Time windows of the muon HVP from twisted mass lattice QCD.

Giuseppe Gagliardi, INFN Sezione di Roma Tre (On behalf of the ETM Collaboration)

C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath, R. Frezzotti,
M. Garofalo, K. Hadjiyiannakou, K. Jansen, V. Lubicz, B. Kostrzewa,
M. Petschlies, F. Sanfilippo, S. Simula, C. Urbach, U. Wenger

Fifth Plenary Workshop of the Muon g-2 Theory Initiative, September 5th, Edinburgh.

LO-HVP from Lattice QCD

Time-Momentum representation (Bernecker & Meyer, 2011)

$$a_{\mu}^{\rm LO-HVP} = 2\alpha_{em}^2 \int_0^{\infty} dt \ t^2 K(m_{\mu}t) V(t), \quad V(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

RBC/UKQCD windows

 $a_{\mu}^{\rm LO-HVP}$ decomposed as a sum of three contributions that probe different (Euclidean) time regions:

$$a_{\mu}^{SD} = 2\alpha_{em}^{2} \int_{0}^{\infty} dt \ t^{2}K(m_{\mu}t) V(t) \cdot \Theta^{SD}(t)$$
$$a_{\mu}^{W} = 2\alpha_{em}^{2} \int_{0}^{\infty} dt \ t^{2}K(m_{\mu}t) V(t) \cdot \Theta^{W}(t)$$
$$a_{\mu}^{LD} = 2\alpha_{em}^{2} \int_{0}^{\infty} dt \ t^{2}K(m_{\mu}t) V(t) \cdot \Theta^{LD}(t)$$

Window observables of $a_{\mu}^{\text{LO-HVP}}$ as a probe of $R^{had}(E)$

• a^w_μ , $w = \{SD, W, LD\}$, probe $R^{had}(E)$ more locally in energy E.

- Key test of SM (lattice QCD + QED) vs experimental $e^+e^- \rightarrow$ hadrons (independent of $g_{\mu} 2$).
- Lattice data for w = SD, W are very precise, no S/N problem.

Outline of our twisted-mass lattice QCD calculation

We computed the u, d, s, c, quark-line connected and disconnected contributions to a_{μ}^{SD} and a_{μ}^{W} in the isospin symmetric limit $m_{u}=m_{d}$, neglecting α_{em}^{3} QED effects.

Connected contributions:
$$f = u, d, s, c$$
.

Disconnected contributions: f, f' = u, d, s, c.

$$V^{ff'}_{disco}(t) \equiv -\frac{1}{3} \sum_{i=1,2,3} \int d^3x \left\langle J^f_i(\vec{x},t) \ J^{f'}_i(0) \right\rangle = -\frac{q_f q_{f'}}{f} \times \bigcirc_f \qquad \bigcirc_{f'=4}$$

Twisted-mass (tm) and Osterwalder-Seiler (OS) currents

- For connected contributions, two different ways to approach the continuum limit.
- We computed V^f_{conn}(t) employing two distinct lattice versions of the local e.m. current (peculiar to tm-LQCD):

- \pm is the sign of the twisted Wilson parameter.
- Connected V^{f,OS}_{conn}(t) and V^{f,tm}_{conn}(t) differ by O(a²) cut-off effects, including a²-dependent FSEs.

Simulations at the \simeq physical point

Four (\simeq) physical point ensembles, with $a \in [0.057 \text{ fm} - 0.080 \text{ fm}]$. $L \sim 5.1 \text{ fm}$ and $L \sim 7.6 \text{ fm}$ to control Finite Size Effects (FSEs).

 $M_{\pi} \in [136, 141] \text{ MeV}, \qquad M_{\pi}L > 3.5, \qquad V = L^3 \times T, \qquad T = 2L.$

Planned simulations at a < 0.05 fm, and on larger volume at $a \sim 0.068$ fm. ⁶

ensemble	β	V/a^4	a (fm)	$a\mu_\ell$	M_{π} (MeV)	L (fm)	$M_{\pi}L$
cB211.072.64	1.778	$64^3 \times 128$	0.0796(1)	0.00072	140.2(0.2)	5.10	3.62
cB211.072.96	1.778	$96^3 \times 192$	0.0796(1)	0.00072	140.1 (0.2)	7.64	5.43
cC211.060.80	1.836	$80^3 \times 160$	0.0682(1)	0.00060	136.6 (0.2)	5.46	3.78
cD211.054.96	1.900	$96^3 \times 192$	0.0569(1)	0.00054	140.8(0.3)	5.46	3.90

ensemble	Z_V	Z_A
cB211.072.64	0.706378 (16)	0.74284(23)
cB211.072.96	0.706402 (15)	0.74274 (20)
cC211.060.80	0.725405 (13)	0.75841 (16)
cD211.054.96	0.744105 (11)	0.77394 (10)

	#inversions (conn)			
ensemble	l	S	с	
cB211.072.64	10^{3}	16	4	
cB211.072.96	10^{3}	16	4	
cC211.060.80	10^{3}	16	4	
cD211.054.96	10^{3}	64	24	

- RCs have < 0.1% uncertainties.
- Iwasaki action for gluons.
- Wilson-clover twisted mass fermions at maximal twist for quarks (automatic O(a) improvement).

