Status of CMD-3 experiment at Novosibirsk

Ivan Logashenko (BINP) on behalf of CMD-3 collaboration The 5th Plenary Workshop of the Muon g-2 Theory Initiative

University of Edinburgh

September 5-9, 2022

VEPP-2000

to VEPP-4M & c-t-factory K K-500	250 m beamline	
Linac Storage Ring		VEPP-2000
Bldg.13	Bldg.4 Bldg.2	K-500 BEP
Injection complex (2017-)		Bidg.1R

Round beam optics Energy monitoring by Compton backscattering ($\sigma_{\sqrt{s}} pprox 0.1 \, {\rm MeV}$)

Design parameters @ 1 GeV		
Circumference	24.388 m	
Beam energy	150 ÷ 1000 MeV	
N of bunches	1×1	
N of particles	1×10 ¹¹	
Betatron tunes	4.14 / 2.14	
Beta*	8.5 cm	
BB parameter	0.1	
Luminosity	$1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$	

CMD-3 collected data

CMD-3 detector

Advantages compared to CMD-2:

 new drift chamber with two times better resolution, higher B field better tracking

better momentum resolution

- thicker barrel calorimeter $(8.3X_0 \rightarrow 13.4 X_0)$ better particle separation
- LXe calorimeter measurement of conversion point for γ's measurement of shower profile
- TOF system particle id (mainly *p*, *n*)

CMD-3 detector

SND detector

- 1 beam pipe
- 2 tracking system
- 3 aerogel
- 4 Nal(Tl) crystals
- 5 phototriodes
- 6 muon absorber
- 7–9 muon detector
- 10 focusing solenoid

Advantages compared to previous SND:

- new system Cherenkov counter (n=1.05, 1.13)
 e/π separation E<450 MeV
 π/K separation E<1 GeV
- new drift chamber
 - better tracking
 - better determination of solid angle

Final states under analysis

Signature	Final state (published, preliminary,
	under analysis or planed)
2 charged	$\pi^+\pi^-$, K^+K^- , K_SK_L , $p\bar{p}$
2 charged + γ s	$\pi^{+}\pi^{-}\gamma$, $\pi^{+}\pi^{-}\pi^{0}$, $\pi^{+}\pi^{-}2\pi^{0}$, $\pi^{+}\pi^{-}3\pi^{0}$,
	$\pi^+\pi^-4\pi^0$, $\pi^+\pi^-\eta$, $\pi^+\pi^-\pi^0\eta$,
	$\pi^{+}\pi^{-}2\pi^{0}\eta$, $K^{+}K^{-}\pi^{0}$, $K^{+}K^{-}2\pi^{0}$,
	$K^+K^-\eta$, $K_SK_L\pi^0$, $K_SK_L\eta$
4 charged	$2(\pi^{+}\pi^{-}), K^{+}K^{-}\pi^{+}\pi^{-}, K_{S}K^{\pm}\pi^{\mp}$
4 charged + γ s	$2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-\pi^0)$, $\pi^+\pi^-\eta$,
	$\pi^+\pi^-\omega$, $2(\pi^+\pi^-)\eta$, $K^+K^-\omega$,
	$K_S K^{\pm} \pi^{\mp} \pi^0$
6 charged	$3(\pi^{+}\pi^{-}), K_{S}K_{S}\pi^{+}\pi^{-}, K_{S}K^{+}\pi^{-}\pi^{+}\pi^{-}$
6 charged + γ s	$3(\pi^{+}\pi^{-})\pi^{0}$
Neutral	$\pi^{0}\gamma$, $2\pi^{0}\gamma$, $3\pi^{0}\gamma$, $\eta\gamma$, $\pi^{0}\eta\gamma$, $2\pi^{0}\eta\gamma$
Other	$n\bar{n}, \pi^0 e^+ e^-, \eta e^+ e^-$
Rare decays	η' , $D^*(2007)^0$

