ISOSPIN BREAKING CORRECTIONS IN au-decays for $(g-2)_{\mu}$

Mattia Bruno for the RBC/UKQCD Collaboration

Fifth plenary workshop of the Muon g-2 theory initiave Edinburgh, Scotland, September, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

WINDOW FEVER

Hadronic Vacuum Polarization (HVP) contribution to a_{μ}

 $\begin{array}{ll} \mbox{Time-momentum representation} & & & [\mbox{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_k \int d{\pmb x} \ \langle j_k^{\gamma}(x) j_k^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^2 \sum_t w_t G^{\gamma}(t) \\ \end{array}$

Windows in Euclidean time

[RBC/UKQCD '18]

$$\begin{aligned} a^W_\mu &= 4\alpha^2 \sum_t w_t \, G^\gamma(t) \left[\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta) \right. \\ & t_0 &= 0.4 \text{ fm} \quad t_1 = 1.0 \text{ fm} \quad \Delta = 0.15 \text{ fm} \end{aligned}$$

Motivations for τ

Final states I = 1 charged

Contribution to a_{μ}

<日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の</p>

3/17

$$\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\boldsymbol{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$$

Isospin decomposition of u, d current

NEUTRAL VS CHARGED

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int dx \ \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle \end{split}$$

4/17

INTERMEZZO

Given definition of isosymmetric world [RBC/UKQCD '18, BMWc '20] comparision of isosymmetric windows from LQCD well-defined in continuum, infinite volume

comparison of isospin breaking shift also well-defined

A possible new probe for LQCD+QED calculations $\delta G_{11} \equiv G_{11}^{\gamma} - G_{11}^W$ observable defined in QCD+QED \rightarrow no scheme ambiguity allows for testing a smaller combination of diagrams windows of δG_{11} provide additional angle

STRATEGY

正明 スポッスポッスラッム

6/17

Restriction to $\pi\pi$ channel assume $G_{00}^\gamma\simeq 0$ and G_{01}^γ dominated by IB effects of $\pi\pi$ channel

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\text{EW}}}$$

0. S_{EW} electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
1. Laplace transform to Euclidean time

LONG DISTANCE QED

At low energies relevant degrees of freedom are mesons Chiral Perturbation Theory [Cirigliano et al. '01, '02] Meson dominance model [Flores-Talpa et al. '06, '07] Corrections costed in one function of (a) Correction (b) Correction (c) Correct

Corrections casted in one function $v_{-}(s) \rightarrow v_{-}(s)G_{\rm EM}(s)$

Real photon corrections

$\mathsf{Real} + \mathsf{virtual}$

<ロト < 同ト < ヨト < ヨト

 \rightarrow IR divergences cancel

Virtual photon corrections (τ and π self-energy)

MATCHING TO LATTICE Q[C,E]D

Re-evaluation of $G_{\rm EM} \rightarrow G_{\rm EM}^{\pi}$

lattice contains $\pi^0\pi^-\gamma$ states \rightarrow

 $G_{\rm EM}^{\pi}$ = "remove" infrared safe sub-components of rate from $G_{\rm EM}$

 $\begin{array}{l} G^{\pi}_{\rm EM} \mbox{ preliminary results in the Leading Low approximation} \\ \mbox{ keep terms } O(1/k^2) \mbox{ (k photon momentum)} \\ \mbox{ subleading terms } O(1/k) \mbox{ [in collab. with Cirigliano]} \\ \mbox{ full } G^{\pi}_{\rm EM} \mbox{ systematic error} \end{array}$

イロト イボト イヨト イヨト

SYNERGY

イロト イボト イヨト イヨト

from QCD we need a 4-point function f(x, y, z, t): known kernel with details of photons and muon line 1 pair of point sources (x, y), sum over z, t exact at sink stochastic sampling over (x, y) (based on |x - y|) Successfull strategy: x10 error reduction [RBC '16]

from QCD we need a 4-point function f(x, y, z, t): $(g-2)_{\mu}$ kernel + photon propagator Similar problem \rightarrow re-use HLbL point sources!

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Mever

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Tianle Wang

CERN

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Bigeng Wang (Kentucky) Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Ryan Hill Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

Michigan State University Dan Hoying

University of Milano Bicocca Mattia Bruno

Nara Women's University Hiroshi Ohki

Peking University Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Sieaen

Matthew Black Oliver Witzel

University of Southampton

Alessandro Barone Jonathan Flynn Nikolai Husung Rajnandini Mukherjee Callum Radley-Scott Chris Sachraida

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Results - Preliminary

Preliminary from 481 ensemble phys. pions, $a^{-1} \simeq 1.73$ GeV, 17 configs cross-checks of code, data, analysis still missing

Results - Preliminary

✓ statistical errors: point source sampling based on HLbL data plans to improve SIB-valence (see backup)

× systematic errors: this talk very conservative, plans to improve

- 1. finite vol. \rightarrow repeat calculation on 6 fm box (see backup)
- 2. discretization errors \rightarrow repeat calculation on finer 64I
- 3. add QED-sea and SIB-sea effects

$$\Delta a_{\mu}^{W}[\tau] = 4\alpha^{2} \int w_{t} \left[G_{01}^{\gamma}(t) + \delta G_{11}(t) \right] \left[\Theta(t, t_{0}, \Delta) - \Theta(t, t_{1}, \Delta) \right]$$