General fit ansatz

For all connected contributions to a^W_μ and a^{SD}_μ we perform combined continuum fits employing both tm and OS lattice correlators.

- General structure of the fit ansatz ($w = \{SD, W\}$):

$$a^{w}_{\mu}(\ell) = \left[a^{w,cont}_{\mu}(\ell) + \Delta a^{w}_{\mu}(L) + F^{r}_{1}a^{2}\frac{\partial}{\partial M_{\pi}}\Delta a^{w}_{\mu}(L)\right]$$
$$\times \left[1 + A\left(M_{\pi} - M^{phys}_{\pi}\right) + D^{r}_{1}\frac{a^{2}}{\left[\log(a^{2}/w^{2}_{0})\right]^{n_{r}}} + D^{r}_{2}a^{4}\right]$$

- $a^{w,cont}_{\mu}$, F^r_1 , A, D^r_1 and D^r_2 are free fitting parameters ($n_r = \{0,3\}$).
- $a^{w,cont}_{\mu}$, A do not depend upon the regularization $r = \{tm, OS\}$.
- $\Delta a^w_\mu(L)$: based on MLLGS modelization of Finite Size Effect, tuned to reproduce known lattice results (only for u + d contribution).
- Term proportional to F_1^r describes a^2 -dependent FSEs due to $\mathcal{O}(a^2)$ distortions of the pion spectrum.

Connected-light contribution to the intermdiate window: $a^W_\mu(\ell)$

Light (u+d) connected contribution to a^W_{μ}

- Typical accuracy of 0.1-0.2% for all ensembles and regularizations.
- At $a \sim 0.008$ fm evidence for a^2 -dependent FSEs ($F_1^{tm} \neq F_1^{OS}$).
- Negligible for OS and:

 $\Delta a^{W;tm}_{\mu}(\ell, L \sim 7.6 \text{ fm } vs. \ L \sim 5.1 \text{ fm}) \sim 1.5 \ (5) \times 10^{-10}$

 We show continuum/infinite-volume extrapolation performed using MLLGS-like ansatz (slide 8) w.o. a⁴ terms or Logs.

Analysis of the systematics

We selected all fits ($N \simeq \mathcal{O}(10)$) leading to $\chi^2/d.o.f. < 1.8$.

10

Connected-light contribution to the short-distance: $a^{SD}_{\mu}(\ell)$

Light (u+d) connected contribution to a_{μ}^{SD}

Lattice evaluation of a_{μ}^{SD} suffers from dangerous $a^2 \log (a^2)$ artifacts generated by the short-times integration [Cè, Harris, Meyer et al. (2021)]

$$V(t \ll m^{-1}, a) \propto \frac{1}{t^3} \left[1 + \sum_{n=1}^{\infty} c_n \cdot \left(\frac{a}{t}\right)^{2n} \right], \qquad K(m_{\mu}t \ll 1) \propto t^2$$
$$\implies a_{\mu}^{SD} \simeq \int_a^{t_0} dt \ V(t, a) \ t^2 K(m_{\mu}t) = A + D \ a^2 \log\left(a^2\right) + \mathcal{O}(a^2)$$

Naive continuum extrapolation of free theory cut-off effects

- a² log (a²) cut-off effects already present in the free-theory correlator.
- $\Delta a^{SD, pert.}_{\mu}(\ell)$ are cut-off effects of the tm (OS) $\mathcal{O}(\alpha^0_s)$ massless correlator.

Perturbative $\mathcal{O}(\alpha_s^0)$ subtraction of cut-off effects

- No perturbative subtraction: continuum limit missed by ~ 1 × 10⁻¹⁰ (effect larger than any other source of systematics).
- LO $\mathcal{O}(\frac{a^2}{t^2})$ subtraction: sufficient to get correct continuum limit.
- Full $\mathcal{O}(a^{2n}/t^{2n})$ subtraction: makes lattice data even flatter.

 $a^{SD}_{\mu}(\ell)$

- Achieved a remarkable precision better than 0.1%.
- We subtracted from the raw lattice data the $\mathcal{O}(a^{2n}/t^{2n})$ free-theory cut-off effects for both regularizations.
- a^4 term on tm regularization necessary to have a good χ^2/dof . ¹³

Analysis of the systematics for $a_{\mu}^{SD}(\ell)$

- Final error entirely due to systematics in continuum extrapolation.
- $A\left(M_{\pi}-M_{\pi}^{phys}\right)$ term not visible.
- Alternative continuum limit extrapolation with ultra-short distance regulator (Backup).

