Sum rules for the hadronic vacuum polarization

Diogo Boito, Maarten Golterman, Kim Maltman, Santi Peris

In preparation

Fifth Plenary Workshop of the Muon g-2 Theory Initiative, Sept. 5-9, 2022, Edinburgh

Motivation

- A new set of sum rules allowing for comparison between spectral functions from experimental data and lattice correlators, or between spectral functions from different data sets; may help shed light on discrepancies such as lattice-exp. data and KLOE-BaBar
- Similar to "window method," but start with a window on the spectral function instead of a window defined in Euclidean time; narrow region in \sqrt{s} instead of in t (See also Colangelo et al. '22)
- Applications:
- Comparisons between R-ratio data and lattice data
- Potentially useful for reconsidering hadronic τ-decay data: more precise τ spectral function (Boito *et al.* '20) available; progress with lattice computation of isospin-breaking (IB) effects (see Mattia Bruno's talk)

Rational-weight sum rules

Consider a class of rational weights $W_{m,n}(s) = \frac{(s - s_{th})^m}{\prod_{k=1}^n (s + Q_k^2)}$, Q_k^2 Euclidean, fixed

Taking radius to infinity leads to sum rule

$$\frac{1}{2\pi i} \oint_C dz \, W_{m,n}(z) \,\hat{\Pi}(-z) = (-1)^m \sum_{k=1}^n \frac{(Q_k^2 + s_{\rm th})^m}{\prod_{\ell \neq k} (Q_\ell^2 - Q_k^2)} \hat{\Pi}(Q_k^2)$$
$$= \int_{s_{\rm th}}^\infty ds \, W_{m,n}(s) \, \rho(s)$$

Relation between spectral weight and Euclidean quantity

This can be recast in terms of
$$C(t) = \frac{1}{3} \sum_{\vec{x},i} \langle j_i^{\text{EM}}(\vec{x},t) j_i^{\text{EM}}(0) \rangle = -\int \frac{dQ}{2\pi} e^{iQt} Q^2 \hat{\Pi}(Q^2)$$
 as

$$\int_{s_{\text{th}}}^{\infty} ds \, W_{m,n}(s) \, \rho(s) = \int_{0}^{\infty} dt \, \underbrace{(-1)^m \sum_{k=1}^{n} \frac{(Q_k^2 + s_{\text{th}})^m}{\prod_{\ell \neq k} (Q_\ell^2 - Q_k^2)} \left(\frac{4 \sin^2(Q_k t/2)}{Q_k^2} - t^2\right)}_{c^{(m,n)}} C(t)$$

Examples: choose $Q_k^2 = 0.25, 0.325, 0.4, 0.475, 0.55 \text{ GeV}^2$ and n = 1, 2:

Another type of sum rule: exponential weights

Because

choosing

$$C(t) = \int_{E_{\text{th}}}^{\infty} dE \, E^2 e^{-Et} \, \rho(E) \,, \qquad t > 0$$
$$w_n(E) = \sum_{j=1}^n x_j \, E^2 e^{-Et_j} \,, \qquad t_j > 0$$
$$\int_{E_{\text{th}}}^{\infty} dE \, w_n(E) \, \rho(E) = \sum_{j=1}^n x_j C(t_j)$$

leads to new sum rule

Why is this interesting?

Choose a physically interesting weight $2EW(s = E^2)$ (the "mold"), and replace by approximation $w_n(E)$ (the "cast") (Hansen, Lupo and Tantalo '19)

- Get to choose values of t_j ; pick values where $C(t_j)$ has small errors
- Sum rule is exact for the cast \Rightarrow throw away the mold!

For a given weight
$$W(s = E^2)$$
, minimize $\int_{E_{\text{th}}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\})/E^2 - 2W(E^2)/E \right|^2$

Given the times $t_n > \cdots > t_1 > 0$ this yields the coefficients x_j , determining the exp. weights $w_n(E)$

Examples: choose $t_j = 3, 6, 9, 12, 15 \text{ GeV}^{-1} \approx 0.6, 1.2, 1.8, 2.4, 3 \text{ fm}$:

For a given weight
$$W(s = E^2)$$
, minimize $\int_{E_{\text{th}}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\})/E^2 - 2W(E^2)/E \right|^2$

Given the times $t_n > \cdots > t_1 > 0$ this yields the coefficients x_j , determining the exp. weights $w_n(E)$

Examples: choose $t_j = 3, 6, 9, 12, 15 \text{ GeV}^{-1} \approx 0.6, 1.2, 1.8, 2.4, 3 \text{ fm}$:

Comparison between R-ratio and lattice: rational-weight sum rules

- R-ratio data (Keshavarzi, Nomura and Teubner '19)
- Lattice: from ABGP '22 *light-quark connected part only*; compare only errors! lattice spacings a = 0.06, 0.09, 0.12, 0.15 fm, extrapolate to continuum limit (pion-mass mistunings and finite-volume effects smaller than statistical errors)

	R-ratio	rel. error	lattice	rel. error
W_{15}	0.4756(16)	0.3%	0.468(26)	5.6%
W_{25}	0.08912(34)	0.4%	0.0838(33)	3.9%

• Do NOT compare central values! Lattice errors order of magnitude larger

Comparison between R-ratio and lattice: exponential-weight sum rules

- R-ratio data (Keshavarzi, Nomura and Teubner '19)
- Lattice: from ABGP '22 *light-quark connected part only*; compare only errors! lattice spacings a = 0.06, 0.09, 0.12, 0.15 fm, extrapolate to continuum limit (pion-mass mistunings and finite-volume effects smaller than statistical errors)

	R-ratio	rel. error	lattice	rel. error
W'_{15}	0.4785(16)	0.3%	0.496(17)	3.4%
W_{25}^{\prime}	0.08857(34)	0.4%	0.0798(18)	2.3%

(W' is exponential-weight version of W)

- Do NOT compare central values! Lattice errors order of magnitude larger
- Lattice errors almost factor 2 smaller! (No attempt yet to optimize choice of weights)

How useful are these numbers?

