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Motivation

* A new set of sum rules allowing for comparison between spectral functions from experimental
data and lattice correlators, or between spectral functions from different data sets;
may help shed light on discrepancies such as lattice-exp. data and KLOE-BaBar

e Similar to “window method,” but start with a window on the spectral function instead
of a window defined in Euclidean time; narrow region in /s instead of in t (See also Colangelo et al. 22)

* Applications:

» Comparisons between R-ratio data and lattice data

» Potentially useful for reconsidering hadronic T-decay data: more precise 7 spectral function
(Boito et al. ‘20) available; progress with lattice computation of isospin-breaking (IB) effects
(see Mattia Bruno’s talk)



Rational-weight sum rules

Consider a class of rational weights W, ,,(s)
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Relation between spectral weight and Euclidean quantity
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This can be recast in terms of C(t) = 3
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Examples: choose Q7 = 0.25, 0.325, 0.4, 0.475, 0.55 GeV” and n =1, 2:
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Note: arbitrary vertical scales!




Another type of sum rule: exponential weights

Because C(t) = / dE E*e " p(E) , t>0
Ein

choosing w,(F) = Zajj E?e Bl t; >0
j=1

Ein

leads to new sum rule / dE w,(E) p(F) = Z z;C(t;)
j=1

Why is this interesting?

Choose a physically interesting weight 2EW (s = E2) (the "mold"), and replace by
approximation w,, (F) (the "cast") (Hansen, Lupo and Tantalo ‘19)

* Get to choose values of #; ; pick values where C(%;) has small errors

* Sum rule is exact for the cast = throw away the mold!
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For a given weight W (s = E?) , minimize /

i \wnw; (), {2, )/ E? — 2W (E%)/E

Given the times ¢,, > --- > t; > 0 this yields the coefficients z;, determining the exp. weights w,, (F)

Examples: choose t; =3, 6, 9, 12, 15 GeV ™' ~ 0.6, 1.2, 1.8, 2.4, 3 fm :
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For a given weight W (s = E?) , minimize /

i \wnw; (), L))/ E? — 2W (E2)/E

Given the times ¢,, > --- > t; > 0 this yields the coefficients Z; , determining the exp. weights w,, (F)

Examples: choose ¢, =3, 6, 9, 12, 15 GeV™! ~ 0.6, 1.2, 1.8, 2.4, 3 fm :
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Comparison between R-ratio and lattice: rational-weight sum rules

* R-ratio data (Keshavarzi, Nomura and Teubner ’19)

 Lattice: from ABGP ‘22 light-quark connected part only; compare only errors!

lattice spacings a = 0.06, 0.09, 0.12, 0.15 fm , extrapolate to continuum limit

(pion-mass mistunings and finite-volume effects smaller than statistical errors)

R-ratio rel. error || lattice rel. error
Wis || 0.4756(16) 0.3% 0.468(26) 5.6%
Was || 0.08912(34) 0.4% 0.0838(33) 3.9%

* Do NOT compare central values! Lattice errors order of magnitude larger




Comparison between R-ratio and lattice: exponential-weight sum rules

* R-ratio data (Keshavarzi, Nomura and Teubner ’19)
 Lattice: from ABGP 22 light-quark connected part only; compare only errors!
lattice spacings a = 0.06, 0.09, 0.12, 0.15 fm , extrapolate to continuum limit

(pion-mass mistunings and finite-volume effects smaller than statistical errors)

R-ratio rel. error || lattice rel. error
Wl’5 0.4785(16) 0.3% 0.496(17) 3.4%
W2’5 0.08857(34) 0.4% 0.0798(18) 2.3%

(W’ is exponential-weight version of W)

* Do NOT compare central values! Lattice errors order of magnitude larger

 Lattice errors almost factor 2 smaller! (No attempt yet to optimize choice of weights)



How useful are these numbers?

Compare with BaBar-KLOE discrepancy

Assume that above s = 0.95 GeV? there is no discrepancy (no KLOE data above 0.95 GeV?):
allows us to to compute the spectral weights with W’;cand W’,.:

A1s5(BaBar — KLOE) = 0.0091(39)
Ags(BaBar — KLOE) = 0.00153(52)

Lattice accuracy: 0.017 for W’ ;  0.0018 for W’

— Need factor ~4 improvement for W’ ; factor ~2 improvement for W’
(W, better “designed” than W’;;)



Comparison between R-ratio and hadronic T-decay data

* In an isospin-conserving world, one can simply replace any exclusive | = 1 spectral distribution
by the corresponding distribution obtained from non-strange vector hadronic T decays
(for example, mnt by mn°® and the sum of 2m* 2 + ' 2m° by 2 n® + w31, etc.)

Why is this again interesting?

* Anew 2m + 4 t-based spectral function exists which combines ALEPH and OPAL data,
can be improved by BELLE Il data (Boito et al. ‘20)

* |sospin breaking (IB) is a problem, but the lattice can help out! (Mattia Bruno’s talk)
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Issues: exclusive vs. inclusive

1

II35(Q%) + |133(Q%) — =ILuav (Q7)

Lattice can compute (15t order) IB correction: HIB(Q2) = 5

>l

 However, this is inclusive!
Only 10% of a,"'* from above Vs = 1.937 GeV, assuming IB ~ 1% leads to 0.1% uncertainty

Below /s = 1.937 GeV only 27, 37, 41, KK relevant at the 1-2% IB level
KK dominated by I =0 (Babar ‘18, Boito et al. ‘22), 2w and 4 are | = 1, 3w is | = 0 (not quite)
Thus A,,, = fsoti ds Wmn(s)pgi_ﬁﬁ(s) — f:; ds Winn (8)p3rsan (5)

= (=)™ Xk Hﬁf@g@g@ 15 (Q%)

* This is Euclidean! Problem, because on the 7 side, we are restricted to s < m_ 2
However, bulk of 2m, 41 for the weights we consider from s below m_?

» For practical purposes, IB in 2+ 4w can be considered inclusive!
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Issues: 3m overcounting; missed 4m contribution

* The lattice IB correction contains a 3 contribution due to p-w interference, but since we only

replace 2w + 4 by t-based data, this leads to overcounting the 3m contribution

BaBar ‘20 analysis of e"e™ — p — 37 allows for quantitative estimate of overcount:

amounts to -0.54(54) x 10'° for g V% -- estimates for sum rules follow

* s>m. contributions: negligible for 2r

small for 4 if we bound IB by 2% in this (non-resonant) region

12



Results

» Define ' (sg) = [ dsTW(s) p(s) then we obtain from the R-ratio:

2m+4m 2m+4 2
[W IV;/T " (mT ) IB3x overcount IBs>m%

Wis || 0.40084+0.0014 0.3995+0.0014 -0.00041(41) | < 0.00026

Was || 0.0662040.00029 | 0.0645940.00027 || -0.00012(12) | < 0.000033

Note: IB corrections much smaller than statistical errors

* Can compute these spectral weights also from the 2m + 4 7-based spectral function;
We find for the differences: 1)\ (m?) — I'V*% (m?) = —0.0108(26)
102 (m?2) — I (m?) = —0.00233(35)

T

» Sets the stage for the required lattice computation of the IB part



Remarks

New set of sum rules potentially useful for comparing spectral and lattice data,

as well as electroproduction and hadronic 7-decay data

To do: more precise lattice correlators

search for optimal sum-rule weights

T-decays: need lattice computation of IB part of the hadronic vacuum polarization

if we use both the 2w and 4m data, an inclusive lattice computation is sufficient!

Potential improvement of 7-decay data from BELLE Il — only 2 and 41 need to be analyzed!