CMD-3 published data

2207.04615 [hep-ex]	$K_S K^{\pm} \pi^{\mp} \pi^+ \pi^-$
PLB 804 (2020) 135380	$K_S K_S \pi^+ \pi^-$
JHEP 01 (2020) 112	$\eta \pi^+ \pi^-$
PLB 798 (2019) 134946	$K^+K^-\eta$
PLB 792 (2019) 419	$3(\pi^+\pi^-)\pi^0$
PLB 794 (2019) 64	$N\overline{N}$ threshold
PLB 779 (2018) 64	$K^+K^-@\varphi$
PLB 773 (2017) 150	$\pi^+\pi^-\pi^0\eta$
PLB 768 (2017) 345	$\pi^+\pi^-\pi^+\pi^- @ \varphi$
PLB 760 (2016) 314	$K_S K_L @ \varphi$
PLB 756 (2016) 153	$K^+K^-\pi^+\pi^-$
PLB 759 (2016) 634	$par{p}$
PLB 740 (2015) 273	$\eta'(958)$
PLB 723 (2013) 82	$3(\pi^{+}\pi^{-})$

Ivan Logashenko

9

CMD-3 update: K⁺K⁻

CMD-3 update: $K^+K^-\pi^0$

CMD-3 update:

Intermediate states: dominated by K^*K

CMD-3 update:

 $K_S K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$

• Contributions from $f_1(1285)\pi^+\pi^-$,

2207.04615

2600

CMD-3 update:

Status of CMD-3

In order to measure hadronic cross section, you have to understand the dynamics of the process. **High statistics is crucial!**

Four pions at CMD-3

Simultaneous unbinned amplitude analysis of 150 000 $\pi^+\pi^-\pi^0\pi^0$ events and 250 000 $\pi^+\pi^-\pi^+\pi^-$ events.

Amplitudes accounted for in the likelihood function:

- $\omega[1^{--}]\pi^0[0^{++}]$ (only $\pi^+\pi^-2\pi^0$)
- $a_1(1260)[1^+]\pi[0^-]$
- $\rho[1^{--}]f^0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^+ \rho^-$ (only $\pi^+ \pi^- 2\pi^0$)
- $h_1(1170)[1^{+-}]\pi^0$ (only $\pi^+\pi^-2\pi^0$)

Understanding of intermediate dynamics

R(s) at $N\overline{N}$ threshold

- sharp change in $e^+e^- \rightarrow p\bar{p}$, $3(\pi^+\pi^-), K^+K^-\pi^+\pi^-$
- width ~1 MeV consistent with energy resolution
- no structure in $e^+e^- \rightarrow 2(\pi^+\pi^-)$?

Status of CMD-3

CMD-3 $e^+e^- \rightarrow \pi^+\pi^$ analysis below 1 GeV

CMD-3 $e^+e^- \rightarrow \pi^+\pi^$ analysis Very simple kinematics, but the most challenging analysis due to high precision requirement: need to take into account many effects (which can affect result by 0.1% or more). High statistics is crucial! $\frac{1}{e^+}$

Measurement at CMD-3:

- several scans of the whole energy region below 2 GeV (took data in ρ energy region in 2013, 2018, 2020)
- employ correlations of the final particles: e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ separation either
 - by 2D momentum or
 - by 2D energy deposition

independent measurements!

 many things to study: fiducial volume, pion decays, pions interactions in detector, backgrounds,... Main background: $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$

 π^{-}

Three methods of separation of $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ Separation of e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ final states is based on binned likelihood minimization:

using energy deposition (in LXe only)

$$-\ln L$$

= $-\sum_{bins} n_i \ln \left[\sum_{X=ee,\mu\mu,\pi\pi,bg} N_X f_X(E^+,E^-) \right] + \sum_X N_X$

using momentum

 \pm sign reflects energy deposition and momentum of particle with corresponding charge

Independent method: by angular distribution

220

240

260 Momentum, MeV/c, +

200

Where to get p.d.f.s $f_X(p^+, p^-)$ and $f_X(E^+, E^-)$? Separation by momentum

Separation by energy deposition

PDFs are based on MC

- "Ideal" p.d.f.s are generated using $e^+e^- \rightarrow X^+X^-(\gamma)$ MC generator
- "Ideal" p.d.f.s are smeared with detector resolution function to get $f_X(p^+, p^-)$

PDFs are mostly empirical

- $f_X(E^+, E^-)$ are partly constructed using the data:
 - tagged electrons and positrons

cosmic muons

Comparison of various methods

By momentum: $N_{\pi\pi}/N_{ee} = 1.0187 \pm 0.0003$ By energy: $\Delta N_{\pi\pi}/N_{ee} = +0.05\% \pm 0.033\%$ By angular distribution: - free asymmetry: $\Delta N_{\pi\pi}/N_{ee} = -0.23\% \pm 0.12\%$ - fixed asymmetry: $\Delta N_{\pi\pi}/N_{ee} = +0.20\% \pm 0.08\%$ Three methods agree to ~0.2%