Strange and charm connected contributions to a^W_μ and a^{SD}_μ

Calculation details

Strange contributions

- Valence s quark mass tuned alternatively using M_{η_s} or M_{ϕ} as input.
- Both determinations included in final analysis of systematics.
- Subtraction of perturbative $\mathcal{O}(\alpha_s^0)$ cut-off effects in $a_{\mu}^{SD}(s)$.
- Finite size effects and M_{π}^{sea} mistuning effects not visible within accuracy.

Charm contributions

- Valence c quark mass tuned alternatively using M_{η_c} or $M_{J/\Psi}$ as input.
- Both determinations included in final analysis of systematics.
- Added a fourth (coarser) lattice spacing $a \sim 0.09$ fm with pion masses $M_{\pi}^{sea} \in [250 350]$ MeV to improve continuum limit extrapolation.
- No M_{π}^{sea} dependence observed, negligible finite size effects.
- Subtraction of perturbative $\mathcal{O}(\alpha_s^0)$ cut-off effects in $a_{\mu}^{SD}(c)$. More effective if evaluated with $m_q = m_c^{bare}$.

Strange and charm connected contributions

Disconnected contribution to a^W_μ and a^{SD}_μ

Disconnected contribution to a^W_μ and a^{SD}_μ

- Various noise-reduction techniques employed: one-end-trick, exact deflation of low-modes, hierarchical probing.
- Small cut-off effects within accuracy. No study of Finite Size Effect.
- $a^{SD}_{\mu}(disco)$ completely negligible, $a^{W}_{\mu}(disco) \sim 0.3\% a^{W}_{\mu}$.

 $a_{\mu}^{SD}(disco) = -0.006~(5) \times 10^{-10}$, $a_{\mu}^{W}(disco) = -0.77~(17) \times 10^{-10}$

Disconnected contribution to a^W_μ and a^{SD}_μ

- Various noise-reduction techniques employed: one-end-trick, exact deflation of low-modes, hierarchical probing.
- Small cut-off effects within accuracy. No study of Finite Size Effect.
- $a^{SD}_{\mu}(disco)$ completely negligible, $a^{W}_{\mu}(disco) \sim 0.3\% a^{W}_{\mu}$.

	ETMC-22	BMW-20	CLS/MAINZ-22	RBC/UKQCD-18
$a^W_\mu(disco) \times 10^{10}$	-0.77(17)	-0.85(6)	-0.81 (9)	-1.00(10)

	$a_{\mu}^{SD}\times 10^{10}$	$a^W_\mu \times 10^{10}$
l	48.27 (22)	205.1 (1.0)
s	9.071(75)	27.27 (24)
С	11.64(16)	2.95(13)
disco	-0.006(5)	-0.77(17)
IB	0.03*	$0.43 (4)^{**}$
b	$0.32 (2)^{***}$	_
total	69.33 (29)	235.0(1.1)

- *** rhad software package. 0.04% of the total a^{SD}_μ (or 0.1σ).
- ****** From Borsanyi et al. (Nature, 2021). 0.18% of the total a_{μ}^{W} (or 0.4 σ).
- *** rhad & lattice. 0.46% of total a^{SD}_{μ} (or 1.1 σ).

Precision achieved on a^W_μ and a^{SD}_μ is ~ 0.5%.

Per-flavour lattice comparisons...

...include only results from at least 3 lattice spacings and 1 phys. point ensemble.

*Preliminary: conservative error (Assuming 100% correlation between a_{μ}^{SD} and a_{μ}^{W}). 19

Comparison with $e^+e^- \rightarrow$ hadrons results

- Tension in a^W_µ rises to 4.2σ if we combine ETMC '22, BMW '20 and CLS/Mainz '22 (informal average → next WP).
- Deviation of e⁺e⁻ → hadrons data w.r.t. the SM in the low and (possibly) intermediate energy regions, but not in the high energy region.

Towards the determination of $\bar{\Pi}(-Q^2)$

Light-connected contribution (Preliminary) (I)

$$\bar{\Pi}(-Q^2) = \int_0^\infty dt \ V(t) \cdot [t^2 - 4\frac{\sin^2\left(Qt/2\right)}{Q^2}]$$

• $\Pi(-Q^2)$ will be directly measured by MUonE for $Q^2 < 0.14 \text{ GeV}^2$. • From $\bar{\Pi}(-Q^2)$ one can determine $\Delta\alpha_{\rm had}(M_Z^2)$ using the Adler function method.