Compare with BaBar-KLOE discrepancy

Assume that above $s = 0.95 \text{ GeV}^2$ there is no discrepancy (no KLOE data above 0.95 GeV²): allows us to to compute the spectral weights with W'_{15} and W'_{25} :

> $\Delta_{15}(\text{BaBar} - \text{KLOE}) = 0.0091(39)$ $\Delta_{25}(\text{BaBar} - \text{KLOE}) = 0.00153(52)$

Lattice accuracy: 0.017 for W'_{15} ; 0.0018 for W'_{25}

⇒ Need factor ~4 improvement for W'_{15} ; factor ~2 improvement for W'_{25} (W'_{25} better "designed" than W'_{15})

Comparison between R-ratio and hadronic au-decay data

• In an isospin-conserving world, one can simply replace any exclusive I = 1 spectral distribution by the corresponding distribution obtained from non-strange vector hadronic τ decays (for example, $\pi^-\pi^+$ by $\pi^-\pi^0$ and the sum of $2\pi^+ 2\pi^- + \pi^+\pi^- 2\pi^0$ by $2\pi^-\pi^+\pi^0 + \pi^- 3\pi^0$, etc.)

Why is this again interesting?

- A new $2\pi + 4\pi \tau$ -based spectral function exists which combines ALEPH and OPAL data, can be improved by BELLE II data (Boito *et al.* '20)
- Isospin breaking (IB) is a problem, but the lattice can help out! (Mattia Bruno's talk)

Issues: exclusive vs. inclusive

Lattice can compute (1st order) IB correction: $\Pi_{\text{IB}}(Q^2) \equiv \frac{2}{\sqrt{3}} \Pi_{38}(Q^2) + \left[\Pi_{33}(Q^2) - \frac{1}{2} \Pi_{ud;V}(Q^2) \right]$

• However, this is inclusive!

Only 10% of a_{μ}^{HVP} from above $\sqrt{s} = 1.937 \text{ GeV}$, assuming IB ~ 1% leads to 0.1% uncertainty Below $\sqrt{s} = 1.937 \text{ GeV}$ only 2π , 3π , 4π , K $\overline{\text{K}}$ relevant at the 1-2% IB level K $\overline{\text{K}}$ dominated by I = 0 (Babar '18, Boito *et al.* '22), 2π and 4π are I = 1, 3π is I = 0 (not quite) Thus $\Delta_{mn} \equiv \int_{s_{\text{th}}}^{\infty} ds W_{mn}(s) \rho_{2\pi+4\pi}^{e^+e^-}(s) - \int_{s_{\text{th}}}^{\infty} ds W_{mn}(s) \rho_{2\pi+4\pi}^{\tau}(s)$ $= (-1)^m \sum_{k=1}^n \frac{(Q_k^2 + s_{\text{th}})^m}{\prod_{\ell \neq k} (Q_\ell^2 - Q_k^2)} \prod_{\text{IB}} (Q_k^2)$

- This is Euclidean! Problem, because on the τ side, we are restricted to $s < m_{\tau}^2$ However, bulk of 2π , 4π for the weights we consider from s below m_{τ}^2
- For practical purposes, IB in $2\pi + 4\pi$ can be considered inclusive!

Issues: 3π overcounting; missed 4π contribution

• The lattice IB correction contains a 3π contribution due to ρ - ω interference, but since we only replace $2\pi + 4\pi$ by τ -based data, this leads to overcounting the 3π contribution

BaBar '20 analysis of $e^+e^- \rightarrow \rho \rightarrow 3\pi$ allows for quantitative estimate of overcount: amounts to -0.54(54) × 10⁻¹⁰ for a_{μ}^{HVP} -- estimates for sum rules follow

• $s > m_{\tau}^2$ contributions: negligible for 2π

small for 4π if we bound IB by 2% in this (non-resonant) region

Results

• Define $I^W(s_0) = \int_{s_{th}}^{s_0} ds W(s) \rho(s)$ then we obtain from the R-ratio:

	$I_W^{2\pi+4\pi}$	$I_W^{2\pi+4\pi}(m_\tau^2)$	$IB_{3\pi \text{ overcount}}$	$ ext{IB}_{s>m_{ au}^2}$
W_{15}	0.4008 ± 0.0014	0.3995 ± 0.0014	-0.00041(41)	< 0.00026
W_{25}	0.06620 ± 0.00029	0.06459 ± 0.00027	-0.00012(12)	< 0.000033

Note: IB corrections much smaller than statistical errors

- Can compute these spectral weights also from the $2\pi + 4\pi \tau$ -based spectral function; We find for the differences: $I_{\rm EM}^{W_{15}}(m_{\tau}^2) - I_{\tau}^{W_{15}}(m_{\tau}^2) = -0.0108(26)$ $I_{\rm EM}^{W_{25}}(m_{\tau}^2) - I_{\tau}^{W_{25}}(m_{\tau}^2) = -0.00233(35)$
- Sets the stage for the required lattice computation of the IB part

Remarks

- New set of sum rules potentially useful for comparing spectral and lattice data, as well as electroproduction and hadronic τ -decay data
- To do: more precise lattice correlators search for optimal sum-rule weights
- τ -decays: need lattice computation of IB part of the hadronic vacuum polarization if we use both the 2π and 4π data, an inclusive lattice computation is sufficient!
- Potential improvement of τ -decay data from BELLE II only 2π and 4π need to be analyzed!