

Experimental Inputs to HVP at the BESIII Experiment

Riccardo Aliberti Muon g-2 Theory Initiative Workshop Edinburgh, 5-9 September 2022

- New result from FNAL confirms tension with SM $(4.2\sigma!)$
- Improvement of SM prediction highly desirable
- Uncertainty dominated by HVP and HLbL
- BESIII can provide important inputs to reduce the uncertainty!

The BESIII Experiment (1)

5-9/9/2022

The BESIII Experiment (2)

- World largest $\tau\text{-charm}$ dataset in e^+e^- annihilation
- Detailed studies in:
 - Charmonium spectroscopy and charm physics
 - Light hadron dynamics
 - τ-physics
 - R-scan

Initial State Radiation: Scan at Fixed Energy

$$a_{\mu}^{HVP,LO} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

- Dominated by low energy region
- Not accessible in scan mode
- Initial State Radiation (ISR)

$$e^{-\sqrt{\gamma_{ISR}}}$$

$$e^{+\sqrt{s'}} = E_{CM}$$

$$\sqrt{s'} = \sqrt{s - 2\sqrt{s}E_{\gamma}}$$

K(s)/s for $(g-2)_{\mu}$ 0.03 ~ $1/(s(s-M^2))$ for $\alpha_{OED}(M^2)$ Arbitrary Units 0.02 0.01 0.5 1.5 0 2 s (GeV²)

[Brodsky, de Rafael, 1988]

• Effectively reduces √s

• Emission suppressed by
$$\frac{\alpha}{\pi}$$

 Radiator function relates ISR to non-radiative process

$$\frac{d\sigma_{ISR}(\sqrt{s'})}{d\sqrt{s'}} = \frac{2\sqrt{s'}}{s} W\left(s, E_{\gamma}, \theta_{\gamma}\right) \sigma(\sqrt{s'})$$

5-9/9/2022

 $d\sqrt{}$

Initial State Radiation: Analysis Strategy

- High statistics
- Only high masses accessible (>900 MeV)
- Small background

ISR photon detected

- Access to had. threshold region
- Large background at high masses

In the following results from 2.93 fb⁻¹ at 3.773 GeV

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Tagged analysis
- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)

Perfect agreement with QED prediction

• Measurement of J/ψ electronic width

Selecting muons using ANN

[Phys.Lett.B753 (2016) 629]

6

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Tagged analysis
- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)
- Careful evaluation of systematics

Source	Uncertainty (%)
Photon efficiency	0.2
Tracking efficiency	0.3
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarization correction δ_{vac}	0.2
Radiator function	0.5
Luminosity $\mathcal L$	0.5
Sum	0.9

[Phys.Lett.B753 (2016) 629]

- Form factor evaluation for $0.6 \le m_{\pi\pi} \le 0.9$ GeV
 - 70% of total 2π contribution
 - 50% of a_{μ}^{HVP} contribution
 - Fit with Gounaris-Sakurai parameterization

The golden channel: $e^+e^- \rightarrow \pi^+\pi^-$

• Tagged analysis

0.15

- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)
- Careful evaluation of systematics

- Systematic shifts wrt previous (best) measurements
 - Below ρ/ω interference wrt BaBar
 - Above ρ/ω interference wrt KLOE

3ESIII fit (LOE 08

LOE 10

0.85

0.9

0.8

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Precision competitive with current best results:
 - BESIII: 1.0%
 - BaBar: 0.7%
 - KLOE: 0.6%
- Evaluation of covariance matrix corrected [Phys.Lett.B812 (2021) 135982]
 - Lower statistical uncertainty
- Work on going to resolve the "KLOE-BaBar puzzle"

The golden channel: $e^+e^- \rightarrow \pi^+\pi^-$

Aim to reach 0.5% precision with new analysis:

- 20 fb⁻¹ of data at 3.773 GeV (before only 2.9 fb⁻¹)
- Normalization to $\mu\mu$ (γ) events
- Improved $\pi/\mu/e$ separation
- 2 independent analyses (Tagged and Untagged)
- + Full $m_{\pi\pi}$ coverage up to 3 GeV
- Successful DFG funding request

$$\stackrel{\text{fb-1})}{R} = \frac{N_{2\pi\gamma}}{N_{2\mu\gamma}} \cdot \frac{\epsilon^{2\mu\gamma} \cdot \left(1 + \delta^{2\mu}_{FSR}\right)}{\epsilon^{2\pi\gamma} \cdot \left(1 + \delta^{2\pi}_{FSR}\right)}$$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ [arXiv:1912.11208]

- Reconstructing events with $\pi^+\pi^- 2\gamma + \gamma_{ISR}$
- Kinematic Fit + constrain $m_{\gamma\gamma} = m_{\pi^0}$
- Both tagged and untagged configurations considered

 $\gamma_{\rm ISR}$ polar angle

• Strong reduction of background

BESIII Preliminary

Tagged

 π^0 veto

- Check combination of $\gamma_{\rm ISR}$ with any other photon
- Measure $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ to correct background description

- Precision comparable to latest calculations
- Paper under journal review
- Statistics limited
- Improvement foreseen with the upcoming dataset at 3.773 GeV!