We applied the bounding method to the light-connected correlator $V_{\ell}(t)$:

 $V_{\ell}(t_{\rm cut}) \ e^{-E_{\rm eff}(t_{\rm cut}) \cdot (t-t_{\rm cut})} \ \leq \ V_{\ell}(t) \ \leq \ V_{\ell}(t_{\rm cut}) \ e^{-E_{\rm low} \cdot (t-t_{\rm cut})}$

•
$$E_{\text{eff}}(t_{\text{cut}}) = \log\left(\frac{V_{\ell}(t_{\text{cut}})}{V_{\ell}(t_{\text{cut}}+a)}\right)$$

• E_{low} is the energy of the lightest $I = 1 \ \pi\pi$ state, obtained from a a MLLGS fit to the tail of $V_{\ell}(t)$.

Light-connected contribution (Preliminary) (II)

We computed $\bar{\Pi}_{\ell}^{\rm conn}(-Q^2)$ on all the ETMC (\simeq) phys. point ensembles.

- Typical accuracy is 0.4%, 0.8% and 2% at Q² = 5 GeV², 1 GeV² and 0.1 GeV². Increased statistics is needed at small Q².
- FSEs analysis and combined tm-OS continuum extrapolation in progress (perturbative subtraction of cut-off effects needed to suppress the a² log (a) terms).

Conclusions

- We performed a first-principle evaluation of the isosymmetric QCD contribution to a_{μ}^{SD} and a_{μ}^{W} .
- Thanks to our dedicated simulations at the (\simeq) physical point, and to a high-statistics computation of the VV correlator, we achieved a relative precision better than 0.5% on both a_{μ}^{SD} and a_{μ}^{W} .
- For a^{SD}_μ our SM determination agrees with data-driven results at 1.6 σ level (No NP at high E, consistent with EW precision tests).
- Our result for a^W_μ confirms the tension between lattice (SM) and dispersive (data-driven) $e^+e^- \rightarrow$ hadrons results. Current tension between lattice (informal average) and R(E)-driven results is 4.2σ (problems in data-driven results? NP at low/intermediate E?).

Work in progress

- Inclusion of $\mathcal{O}(\alpha_{em}^3)$ QED-effects and strong IB contribution.
- New dedicated ensembles to study FSEs, analysis of a_{μ}^{LD} .

Thanks for your attention!

Backup slides

Renormalization constants

Hadronic determination of Z_V

We define:

$$R_V(t) = 2\mu_q \frac{C_{PP}^{tm}(t)}{\partial_t C_{AP}^{tm}(t)}$$

P and A are pseudoscalar and axial local bare currents in C_{AP} and C_{PP} .

Owing to the exact flavor symmetry of massless Wilson fermions $(\mu_q=0):$ $R_V(t) \stackrel{t/a\gg1}{=} Z_V$

• Freedom in the choice of μ_q (provided μ_q^R is kept constant at all β): $Z_V(\mu_q) = Z_V(0) + O(a^2 \mu_q^R \Lambda_{QCD}, a^2 \mu_q^2)$

- We choose μ_q^R such that $M_P^{tm} = M_{\eta_s}^{isoQCD}$.
- $M_{\eta_s}^{isoQCD} = 689.89 \ (50) \text{ MeV}$, [Borsanyi et al., Nature (2021)].

R_V around the physical strange quark mass

• Remarkable precision better than 0.01%.

Hadronic determination of Z_A

We define:

$$R_A(t) = 2\mu_q \frac{C_{PP}^{OS}(t)}{\partial_t C_{AP}^{OS}(t)}$$

P and A are pseudoscalar and axial local bare currents in C_{AP} and C_{PP} . In the large time limit $t/a \gg 1$ (X = tm, OS):

$$C_{PP}^{X}(t) \to |G_{P}^{X}|^{2} \frac{e^{-M_{P}^{X}t} + e^{-M_{P}^{X}(T-t)}}{2M_{P}^{X}}, R_{A}(t) \to 2a\mu_{q} \frac{Z_{A}}{f_{P}^{OS}} \frac{G_{P}^{OS}}{M_{P}^{OS}\sinh\left(aM_{P}^{OS}\right)}$$

We impose (true up to $\mathcal{O}(a^2)$ lattice artifacts):

$$f_P^{OS} = f_P^{tm} = 2a\mu_q \frac{G_P^{tm}}{M_P^{tm}\sinh\left(aM_P^{tm}\right)}$$

and using $\frac{Z_P}{Z_S}=\frac{G_P^{OS}}{G_P^{tm}},$ we can extract Z_A through

$$\bar{R}_A(t) \equiv R_A(t) \frac{M_P^{OS} \sinh\left(aM_P^{OS}\right)}{M_P^{tm} \sinh\left(aM_P^{tm}\right)} \frac{Z_S}{Z_P} \to Z_A$$

 $Z_A(\mu_q) = Z_A(0) + \mathcal{O}(a^2 \mu_q^R \Lambda_{QCD}, (a\mu_q^R)^2) \Longrightarrow \text{ any choice of } \mu_q^R \text{ legitimate.}$
\bar{R}_A around the physical strange quark mass.

