5th Plenary Workshop of the Muon g-2 Theory Initiatives 7 September 2022, Edinburgh

Muon g-2/EDM experiment at J-PARC

Katsu Ishida (RIKEN)

on behalf of the J-PARC muon g-2/EDM collaboration (E34)

Outline

concept overview progress, update schedule, collaboration summary

Muon g-2/EDM experiment at J-PARC Aims for

measurement of muon g-2 independent of BNL and FNL experiments

Phase 1 : 0.45 ppm Phase 2 : 0.1 ppm

by quite different method

- using several novel techniques
 - very low emittance muon beam
 - muon LINAC acceleration from thermal energy 17.5
 - MRI-type high-precision muon storage magnet
 - Full tracking detector

muon g-2 and EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2 = 0

general form of spin precession vector:

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL E821 approach
 $\gamma = 30 \ (P = 3 \text{ GeV/c})$
J-PARC approach
 $E = 0 \text{ at any } \gamma$

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
 $\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B}\right) \right]$

FNAL E989

J-PARC E34

Fermi Muon g-2/EDM Experiment

- Based on 3 GeV magic momentum muon beam
 - Muon from high-energy pion decay line at Fermi-lab
 - High precision muon storage ring with 14 m diameter
 - Muon injection kicker
 - Strong focusing with quadrupole electrode
 - Positron detection with calorimeters and tracking detectors

P.R.L. 126, 141801 (2021)

Basis of our method

• Very low emittance (cooling) muon beam pro

by reacceleration of thermal energy muon

- No need of strong focusing E-field no restriction on muon momentum
- MRI type compact precision magnet
- Full tracking detector
- Thermal energy muon source made by

Muon g-2/EDM Experiment at J-PARC: overview

Primary muon beam production: J-PARC MLF

- J-PARC MLF (Materials and Life Science Facility)
 - 1 MW 3 GeV proton beam for neutron and muon production

Muon Beam Line and Experimental Area

New muon beamline "H-line" is under construction

• Beam was delivered to H1 area in early 2022 :

for μe -conversion (DeeMe) and Mu-HFS (MuSEUM)

• Beam planned to H2 area (for muon g-2) in 2023

beamline components, radiation shielding, ...

New extension building ready for construction

Confirmation of muon intensity (~10⁸/s) by muon decay events in H1

Concept of low emittance muon beam production by reacceleration of thermal muon

Making thermal energy muon

• Silica Aerogel as Muonium (=μ⁺e⁻) source

Surface muons (~4 MeV) are converted to thermal muonium

- Cooling from 4 MeV to 0.03 eV (x10⁻⁸)
- Laser ablation of silica aerogel increased thermal Mu efficiency

Larger size and less deforming ablated aerogel (at UBC)

Making muon source with laser lonization

• Mu ionization with laser (for μ^+ acceleration)

Two schemes are considered for Mu ionization

- Mu 1S-2P excitation at U-line
 - Efficient single photon excitation
 - Challenging 100 μ J Lyman- α laser development
- Mu 1S-2S excitation at S-line
 - Established 244 nm laser technology
 - Demonstration started in S2-line

Ionization of Mu form silica aerogel was confirmed this year by both methods Now comparing the measured efficiency with simulation

Intense Lyman- α 4 μ J at U-line (goal 100 μ J with longer wave mixing chamber in H-line)

Mu Ionization in S2-line for 1S-2S spectroscopy High power 244 nm laser development in progress 11 Muon acceleration : initial stage

- From thermal energy to MeV
 - First step : degraded sub-keV Mu- to RFQ (89 keV)
 - demonstration in 2017
 - bunch structure measurement 2018

- Second step : thermal energy muon (~0.03 eV) to RFQ
 - high efficiency and high-quality beam
 - demonstration planned in S2-line in early 2023

World first muon RF acceleration S. Bae et al., Phys. Rev. Accel. Beams 21, 050101 (2018) Bunch width monitor

Y. Sue et al., Phys. Rev. Accel. Beams, 23, 022804 (2020)

Further acceleration of muons with LINAC

 The rest of muon LINAC cavities are designed and evaluated for acceleration to 212 MeV (300 MeV/c) Staging design for fast muon acceleration covering wide β region

(Emittance growth simulation)

Thanks to Special Promotion Grant-in-aid 2020-2025 (Kakenhi)

Spiral Muon Injection

• For injection of muon beam into compact storage ring,

3D spiral injection scheme has been invented

- Smooth connection between injection and storage regions
- Pulsed magnetic kicker to guide muons to stable orbit
- Weak-focusing magnetic field to control muons in a few cm Injection efficiency : ~85%

H. linuma et al., Nucl. Instr. And Methods. A 832, 51 (2016)

Test experiment using electron beam is progressing

- 297 keV/c e- and 8.25 mT, 24cm ϕ (versus 300 MeV/c and 3 T, 66cm ϕ)
- visualization of 3-D spiral geometry with CCD camera
- Test of beam shape effect and proto-type kicker

