Muon g-2 with overlap valence fermion

The Fifth Plenary Workshop of the Muon g-2 Theory Initiative at the University of Edinburgh

Monday, Sep 5, 2022

Gen Wang (Centre de Physique Théorique),

Terrence Draper, Keh-Fei Liu, Yi-Bo Yang, arXiv:2204.01280

- Motivations
- Simulation strategies with Overlap fermions
- Lattices
- Intermediate windows
- Short-distance windows
- Total contributions (light and strange preliminary)
- Conclusions

Muon anomalous magnetic moments

- Experimental result is 4.2σ SM predictions (WP Aoyama et al., 2020)
- BMW20 result is 2.1σ higher than R-ratio and consistent with experiment value at 1.5σ level
- Comparison among lattice groups on window quantities [Blum et al (2018)]
 - No signal-to-noise problem
 - Small t cutoff effects suppressed
 - Long distance volume effects suppressed

Euclidean time windows

• Time-momentum representation :

D. Bernecker and H. B. Meyer, Eur. Phys. J. A 47, 148 (2011)

$$a_{\mu}^{\rm LO-HVP} = \int \mathrm{d}t \,\omega(t) C(t)$$

Intermediate window quantities:

T. Blum, et al., (RBC/UKQCD), Phys. Rev. Lett. 121, 022003 (2018)

$$a_{\mu}^{\text{win}} = \sum_{t} w_{t}C(t) \times w^{W}(t)$$

$$w^{W}(t) = \theta(t, t_{0}, \Delta) - \theta(t, t_{1}, \Delta)$$

$$\theta(t, t_{0}, \Delta) = \frac{1}{2}(1 + \tanh(\frac{t-t'}{\Delta}))$$

$$t_{0} = 0.4, t_{1} = 1.0, \Delta = 0.15$$

$$w^{S}(t) = 1 - \theta(t, t_{0}, \Delta)$$

$$w^{L}(t) = \theta(t, t_{1}, \Delta)$$

Connected light/strange under Iso-spin symmetric

- Motivations
- Simulation strategies with Overlap fermions
 - Overlap fermions
 - Renormalization constants
- Lattices
- Intermediate windows
- Short-distance windows
- Total contributions (light and strange preliminary)
- Conclusions

Overlap fermions and two-point functions

Overlap fermions (Neuberger, 1998)

 $D_{ov}(\rho) = \rho(1 + \gamma_5 \epsilon(\gamma_5 D_w(-\rho)))$

Ginsparg-Wilson relationship

$$D_{ov}\gamma_5 + \gamma_5 D_{ov} = \frac{1}{\rho} D_{ov}\gamma_5 D_{ov}$$

Connected piece of the vector meson correlation functions

$$C_{2pt} = \langle \sum_{y} \operatorname{Tr}[\gamma_{i}D^{-1}(y|x_{0})\gamma_{i}D^{-1}(x_{0}|y)] \rangle$$

$$D^{-1}(y|x) = D_{L}^{-1}(y|x) + D_{H}^{-1}(y|x)$$

$$D_{L}^{-1}(y|x) = \sum_{i} \frac{1}{\lambda_{i} + m} v_{i}(y)v^{\dagger}(x) \quad \text{~2000 paris}$$
Measure each parts separately
$$With \overset{\text{Grid sources (~8)}}{\sim 1 \text{ fm separation in}}$$

$$C_{2pt} = \langle C(P_{L}, P_{L}) + C(P_{L}, P_{H}) + C(P_{H}, P_{L}) + C(P_{H}, P_{H}) \rangle$$

Renormalization constants

- Chiral symmetry of Overlap fermions guarantees
- $Z_V = Z_A$ $Z_A(64I)$ from PCAC 1.085 Partially conserved axial current (PCAC) 1.080 $Z_A \partial_\mu A_\mu = 2Z_m Z_p m_q P$ **N** 1.075 Correlated ratio from two-pt 1.070 $Z_A = \frac{2m_q \langle \Omega | P(t)P^{\dagger}(0) | \Omega \rangle}{\langle \Omega | \partial_u A_u(t)P^{\dagger}(0) | \Omega \rangle}$ 1.065 20 10 30 40 50 60 Reaches less than 0.02% error • t/a

F.-C. He, Y.-J. Bi, T. Draper, K.-F. Liu, Z.F. Liu, Y.-B. Yang, arXiv:2204.09246

- Motivations
- Simulation strategies with Overlap fermions
- Lattices
- Intermediate windows
 Short-distance windows
- Total contributions (light and strange preliminary)
- Conclusions

Lattices

_	Symbol	$L^3 \times T$	$a~({\rm fm})$	m_{π}	$N_{ m cfg}$	$N_{ m src}$	N_g	λ_c
2+1 DWF (RBC/UKQCD)	48I	$48^3 \times 96$	0.11406(26)	139	100	12	4	234
	64I	$64^3 \times 128$	0.08365(25)	139	92	8	4	187
	24D	$24^3 \times 64$	0.1940(19)	141	232	8	2	263
	32D	$32^3 \times 64$	0.1940(19)	141	134	8	4	230
	48D	$48^3 \times 64$	0.1940(19)	141	47	8	6	116
2+1+1 HISQ (MILC)	a12m130	$48^3 \times 64$	0.12121(64)	131	23	8	4	180
	a09m130	$64^3 \times 96$	0.08786(47)	128	22	8	4	200
	a12m310	$24^3 \times 64$	0.12129(89)	305	54	16	1	224
	a09m310	$32^3 \times 96$	0.08821(71)	313	39	16	1	195
	a06m310	$48^3 \times 144$	0.05740(50)	319	32	8	1	243
	a04m310	$64^3 \times 192$	0.04250(40)	310	54	2	1	167