We interpolate $Z_A(\mu_q)$ at $Z_A(\mu_q = \mu_s^{phys})$ with $M_{\eta_s}(\mu_s^{phys}) = 689.89$ (50) MeV.

Strange and charm quark masses

Strange quark mass in the \overline{MS} scheme at $\mu = 2$ GeV.

We determine m_s^{phys} using two different hadronic inputs (both included in the a_μ^W and a_μ^{SD} analyses).

- From the mass of the fictious η_s meson: $M_{\eta_s}^{\text{isoQCD}} = 689.9(5)$ MeV.
- From the mass of the vector ϕ meson: $M_{\phi}^{PDG} = 1.01946(2)$ GeV.

Good agreement with previous ETMC determination from m_K .

Charm quark mass in the $\overline{\text{MS}}$ scheme at $\mu = 3$ GeV.

We determine m_c^{phys} using two different hadronic inputs (both included in the a_μ^W and a_μ^{SD} analyses).

- From the mass of the η_c meson: $M_{\eta_c} = 2.984 \ (4)_{disco} \text{ GeV}.$
- From the mass of the J/Ψ resonance: $M_{J/\Psi} = 3.097 \ (1)_{disco} \text{ GeV}.$

Good agreement with previous ETMC determination from m_D .

Cross-check for $a^W_\mu(\ell)$

Cross-check: $a_{\mu}^{W}(\ell)$ at fixed physical volume

We performed the continuum extrapolation at fixed $L \sim 5.46 \text{ fm}$, which corresponds to the cC.060.80 and cD.054.96 ensemble volumes.

 $\chi^2/dof = 0.85, a_{\mu}^W(\ell) = 204.03 (57) \times 10^{-10}$

• At $a \sim 0.08$ fm we interpolated $a^W_\mu(\ell)$ at $L \sim 5.46$ fm, linearly in $e^{-M_{\pi}L}$, using our results at $L \sim 5.10 \text{ fm}$ and $L \sim 7.64 \text{ fm}$.

Analysis of the systematics at $L \sim 5.46 \text{ fm}$

We add to $a^W_\mu(\ell, L \sim 5.46 \text{ fm})$, the FSE estimated from the MLLGS-model multiplied by the correcting factor $\kappa = 1.25$ (25): $\Delta a^W_\mu(\ell, L \sim 5.46 \text{ fm}) = 1.00(20) \times 10^{-10} \implies a^W_\mu(\ell) = 205.03(93) \times 10^{-10}$

Cross-check for $a_{\mu}^{SD}(\ell)$

Cross-check for $a^{SD}_{\mu}(\ell)$ (I)

Introduce an UV regulator t_{min} and define:

$$a_{\mu}^{SD}(\ell, t_{min}) \equiv 4\alpha_{em}^2 \int_{t_{min}}^{\infty} dt \ t^2 K(m_{\mu}t) V_{\ell}(t) \cdot \left[1 - \Theta(t, t_0, \Delta)\right]$$

- Switch the order in which the limit $a \rightarrow 0$ and $t_{\min} \rightarrow 0$ are performed (perform $a \rightarrow 0$ first).
- Residual Logs $a^2/[\log(a^2/w_0^2)]^n$ generated by integration at short-times become $a^2/[\log(t_{min}^2/w_0^2)]^n$.
- After performing cont. extr. at fixed t_{min} , take $t_{min} \rightarrow 0$ limit.
- To speed-up convergence we add continuum perturbative $\mathcal{O}(\alpha_s^0)$ contribution in $t\in[0,t_{min}]$:

$$\tilde{a}_{\mu}^{SD}(\ell, t_{min}) = a_{\mu}^{SD}(\ell, t_{min}) + \int_{0}^{t_{min}} dt \ t^{2} K(m_{\mu}t) \ V_{\ell}^{pert.}(t) \cdot \left[1 - \Theta(t, t_{0}, \Delta)\right]$$

• We use $t_{min} \in [0.08, 0.15]$ fm, kept fixed for all ensembles.