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Selection similar to $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - Events with $\pi^+\pi^- 4\gamma + \gamma_{ISR}$
 - Kinematic Fit + constrain $m_{\gamma\gamma} = m_{\pi^0}$

> Measure $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ to correct background description

2.5

• Result from error weighted mean of tagged and untagged

2.0

 $M_{\pi^+\pi^-\pi^0\pi^0}$ / GeV

1.5

• Strong improvement in precision

1.0

 \bullet a_{μ} compatible with BaBar result

•
$$\int a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\text{LO}} = \frac{1}{4\pi^{3}} \int (4m_{\pi})^{2} ds \, K(s) \sigma_{\pi^{+}\pi^{-}2\pi^{0}}(s)$$

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}} = rac{1}{4\pi^3} \int\limits_{(4m_{\pi})^2}^{(1.8\,\mathsf{GeV})^2} ds\, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$

3.5

3.0

5-9/9/2022

 $\frac{a_{\mu}^{\pi^{+}\pi \mathbb{E} \times 2\pi^{0} \text{ integration} 10^{\text{s} \text{ to HVP at the BESIII experiment}}}{\text{BESIII (preliminary)} 18.63 \pm 0.27 \pm 0.57}$

 $a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\mathsf{LO}}=rac{1}{4\pi^{3}}$

BESIII (prelimina BABAR (prelimina

- Accuracy better than 2.6% below 3.1 GeV and better than 3% above
- Exceeding pQCD predictions by 2.7σ above 3.4 GeV
- More to come in near future:
 - Result with just 14 energy points out 130
 - Feasibility studies for low energy (<2 GeV) measurement via ISR

Conclusion

- SM uncertainty of a_{μ} dominated by hadronic processes
- BESIII plays an important role in the most important channels:
 - $e^+e^- \rightarrow \pi^+\pi^-$
 - Measurement with 1% uncertainty [Phys.Lett. B753 (2016) 629, B812 (2021) 135982]
 - Funding for new measurement granted
 - Aim to reach 0.5% precision \rightarrow Resolution of the KLOE-BaBar puzzle!
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - Evaluation of a_u with O(1%) precision achieved [arXiv:1912.11208]
 - Paper under journal review
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
 - Preliminary results with O(3%) precision in final review stage
 - **R measurement:** [Phys. Rev. Lett. 128 (2022) 062004]
 - Measurement with better than 2.6% accuracy below 3 GeV
 - More results to come: result based on 14 out of 130 energy points!

Great boost with upcoming 20fb⁻¹ of data at 3.773 GeV

Backup

Region R1

R2

Mass range [GeV]

 $0.5 < M(4\pi) < 1.5$

 $1.5 < M(4\pi) < 2.0$

 $2.0 < M(4\pi) < 3.0$ $3.0 < M(4\pi) < 3.8$

		5							R3 R4	
	Source	Tagged [%]				Untagged [%]				
-		R1	R2	R3	R4	R1	R2	R3	R4	
-	Luminosity	0.50				0.50				
	Tracking	0.60 0.05 0.20 0.50 2.57 0.58 0.42				0.60				
	VP correction					0.05				
	FSR correction					0.20				
	Radiator Function					0.50				
-	IS <u>R Photon Eff.</u>					-				
	π^0 Eff.					2.52				
	Signal Eff.					0.61				
	Kin. fit					0.45				
	Event selection	0.60 1.46			0.64					
-	Bgr. Subrt. 5π	0.01	0.13	2.47	3.23	0.00	0.01	0.08	0.15	
	Bgr. Subrt. 5 $\pi\gamma_{ISR}$	0.48	0.47	7.77	10.27	0.59	0.25	0.65	0.71	
	Bgr. Subrt. <i>q</i> ā	0.50	0.98	12.68	21.05	0.58	0.22	0.82	0.76	
	Bgr. Subrt. other	0.05	0.14	2.31	5.34	0.01	0.02	0.30	0.32	
	ω fits (only for $\omega \pi^0$)	2.26				2.26				
-	$\pi^+\pi^-2\pi^0$ Total	2.97	3.09	15.58	24.45	2.95	2.85	3.04	3.04	
	$\omega\pi^0$ Total	3.80	4.84	7.71	3.73	3.91	3.70	4.48	3.68	

Systematic Uncertainties

Limited by statistics! This can be reduced.

- Fit the ω signal in every $m_{\pi^+\pi^-\pi^0\pi^0}$ bin
- Good agreement with previous results
- Extended measurement range wrt BaBar