.1116 56 × 84 190	7
3.8400 0.0952 64 × 96 3139	9
3.9200 0.0787 80 × 128 429	6
4.0126 0.0640 96 × 144 698	0
$4.1479 0.0483 128 \times 192 4439$	9

- $L \sim 6 \, \text{fm}$, $T \sim 9 \, \text{fm}$
- m_{ud}, m_s and m_c around physical point

Intermediate window (blinded)

If *a* = 0.048 fm compatible with current *a* → 0 extrapolation
 ⇒ significantly increased tension w/ R-ratio

• If not, . . .

Reduce dominant, continuum-extrapolation source of error: Vary discretization of quark EM current operator

Tastes of staggered EM current operator

Vector meson operators [Golterman '85]							
OP	spin ⊗ taste	mult.	# hops	# paths	id*		
1-timeslice operators							
Li00	$\gamma_i \otimes \xi_i$ local	3	0	1 × 1	4		
L100	$\gamma_i \otimes 1$ conserved	3	1	2 × 1	5		
Lij0	$\gamma_i \otimes \xi_i \xi_j$	6	1	2 × 1	10		
Lijk	$\gamma_i \otimes \xi_i \xi_j \xi_k$	3	2	4 × 2	11		
Lj00	$\gamma_i \otimes \xi_j$	6	2	4 × 2	15		
Ljk0	$\gamma_i \otimes \xi_j \xi_k$	3	3	8 × 6	20		
2-timeslice operators							
Ni00	$\gamma_i \otimes \xi_i \xi_4$	3	1	1 × 1	24		
N100	$\gamma_i \otimes \xi_4$	3	2	2 × 2	25		
Nij0	$\gamma_i \otimes \xi_i \xi_j \xi_4$	6	2	2 × 2	30		
Nijk	$\gamma_i \otimes \xi_i \xi_j \xi_k \xi_4$	3	3	4 × 6	31		
Nj00	$\gamma_i \otimes \xi_j \xi_4$	6	3	4 × 6	35		
Njk0	$\gamma_i \otimes \xi_j \xi_k \xi_4$	3	4	8 × 24	40		
Total	12	48					

* [Altmeyer et al '93], [Ishizuka et al '94]

Must all give same continuum limit, but approach it differently \Rightarrow can use to constrain continuum limit

Continuum extrapolation of 12 taste current correlators

- LMA for all 12 operators
- 5 lattice spacings
- 1 ensemble at each β
- 48 configs on each ensemble

- Do they extrapolate to the same point?
- How best to use the information to constrain continuum limit?

Check universality of continuum limit: Intermediate window with overlap on staggered

Intermediate window: overlap on staggered

Universality: all valid discretizations of QCD should give the same results in the continuum

Check staggered continuum limit for $a_{\mu,\text{win}}^{\text{light}}$ w/ overlap on staggered in L = 3 fm boxes [BMWc20]:

- Increasing statistics of finest staggered point (not yet analyzed)
- In BMWc'20, overlap with RMS pion-mass matching to make computation possible
- New: implemented LMA for overlap to allow for Goldstone pion-mass matching (blinded and in progress)
 - \Rightarrow expect smaller discretization errors

Understanding short-distance discretization effects: Adler function and logarithmically-enhanced discretization errors

Logarithmically-enhanced discretization errors

- For on-shell quantities, discretization error

 α^mα_s(1/a)ⁿ ~ a^m/ ln(1/a)ⁿ
- a^{LO-HVP}_μ, Π̂(Q²), D(Q²), ... are not on-shell QCD quantities

 \rightarrow more sensitive to short distances

 \rightarrow suffer from log-enhanced discretization error $\sim a^2 \ln a$ [Cè et al '21]

 Study effect on D(Q²) which depends on single scale Q² (for π/a ≫ Q ≫ Λ_{QCD}, m_q)

 \rightarrow by tuning Q^2 can determine at what scales these discretization errors modify continuum limit significantly

- Here: 1-loop lattice pQCD
- Naive polynomial extrapolation from simulation lattice spacings overshoots known continuum limit
- Log starts taking over for $a \le 0.04$ fm in lattice pQCD for $Q^2 = 5$ GeV²
- Coefficient of log term (Γ₀) computed analytically
- Use 1-loop lattice pQCD to correct simulation results (see also ETMc '22)

Strong IB and QED corrections included to $O(\delta m, e^2)$ as in BMWc '20

 $D(Q^{2}, a) = D(Q^{2}, 0) + A_{2}[a\alpha_{s}^{n}(1/a)]^{2} + A_{2l}a^{2}\log(a^{2})(+A_{4}[a^{2}\alpha_{s}^{n}(1/a)]^{2}) + \cdots$

continuum extrapolation

QED and SIB corrections w/out chiral extrapolation

QED valence contribution

• Valence sector of quark-connected HVP $\left\langle \langle C_{2}^{\prime\prime}(U, A) \rangle_{A,q} \right\rangle_{U} = \langle \overline{\zeta_{2}} + \langle \overline{\zeta_{2}} \rangle$