Cross-check for $a_{\mu}^{SD}(\ell)$ (II)

- For small t_{min} : $\tilde{a}_{\mu}^{SD}(\ell, t_{\min}) \propto t_{min}^2$.
- $\tilde{a}_{\mu}^{SD}(\ell, 0) = 48.41 \pm 0.03 \pm syst \times 10^{-10}.$
- Good agreement with our previous determination:

$$a_{\mu}^{SD}(\ell) = 48.27 \ (22) \times 10^{-10}$$

Finite size effects

Finite Size Effects in the MLLGS-model (I)

Assuming the dominance of $\pi\pi$ states contributions in $V_{\ell}(t)$:

$$V_{\ell}(t,L) \sim V_{\pi\pi}(t,L) = \sum_{n} \nu_{n} |A_{n}|^{2} e^{-\omega_{n}t}, \qquad \underbrace{\delta_{11}(k_{n}) + \phi\left(\frac{k_{n}L}{2\pi}\right) = n\pi}_{\text{Lellouch-Luscher FV quantisation}}$$

- A_n and δ_{11} depend on the time-like pion form factor $F_\pi(\omega)$.
- In th MLLGS model:

$$F_{\pi}^{(GS)}(\omega) = \frac{M_{\rho}^2 - A_{\pi\pi}(0)}{M_{\rho}^2 - \omega^2 - A_{\pi\pi}(\omega)}$$

 The (twice-subtracted) ππ amplitude A_{ππ} depends on three parameters M_ρ, M_π and g_{ρππ}:

$$\Gamma_{\rho\pi\pi}(\omega) = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k^3}{\omega^2}, \qquad k \equiv \sqrt{\omega^2/4 - M_\pi^2}$$

- FSE determined from $V^\infty_{\pi\pi}(t) - V_{\pi\pi}(t,L)$ with

$$V_{\pi\pi}^{\infty}(t) = \frac{1}{48\pi^2} \int_{2M_{\pi}}^{\infty} d\omega \ \omega^2 \left[1 - \frac{4M_{\pi}^2}{\omega^2} \right]^{3/2} |F_{\pi}(\omega)|^2 e^{-\omega t}$$

Finite Size Effects in the MLLGS-model (II)

• Correcting factor $\kappa = 1.25~(25)$ to take into account deviation between the FSEs from the MLGGS-model and the BMW result.

Disconnected contributions

Disconnected contributions per flavor

 ℓ, s, c are flavour-diagonal light, strange and charm contributions.

us, *uc* and *sc* are flavour off-diagonal light-strange, light-charm and strange-charm contributions.

$a_{\mu}^{SD}(disco) imes 10^{12}$						
Ensemble	l	8	С	us	uc	sc
cB211.072.64	-3.36(11)	-2.090(58)	-1.18(18)	+5.29(12)	-1.52(23)	+1.67(17)
cC211.060.80	-3.36(14)	-2.090(69)	-0.78(13)	+5.53(19)	-1.48(24)	+1.37(18)
cD211.054.96	-3.54(16)	-2.084(71)	-0.71(14)	+5.60(19)	-1.50(22)	+1.27(17)

$a^W_\mu(disco) imes 10^{10}$						
Ensemble	l	s	С	us	uc	sc
cB211.072.64	-1.086(48)	-0.149(20)	-0.030(57)	+0.635(48)	+0.00(7)	-0.02(5)
cC211.060.80	-1.300(63)	-0.159(27)	-0.033(46)	+0.726(73)	-0.03(9)	+0.04(6)
cD211.054.96	-1.201 (52)	-0.149(28)	+0.018(56)	+0.627(70)	+0.02 (9)	-0.02(7)

Effect of perturbative subtraction in vector correlator

Light-connected (Unsubtracted)

Light-connected (subtracted)

Strange-connected

Charm-connected

Charged, neutral and OS pion masses

Charged, neutral and OS pion masses

- In our twisted-mass mixed action setup, three different type of pions occur (charged, OS, neutral): masses differing from each other by O(a²).
- Charged (or tm) pion is the only Goldstone ($M_{\pi^+}(m_q = 0) = 0$) at finite a: in the sea and in the valence.
- OS pion is the heaviest: only in the valence.

ensemble	$M^{tm}_{\pi^+}$ (MeV)	M_{π}^{OS} (MeV)
cB211.072.64	140.2(0.2)	297.5(0.7)
cB211.072.96	140.1 (0.2)	298.4(0.5)
cC211.060.80	136.6(0.2)	248.9(0.5)
cD211.054.96	140.8(0.3)	210.0(0.4)

- Neutral pion the lightest: only in the sea.
- Neutral pion mass calculated on the cB211.072.64 ensemble (ETMC (2018) arXiv:1807.00495):

$$\delta M_{\pi} \equiv M_{\pi}^{\text{isoQCD}} - M_{\pi^0} = 26 \ (22) \text{ MeV.}$$

- δM_{π} estimated to be ~ 13 (11) MeV $\left(\frac{a}{0.06}\right)^2$ on our finest lattice.
- Dominating contributions: in $V^{OS}(t)$ two tm π , in $V^{tm}(t)$ tm+neutral π .

tm mixed-action setup

Local and renormalizable mixed action employed [Frezzotti and Rossi (2004)]:

 $S = S_{YM}[U] + S_{q,sea}[\Psi_{\ell}, \Psi_{h}, U] + S_{q,val}[q_{f}^{\eta}, U] + S_{q,ghost}[\phi_{f}^{\eta}, U]$