- Motivations
- Simulation strategies with Overlap fermions
- Lattices
- Intermediate windows
 - Light quark results
 - Strange quark results
 - Charm contributions (preliminary)
 - Disconnect contributions (preliminary)

Short-distance windows

- Total contributions (light and strange preliminary)
- Conclusions

Valence quark mass dependence

- Overlap multi-mass inverter valence pion mass [120, 700] MeV
- Light quarks : valence pion mass = 135 MeV

•

Strange quark : valence quark mass = light quark mass * 27.42(12)

Light quark connect contributions

Connected light window contributions

 $a_{\mu}^{\text{win}} = \sum_{t} w_t C(t) \times [\theta(t, t_0, \Delta) - \theta(t, t_1, \Delta)]$

• Two difference weighting functions

$$\omega(t) = 4\alpha^2 \int_0^\infty \frac{\mathrm{d}q^2}{m_\mu^2} f\left(\frac{q^2}{m_\mu^2}\right) \left[\frac{\cos(tq) - 1}{q^2} + \frac{1}{2}t^2\right]$$

$$\hat{\omega}(t) = 4\alpha^2 \int_0^\infty \frac{\mathrm{d}q^2}{m_\mu^2} f\left(\frac{q^2}{m_\mu^2}\right) \left[\frac{\cos(tq) - 1}{[\frac{2}{a}\sin(\frac{qa}{2})]^2} + \frac{1}{2}t^2\right]$$

- OV/DWF and OV/HISQ are consistent at continuum limit
- OV/DWF result is higher than unitary DWF

Strange quark connect contributions

• All cases have obvious slope

- OV/DWF and OV/HISQ are consistent at continuum limit
- Consistent with unitary DWF [1] with value 27.0(2)

[1] T. Blum, et al., (RBC/UKQCD), Phys. Rev. Lett. 121, 022003 (2018)

Continuum extrapolations

• HISQ ensembles (MILC) with a \sim [0.04, 0.12] fm at 310 MeV pion mass

• Simple linear extrapolations (conf ~#50)

light quark $\chi^2 \sim 0.22$ strange quark $\chi^2 \sim 1.20$

- Situation may be different at
 - Physical pion mass
 - OV/DWF cases

Finite Volume effects

• DWF ensembles (RBC/UKQCD) with L \sim [4.66, 9.31] fm at physical pion mass

• Fit with simple exponential

$$a + be^{(-m_{\pi}L)}$$

Finite volume effects

 Light quark : -0.36(56)
 Strange quark : 0.01(18)

Charm contributions (preliminary)

Total contribution and the standard window contribution

• Tuning the charm quark mass by requiring

 $m_{J/\Psi} = 3.0969 \,\mathrm{GeV}$

- Overlap valence fermion on:
 - RBC ensembles at

 $0.071~\mathrm{fm},\,267~\mathrm{MeV}$ and $~0.063~\mathrm{fm},\,370~\mathrm{MeV}$

• MILC ensembles at

 $0.057~\mathrm{fm},\,319~\mathrm{MeV}$ and $0.043~\mathrm{fm},\,310~\mathrm{MeV}$

- Tension between two setups suggest a⁴ effects, while would not be crucial given the precision required.
- Statistical errors only

Disconnect contribution (preliminary)

Reusing previous quark loops

Y.B. Yang, et al., (χQCD), Phys. Rev. Lett. 121, 212001 (2018)

- 48I (DWF), 0.114 fm, -0.868(63) (preliminary and statistical errors only)
- Further improvements
 - Cluster-decomposition error (CDER) [1] technique
 - Difference of two quark loops with different masses[2]

$$\operatorname{Tr}\left[\Gamma(D_{l}^{-1} - D_{s}^{-1})\right] = (m_{s} - m_{l})\operatorname{Tr}\left[\Gamma(D_{l}^{-1}D_{s}^{-1})\right]$$

[1] K.-F. Liu, J. Liang, and Y.-B. Yang, Phys. Rev. D 97, 034507 (2018) [2] L. Giusti, et al., Eur. Phys. J. C 79, 586 (2019) 12

- Motivations
- Simulation strategies with Overlap fermions
- Lattices
- Intermediate windows
- Short-distance windows
- Total contributions (light and strange preliminary)
- Conclusions

Short-distance contributions

$w^{S}(t) = 1 - \theta(t, t_0, \Delta)$

- Sea effects are small (DWF and HISQ agree at current two lattice spacings)
- The disagreement between two weighting definitions hits a⁴ effects

Total contributions (light and strange preliminary)

- Bounding method is applied to the light quark case (~2.5 fm)
- Overlap valence fermion on:
 - Physical point RBC ensembles at 0.112 fm and 0.083 fm
 - Physical point MILC ensembles at 0.121 fm and 0.088 fm
- Tension between two setups suggest a⁴ effects, requires further study at finer lattice spacing
- Statistical errors only

- Motivations
- Simulation strategies with Overlap fermions
- Lattices
- Intermediate windows
- Short-distance windows
- Total contributions (light and strange preliminary)
- Conclusions

- High statistical measurements with Overlap fermions are feasible
- Gauge dependence is obvious for intermediate windows but not short-distance windows

- On-going disconnect and charm contributions
- Smaller lattice spacing results are needed
- **Challenging** : full contributions using Overlap fermions with high statistics

Thank You