- Compute as finite difference: measure C(0), $C(+\frac{1}{3}e_*)$, $C(-\frac{1}{3}e_*)$
- Calculated at $\kappa = \frac{m_{Val}^{\nu d}}{m_{phys}^{\nu d}} = 3, 5, 7 \longrightarrow \kappa = 1$
- New strategy: implement LMA to calculate directly at $\kappa = 1$ (blinded)

 $(\beta = 3.7000, 300 \text{ configs})$

Benchmarking of our very precise fixing of the QCD scale and quark masses and general analysis procedure w/ f_{π} and f_{K}

BMWc's physical points

In full $N_f = 4 \times 1$ QCD+QED, fix scale and quark masses w/ M_{Ω^-} , M_{π^0} , $M_{K_{\chi}} = \sqrt{[M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2]/2}$, $\Delta M_K^2 = M_{K^0}^2 - M_{K^+}^2$, ...

In isospin symmetric QCD:

- Want quantities that do not depend strongly on $O(\alpha, m_d m_u)$ corrections
- Fix scale w/ w₀ (purely gluonic observable)
- Mass m_q of q fixed via mass of corresponding quark-connected $\bar{q}q$, PS meson, M_{qq} for q = u, d, s (neutral and no magnetic moment)
- Fix $m_{ud} = (m_u + m_d)/2$ w/ $M_{uu}^2 + M_{qq}^2 = M_{\pi^0}|_{PDG}$ (good up to NLO IB corrections (Bijnens et al '07])
- Compute $w_0|_{ph}$ and $M_{ss}|_{ph}$ using full, $N_f = 4 \times 1$ QCD+QED calculations [BMWc '20]:

 $w_0|_{\rm ph} = 0.17236(70) \, {\rm fm}$ $M_{ss}|_{\rm ph} = 689.89(49) \, {\rm MeV}$

Use to compute $w_0 f_{\pi} \& w_0 f_K$ in isospin limit, including new a = 0.048 fm lattices

Continuum extrapolation of $w_0 f_{\pi}$ and $w_0 f_{\kappa}$: blinded

- Gives $\sigma_{w_0 f_{\pi}}^{\text{rel}} = 0.22\%$
- Compare to $\sigma_{w_0 M_{\Omega^-}}^{\rm rel} = 0.40\% \dots$
- ... and $\sigma_{f_{\pi}}^{\text{rel}}|_{\text{FLAG}} = 0.6\% \dots$
- ... and $\sigma^{\rm rel}_{|V_{ud}|f_{\pi}}|_{\rm PDG}=0.10\%$

- Gives $\sigma_{w_0 f_K}^{\rm rel} = 0.20\%$
- Compare to $\sigma_{w_0M_{\Omega^-}}^{\rm rel} = 0.40\% \dots$
- ... and σ^{rel}_{fk}|_{FLAG} = 0.2% (dependent on older PDG f_π) ...

• ... and
$$\sigma_{|V_{us}|f_K}^{\text{rel}}|_{\text{PDG}} = 0.16\%$$

- New simulations on finer a = 0.048 fm lattices
- Check of $a \rightarrow 0$ w/ 12 taste variations of quark, EM current
- Improve check of universality w/ overlap fermions
- Adler fn and investigations of impact of logarithmically-enhanced discretization errors on $a \rightarrow 0$ extrapolations for observables sensitive to different physical scales
- QED and SIB corrections w/out chiral extrapolations
- f_{π} and f_{K} as benchmarks of our physical-point-fixing and analysis procedures
- Other windows, ...

BACKUP

Renormalization

- L100 $(\gamma_i \otimes 1)$ is conserved \longrightarrow no renormalization $(Z_V(L100) = 1)$
- Other tastes: $J^{\mu}(L100) = Z_V(OP) \cdot J^{\mu}(OP) + \mathcal{O}(a^2)$
- Fix Z_V at each *a*, via:

$$Z_V^2(\mathsf{OP}) \stackrel{ ext{def}}{=} rac{a_{\mu, ext{win}}^{ ext{strange}}(\mathsf{L100})}{a_{\mu, ext{win}}^{ ext{strange}}(\mathsf{OP})}$$

Strong IB and QED corrections included to $O(\delta m, e^2)$ as in BMWc '20

 $D(Q^{2}, a) = D(Q^{2}, 0) + A_{2}[a\alpha_{s}^{n}(1/a)]^{2} + A_{2l}a^{2}\log(a^{2})(+A_{4}[a^{2}\alpha_{s}^{n}(1/a)]^{2}) + \cdots$

continuum extrapolation