- Gluonic sector: improved Iwasaki action $S_{YM}[U]$ (not detailed here).
- Fermionic sector: sea quark action $S_{g,sea}$ written in terms of degenerate quark doublet $\Psi_{\ell}^{t} = \{u_{sea}, d_{sea}\}$, and heavy non-degenerate doublet $\Psi_{h}^{t} = \{c_{sea}, s_{sea}\}$.
- Fermionic sector: valence quark action $S_{g,val}$ written in terms of quark fields q_f^{η} , where f = u, d, s, c, and the replica index η runs from 1 to 3 with $r_f^{\eta} = (-1)^{\eta+1}$.
- Ghost sector S_{q,ghost} introduced to cancel contribution of S_{q,val} to fermionic determinant.

Sea quark action

$$S_{q,sea} = a^{4} \sum_{x} \left\{ \bar{\Psi}_{\ell}(x) \left[\gamma \cdot \tilde{\nabla} + \mu_{\ell} - i\gamma_{5}\tau^{3}W_{cr}^{clov.} \right] \Psi_{\ell} \right. \\ \left. + \bar{\Psi}_{h}(x) \left[\gamma \cdot \tilde{\nabla} + \mu_{\sigma} + \mu_{\delta}\tau^{3} - i\gamma_{5}\tau^{1}W_{cr}^{clov.} \right] \Psi_{h} \right\}$$

Valence quark action
$$S_{q,val} = a^4 \sum_{x} \bar{q}_f^{\eta}(x) \left[\gamma \cdot \tilde{\nabla} + m_f - \underbrace{r_{f,\eta}}_{(-1)^{\eta+1}} i\gamma_5 W_{cr}^{clov.} \right] q_f^{\eta}(x)$$

Critical Wilson-clover operator

$$W_{cr}^{clov.} = -\frac{a}{2} \nabla^* \cdot \nabla + m_{cr} + \frac{c_{SW}}{32} \gamma_\mu \gamma_\nu \left[Q_{\mu\nu} - Q_{\nu\mu} \right]$$

Role of the replica fields (I)

- We want to make sure that any connected or disconnected single-flavour contribution ($G = \text{connected } \ell, s \text{ or } c$; sum of disconnected) we considered, admits (separately) a well defined continuum limit.
- For connected contributions this must be true for both tm and OS regularizations.
- Given the mixed action S, for each contribution a^{w,G}_μ to a^w_μ considered separately, suitable renormalized currents J^{G,ren}, J^{'G,ren}, exist such that:

$$a_{\mu}^{w,G} = 4\alpha_{em}^2 \int dt \ K_{\mu}(t) \ M_w(t) \ \frac{1}{3} \int d^3x \ \langle J_i^{G,ren}(\vec{x},t) J_i'^{G,ren}(0) \rangle$$

$$M_w(t) = \begin{cases} 1 - \Theta(t, t_0, \Delta) & w = \text{SD} \\ \Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta) & w = \text{W} \end{cases}$$

Role of the replica fields (II)

The mixed action S serves to this goal, and the QCD correlators of interest can be easily reconstructed as $a \rightarrow 0$.

• Connected, flavour f, contrib. in tm reg. (RC = Z_A):

$$\underbrace{J}_{f}^{+} = \langle J_{\mu}^{f,tm}(x) J_{\mu}^{f,tm}(0) \rangle, \text{ with } J_{\mu}^{f,tm}(x) = \bar{q}_{f}^{1}(x) \gamma_{\mu} q_{f}^{2}(x)$$

• Connected, flavour f, contrib. in OS reg. (RC = Z_V):

$$\underbrace{f}_{+}_{f} = \langle J^{f,OS}_{\mu}(x) J^{f,OS}_{\mu}(0) \rangle, \text{ with } J^{f,OS}_{\mu}(x) = \bar{q}^{1}_{f}(x) \gamma_{\mu} q^{3}_{f}(x)$$

• Disconnected, flavours f, f', contrib. in OS reg. (RC = Z_V) :

$$\bigcap_{f} \quad \bigcap_{f'} = -\langle J^f_{\mu}(x) J^{f'}_{\mu}(0) \rangle, \text{ with } J^{f(f')}_{\mu}(x) = \bar{q}^{1(3)}_{f(f')}(x) \gamma_{\mu} q^{1(3)}_{f(f')}(x)$$

• For Wilson fermions $Z_V^0 = Z_V$ (known to 2-loops order, proof to appear in paper).