 $\Delta a^W_\mu \times 10^{10} = +2.1(1.3)|_{G^{\pi}_{\rm EM} + \rm LQCD}$

[PRELIMINARY]

Note: $S_{\rm EW}$ shift treated separately

ISOSPIN CORRECTIONS

Restriction to $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^-\pi^0\,\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2}\sigma_{\pi^+\pi^-(\gamma)}(s)$$

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\rm EW}}$$
Isospin correction $v_{0} = R_{\rm IB}v_{-}$

$$R_{\rm IB} = \frac{\text{FSR}}{G_{\rm EM}} \frac{\beta_{0}^{3}|F_{\pi}^{0}|^{2}}{\beta_{-}^{3}|F_{\pi}^{-}|^{2}}$$
[Alemani et al. '98]

- **0.** $S_{\rm EW}$ electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
- **1.** Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]

3. Phase Space ($eta_{0,-}$) due to $(m_{\pi^{\pm}}-m_{\pi^0})$

PION FORM FACTORS

$$\Delta a^W_\mu \times 10^{10} = -2.8|_{G_{\rm EM}+R_{\rm IB}+\rho\gamma}$$

WINDOW FEVER - au

my PRELIMINARY analysis of exp. + latt. data only exp. errs, no attempt at estimating sys. errs for [1] and [2] LQCD syst. errs require further investigation/improvements

BICOCCĂ < ロ > < 合 > < き > くき > き と ま うへで 15/17

DI MIL

WINDOW FEVER - au

my PRELIMINARY analysis of exp. + latt. data only exp. errs, no attempt at estimating sys. errs for [1] and [2] LQCD syst. errs require further investigation/improvements

Isospin-breaking: [1]: w/o $\rho\gamma$ mixing [2]: w/ $\rho\gamma$ mixing

What is $\rho\gamma$? too much to say, too little time to explain everything...

イロト イポト イヨト イヨト

PRELIMINARY CONCLUSIONS

Windows very powerful quantities: intermediate window a^W_μ hadronic τ -decays can shed light on tension lattice vs e^+e^-

IB effects from Lattice (preliminary) $\oplus au$ -data: hints to

- 1. shift $\approx +7 \times 10^{-10}$ in $\pi\pi$ channel w.r.t. $e^+e^$ points towards agreement of τ w/ LQCD+QED of a^W_μ
- 2. qualitative agreement w/ pheno estimates [Davier et al. '09]
- 3. disagreement w/ $\rho\gamma$ mixing [Jegerlehner et al. '11] does not mean it is not there, a lot to unpack here

Note: largest shift from short distance $S_{\rm EW} \simeq +3.4(0.1) \times 10^{-10}$

Outlook

Complete calculation on 481 cross-checks of lattice data, cross-check of $G_{\rm EM}^{\pi}$ analyse QED-sea & SIB-qed diagrams (building blocks on disk)

Remove restriction to $\pi\pi$ channel analyze full spectral density from experiment include G_{00}^{γ} from LQCD, ie disconneted diagram

Compare against data-driven approaches

Extend τ -data analysis w/ all experimets [Goltermann et al.][Davier et appendix studies]

Thanks for your attention

Backup slides

30% correction at 1 GeV, δ_1^1 in good agreement E < 800 MeV \rightarrow perhaps restrict the $\rho\gamma$ below 800 MeV?

From (g-2) White Paper: " .. an increasing effect above the ρ peak that appears uncomfortably large."

SAMPLING STRATEGY

Propagators on disk from HLbL project

[Phys.Rev.Lett. 118 (2017)]

$$\tilde{V}_{\Gamma}(x_0, z_0, r) = \sum_{\boldsymbol{x}, \boldsymbol{z}} \operatorname{tr} \left[\Gamma D^{-1}(x, 0) \gamma_{\nu} D^{-1}(0, z) \Gamma D^{-1}(z, r) \gamma^{\nu} D^{-1}(r, x) \right]$$
$$V_{\Gamma}(|x_0 - z_0|) = \sum_{r} \Delta(r) \tilde{V}_{\Gamma}(x_0, z_0, r)$$

 ${\cal O}(10^3) \ {\rm points} \rightarrow {\cal O}(10^6) \ {\rm pairs}$

contract photon offline \rightarrow study QED_L vs QED_∞

イロト イボト イヨト イヨト

FINITE VOLUME ERRORS

Finite volume errors

empirical observation: diagrams may have largish FV errors cancellation of FV effects in physical combinations similar observation in ChPT, e.g. [Bijnens, Portelli '19]

イロト イボト イヨト イヨト

STRONG ISOSPIN BREAKING

Accurate determination from multiple valence calculations independent determination from point sources only 8k / 1M on-going check if full 1M can be competitive

イロト イポト イヨト イヨト

QED VALENCE DISCONNECTED

Preliminary (run2) Point sources at exchanged photon vertices

Coarse lattice $a \simeq 0.2 \text{ fm}$

イロト イポト イヨト イヨト

Observe suppression relative to Vmatches target accuracy not yet explored full statistics (running)