Injection, kicker and storage simulation

Muon Storage Magnet and Field Measurement

• 3T MRI-type superconducting solenoid magnet

Cross-calibration of FNAL and J-PARC field probes at ANL at 1.45 and 1.7 T in 2019 (3 T study planned)

delta B (ppm)

-4 -2 X (cm)

-12 -10

-8 -6

0.15 0.1 0.05

-0.05

-0.1

-0.15

2 4

0

Detector and Analysis

- Positrons tracks are reconstructed by Silicon-strip detector
 - Mass production in progress
 - Readout ASIC was developed for this detector (IEEE TNS 67, 2089(2020))
 - Prototype modules were tested at J-PARC and ELPH (JINST 15 P04027 (2020))

Alignment monitor

Detector and Analysis

Simulation and track reconstruction software package being developed

Reconstruction efficiency

Reconstruction of positron energy and timing gives g-2 precession pattern

End to end simulation

• Software package is being developed to make end-to-end simulation

Ē

- 1.8 x 10⁶ muons simulated at LINAC exit in 2020
- 10 times more in 2022
 - will be used for statistics and systematics study
 - ~10⁹ will be needed for systematics in timing shift by pile-up, sensor alignment using tracks

g2esoft

End-to-end simulation flow

Statistical and systematic uncertainties

E34 TDR Summary Paper, Prog. Theor. Exp. Phys. 2019, 053C02

Summary of statistical uncertainties

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Estimated systematic uncertainties on a_{μ}

Anomalous spin precession (ω_a)		Magnetic field (ω_p)			
Source	Estimation (ppb)	Source	Estimation (ppb)		
Timing shift	< 36	Absolute calibration	25		
Pitch effect	13	Calibration of mapping probe	20		
Electric field	10	Position of mapping probe	45		
Delayed positrons	0.8	Field decay	< 10		
Diffential decay	1.5	Eddy current from kicker	0.1		
Quadratic sum	< 40	Quadratic sum	56		

EDM Measurement

EDM measurement relies on the tilt of muon precession

to the mid plane

• No E-field simplifies the measurement

$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta = -a \frac{q}{m} \vec{B} - \eta \frac{q}{2m} (\vec{\beta} \times \vec{B}).$$

$$g^{-2} \quad \text{EDM}$$

Tilt

- To be observed in up-down asymmetry
- $\tan \delta = \omega_n / \omega_a = \eta \beta / 2a$ •
- Good detector alignment precision is essential
- to aim at 10⁻²¹ e cm sensitivity (10⁻⁵ rad)
- 1 µm detector alignment is developed

Comparison of Parameters

T T T

	BNL-E821	Fermilab-E989	Our experiment	
Muon momentum	3.09 GeV/ <i>c</i>		300 MeV/c	
Lorentz γ	29.3		3	
Polarization	100%		50%	
Storage field	B = 1.45 T		B = 3.0 T	
Focusing field	Electric quadrupole		Very weak magnetic	
Cyclotron period	149 ns		7.4 ns	
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$	
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	$5.7 imes 10^{11}$	
Number of detected e^-	3.6×10^{9}	—	_	pha
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb	~25
(syst.)	280 ppb	100 ppb	<70 ppb	
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	—	$1.5 \times 10^{-21} e \cdot \mathrm{cm}$	
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	_	$0.36 \times 10^{-21} e \cdot \mathrm{cm}$	

Collaboration Status

110 members from Canada, China, Czech, France, India, Japan, Korea, Netherlands, Russia, USA

The 24th J-PARC muon g-2/EDM collaboration meeting, June 8-10, 2022

Schedule

		Here					
	2021 (FY)	2022	2023	2024	2025	2026	2027 and beyond
KEK Budget							
Surface muon	*	Beam at H1 area	,	★ Beam at H2 area			issioning taking
Bldg. and facility			★ Final design		*	Completion	commissioning Data taking
Muon source	*	lonization test @	952 ★ 80keV acceleration	★ Ionization tes	t at H2		
LINAC				on@sz ★ 4.3 MeV@	H2 ★	fabrication compl	210 MeV ete 2 years for first result
Injection and storage			Completion of lectron injection te	st		*	muo <mark>n injection</mark>
Storage magnet				★ B-field probe ready		★ Install ★ Shimr	ning done
Detector	Ł		vane prototype ★ I	Mass production re	eady	★ Installati	on
DAQ and computing		7	common computi esource usage start	ing operation test t	Ready		
Analysis			*	 Tracking software 	ready Analysis softwar	e ready	

Summary

muon g-2/EDM experiment at JPARC aims to measure muon g-2 and EDM with a new experimental approach

- Low emittance muon beam
- MRI-type storage ring with good injection efficiency and highly uniform B-field
- Full tracking detector with large acceptance
- The experiment is getting ready for realization
 - Construction of new muon beam line (H-line) and building design
 - Achieving many R&D and test milestones
 - Production of the subsystems are on going
- Expecting data taking to start in FY2027

+ 2 years run for 1st result

Thank you for your attention.