Comparison with $e^+e^$ and other lattice determinations

window (w)	$a^w_\mu(LQCD)$	$a^w_\mu(e^+e^-)$ [1]	Δa^w_μ	$a^w_\mu(2\pi)$ [1]	$\Delta a^w_\mu / a^w_\mu (2\pi)$
SD	69.3 (0.3) [*]	68.4(0.5)	0.9(0.6)	13.7 (0.1)	0.066(43)
W	235.0 (1.1) [*]	229.4(1.4)	5.6(1.9)	138.3 (1.2)	0.040 (14)
HVP	707.5 (5.5) [2]	693.0(3.9)	14.5(6.7)	494.3 (3.6)	0.029(14)

[*] = this work.

[1] = Colangelo et al. arXiv:2205.12963 (2022).

[2] = Borsanyi et al. (Nature, 2021).

- $a^W_\mu(2\pi)$ is $\pi \pi$ states contribution below 1 GeV from e^+e^- [1].
- Almost constant rescaling of $a^w_\mu(2\pi)$ ($\sim 4\%$) sufficient to reconcile all window contributions.

Connected-strange contribution to a^W_μ and a^{SD}_μ : $a^W_\mu(s)$ and $a^{SD}_\mu(s)$

Connected-strange contribution to a^W_μ

- Strange quark mass tuned alternatively using M_{η_s} or M_{ϕ} as input (Backup).
- Typical precision achieved for $a^W_\mu(s)$ is 0.1% (0.4% using M_ϕ).
- Finite Size, and M_{π} mistuning effects not visibile within accuracy.

Analysis of the systematics for $a_u^W(s)$

- Performed a total of about 30 different fits.
- Final estimate comes from combining the results obtained using M_{η_s} and M_{ϕ} to determine the physical strange mass m_s^{phys} .

Connected-strange contribution to a_{μ}^{SD}

- Subtraction of perturbative $\mathcal{O}(\alpha_s^0)$ cut-off effects evaluated with $m_q=m_s^{bare}\neq 0.$
- Typical precision achieved for $a_{\mu}^{SD}(s)$ is 0.1%.
- Finite Size, and M_{π} mistuning effects not visibile within accuracy.

Analysis of the systematics for $a_{\mu}^{SD}(s)$

- Performed a total of about 30 different fits.
- Final estimate comes from combining the results obtained using M_{η_s} and M_{ϕ} to determine the physical strange mass m_s^{phys} .
- Total error dominated by continuum limit extrapolation.

Connected-charm contribution to a^W_μ and a^{SD}_μ : $a^W_\mu(c)$ and $a^{SD}_\mu(c)$

Connected-charm contribution to a_{μ}^{W}

- Charm quark mass tuned alternatively via M_{η_c} or $M_{J/\Psi}$ as input (Backup). Visible a^4 cut-off effects.
- Added a fourth (coarse) lattice spacing $a \sim 0.09$ fm with $M_{\pi} \in [250, 350]$ MeV. No data on the cB211.072.96 ensemble.
- No M_{π} dependence or FSEs observed.
Analysis of the systematics for $a_{\mu}^{W}(c)$

- Performed a total of about 60 different fits.
- Final estimate comes from combining the results obtained using M_{η_c} and $M_{J/\Psi}$ to determine the physical charm mass m_c^{phys} .

Connected-charm contribution to a_{μ}^{SD}

- Subtraction of $\mathcal{O}(\alpha_s^0)$ cut-off effects more effective if evaluated with $m_q = m_c^{bare} \neq 0.$
- Added the fourth (coarse) lattice spacing with $a \sim 0.09$ fm.
- Typical precision achieved for a^{SD}_µ(c) is ∼ 0.1% on B, C, D ensembles (∼ 0.5 − 0.8% on the A ensembles).
- No M_π dependence or FSEs observed.

Analysis of the systematics for $a_{\mu}^{SD}(c)$

- Performed a total of about 60 different fits.
- Final estimate comes from combining the results obtaining using M_{η_c} and $M_{J/\Psi}$ to determine the physical charm mass m_c^{phys} .
- a^4 corrections on both tm and OS regularizations needed to have a good χ^2/dof .

$$a^w_\mu = \int d\tau \ \tau^2 \ V^L(\tau) \ K^w(a,\tau), \qquad \tau = t/a$$

- V^L is the vector correlator in lattice units, K^w is full kernel for each window.
- Uncertainty Δa on the lattice spacing propagates to a^w_{μ} only through dependence of K^w on a (kernel parameters $m_{\mu}, t_0, t_1, \Delta$ must be converted in lattice units):

$$\frac{\Delta a_{\mu}^{w}}{a_{\mu}^{w}} = \left|\frac{\partial \log\left(a_{\mu}^{w}\right)}{\partial \log\left(a\right)}\right| \cdot \frac{\Delta a}{a} \equiv C^{w} \cdot \frac{\Delta a}{a}$$

• C^w can be computed from derivative dK^w/da .

	SD	W	LO-HVP
C^w	0.134(1)	0.436 (5)	1.79(3)

• Estimate for C^w obtained on the cB211.072.64 ensemble.