Fit of angular distribution

Efficiency corrections

Difference between 2013 and 2018 data 2013 and 2018 data were taken in the same energy range, but with significantly different detector conditions:

- luminosity integral in 2018 is factor 2-5 larger
- data rate (luminosity) in 2018 was factor 2-5 larger
- drift chamber in 2013 operated without 4 middle layers (out of 19)
- Z-chamber (important for precision determination of fiducial volume) broke before 2018 run
- Z beam size in 2018 was twice wider
- calorimeter electronics was significantly updated before 2018

Z beam size

Dependance on theta cut

Charge asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Charge asymmetry in $e^+ e^- \rightarrow \pi^+ \pi^-$ is due to interference between ISR/FSR and between one- and two-photon exchange

 $A = \left(N_{\Theta < \pi/2}^{\pi} - N_{\Theta > \pi/2}^{\pi} \right) / N$

The theoretical model by Lee, Ignatov, PLB 833 (2022) 137283 (GVDM) describes well the CMD-3 data

Recent calculation in dispersive formalism Colangelo et al., JHEP 08 (2022) 295 confirms the effect. *Talk by Jacobo Ruiz de Elvira today*.

Internal checks

Comparison between different data sets

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ to QED

Radiative corrections

Measurement of $e^+e^- \rightarrow \pi^+\pi^$ requires high precision calculation of radiative corrections.

We use two high-precision MC generators for $e^+e^- \rightarrow e^+e^-$:

- MCGPJ generator (0.2%)
- BaBaYaga@NLO (0.1%)

With high statistics we've observed inconsistencies in tails of distributions, which were traced to particulars of MCGPJ generator

After improvements, tails of $e^+e^$ spectra still differ by O(1-10%), which limits the precision

27

Radiative corrections

For the calculation of cross sections, there is very good agreement between MCGPJ and BaBaYaga@NLO.

But there is still some difference in spectra.

BaBaYaga@NLO shows better agreement with the data. We adopted it as the default MC generator for $e^+e^- \rightarrow e^+e^-$

Difference between spectra of MC generators leads to systematic error O(0.1%) (depends on energy)

NNLO MC generator for $e^+e^- \rightarrow e^+e^-$ is needed for higher precision

Comparison of measured and calculated $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ for different MC gen.

Statistical precision of CMD-3 data

Relative statistical accuracy $\Delta\sigma/\sigma$ of various data sets in 20 MeV energy bins

The publication is in preparations. As soon as it ready, we'll announce results.

29

JHEP 2021,113 (2021)

 $e^+e^- \rightarrow \pi^+\pi^$ at SND (2021) First measurement of $e^+e^- \rightarrow \pi^+\pi^$ at VEPP-2000

The analysis is based on 4.7 pb⁻¹ data recorded in 2013 (1/10 full SND data set)

 π/e separation using ML (BDT)

Systematic uncertainty on the cross section (%)

Source	< 0.6 GeV	o.6 - o.9 GeV
Trigger	0.5	0.5
Selection criteria	0.6	0.6
e/π separation	0.5	0.1
Nucl. interaction	0.2	0.2
Theory	0.2	0.2
Total	0.9	o.8

 $e^+e^- \rightarrow \pi^+\pi^$ at SND (2021): comparison to other measurements

0.53	< 1	\sqrt{s}	<	0.88	GeV
------	-----	------------	---	------	-----

	$a_{\mu}(\pi^+\pi^-) imes 10^{10}$
SND & VEPP-2000	409.8±1.4±3.9
SND & VEPP-2M	406.5 ± 1.7 ± 5.3
BABAR	413.6 ± 2.0 ± 2.3
KLOE	403.4 ± 0.7 ± 2.5

Status of CMD-3

Summary

- VEPP-2000 collider is under operation, reached luminosity of 8 \cdot 10³¹ cm⁻²s⁻¹, 80% of design
- CMD-3 and SND detectors collected >600 1/pb each in the whole available energy range
- Data analysis is in progress, many result were published (mostly above 1 GeV)
- First pion formfactor data was published in 2021 by SND using ~10% of total available data set
- CMD-3 pion formfactor publication is under preparations; will be based on full data set
- The focus for near future is to collect record data set above 1 GeV