

Fifth Plenary Workshop of the Muon g-2 Theory Initiative, The University of Edinburgh, September 7, 2022

Mainz gamma-gamma Programme for HLbL (A2/MAMI and BESIII)

Achim Denig Johannes Gutenberg University Mainz

Outline

- Research Unit FOR5327 on Photon-Photon-Interactions
- Programme of Meson Transition Form Factor Measurements:
 - A2/MAMI (meson Dalitz decays)
 - BESIII/BEPC-II (photon-photon fusion reactions) \rightarrow Christoph Redmer
- Observation of $e^+e^- \rightarrow \chi_{c1}$ ($J^{PC} = 1^{++}$) at BESIII NEW
- Conclusions & Outlook

Muon g-2 related Activities @ Mainz

Experiment: Member of the FNAL muon g-2 experiment (Martin Fertl)

Theory Hadronic Vacuum Polarization

- ISR measurements of exclusive hadronic cross sections @ BESIII (past BABAR, KLOE)
- Lattice QCD calculation of LO-HVP contribution
- Lattice QCD calculation of NLO-HVP contribution

Theory Hadronic Light-by-Light

- Measurent of meson Transition Form Factors (TFFs) at BESIII and A2/MAMI
- Dispersive analyses and application of sum rules in the context of meson TFFs
- Lattice QCD calculation of HLbL contribution

Muon g-2 related Activities @ Mainz

Experiment: Member of the FNAL muon g-2 experiment (Martin Fertl)

Theory Hadronic Vacuum Polarization

- ISR measurements of exclusive hadronic cross sections @ BESIII (past BABAR, KLOE)
- Lattice QCD calculation of LO-HVP contribution
- Lattice QCD calculation of NLO-HVP contribution

Theory Hadronic Light-by-Light

- Measurent of meson Transition Form Factors (TFFs) at BESIII and A2/MAMI
- Dispersive analyses and application of sum rules in the context of meson TFFs
- Lattice QCD calculation of HLbL contribution

Combined efforts under one roof: DFG-funded Research Unit FOR5327

"Photon-Photon interactions in the Standard Model and beyond exploiting the discovery potential from MESA to the LHC"

(Spokespersons: AD, Marc Vanderhaeghen, 2022-2026, 3.6M€)

FOR5327: Photon-Photon Interactions

Project Leaders of the Research Unit

Co-Applicants

International Partners

JGU

Project Leaders of the Research Unit

Co-Applicants

International Partners

JGU

FOR5327: Photon-Photon Interactions

Project Leaders of the Research Unit

Co-Applicants

]G|U

International Partners

Project Leaders of the Research Unit

Co-Applicants

]G|U

International Partners

 e^+

Problem: double-virtual TFFs needed, for which no measurements exist yet!

Way out: use theory calculations for double-virtual TFFs:

- Lattice QCD calculation
- Dispersive analyses

Experimental challenges:

<u>Now</u>: measure single-virtual TFF and compare with theory assumption! <u>Future</u>: provide measurements of double-virtual TFFs

Problem: double-virtual TFFs needed, for which no measurements exist yet!

Way out: use theory calculations for double-virtual TFFs:

- Lattice QCD calculation
- Dispersive analyses

Joint Research Project: HLbL Contribution to $(g-2)_{\mu}$

Potential for TFF Measurements at A2/MAMI

a.u

(corresponding to ~3 weeks)

MAMI is a Meson factory (e.g. world's best data on $\eta \rightarrow 3\pi^0$)

Achim Denig

MAMI: a Meson Factory for Measurements of TFFs

Timelike η *and* $\omega - \pi^0$ *TFFs*

Timelike η *and* $\omega - \pi^0$ *TFFs*


```
\omega \rightarrow \pi^0 e^+ e^-
```

large deviation between NA60 and theoretical models?!

Timelike η *and* $\omega - \pi^0$ *TFFs*

 $\omega \rightarrow \pi^0 e^+ e^-$

large deviation between NA60 and theoretical models?!

Timelike Pion TFF: $\pi^0 \rightarrow e^+e^-\gamma$

Feasibility study already lead to first publication Phys. Rev. C95 (2017) 02502

- $4 \cdot 10^5 \pi^0 \rightarrow e^+ e^- \gamma$ events
- slope parameter $a_{\pi} = 0.03 \pm 0.01$ with $a_{\pi} = m_{\pi}^2 \cdot \Lambda^{-2}$
- competitive with world's most precise NA62 analysis $a_{\pi} = 0.0370 \pm 0.0064$

Ongoing A2 project

- New data sample with 5.5 times larger statistics has been collected
- Aiming for world-leading accuarcy of slope paremeter measurement

Potential for Studying Photon-Photon-Interactions at BESIII

World's by far largest τ -charm dataset in e^+e^- annihilation:

- Symmetric e^+e^- collider
- Located at IHEP Beijing, China
- CMS energy: 2 GeV to 5 GeV
- Maximum luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Meson Transition Form Factors (TFFs) in photon-photon fusion reactions Single Tag Method (space-like)

Achim Denig

- The C-even states can be produced directly through a process with two virtual photons or neutral current reaction
- Up to now, in e⁺e⁻ annihilation only vector resonances with J^{PC}=1⁻⁻ observed
- Experimental null searches so far for: $\eta, \eta', f_0(980), f_0(1300), f_2(1270), a_0(980), a_2(1320), and X(3872)$ from Novosibirsk and BEPC-II Recent evidence for the production of $f_1(1285)$ at SND/VEPP-2000 (2 events, 2.5 σ)
- The production rate is proportional to the electronic width of the states (Γ_{ee}). For the χ_{c1} state:
 - Unitarity limit: $\Gamma_{ee} > 0.044 \text{ eV}$ Kaplan, Kühn, Phys. Lett. B78 (1978) 252
 - Vector Dominance Model: $\Gamma_{ee} = 0.46 \text{ eV}$; OR $\Gamma_{ee} \simeq 0.1 \text{ eV}$ ^{Kühn, Kaplan, Safiani, Nucl. Phys. B157 (1979) 125} A.D., Guo, Hanhart, Nefediev, Phys. Lett. B736 (2014) 221
 - Non-relativistic QCD: $\Gamma_{ee} \sim 0.1 \text{ eV}$ Kivel, Vanderhaeghen, J. High. Energy Phys. 2 (2016) 32
 - Latest prediction: $\Gamma_{ee} = 0.43 \text{ eV}$; interference with background process! Czyz, Kühn, Tracz, Phys. Rev. D94 (2016) 034033

Prediction for $e^+e^- \rightarrow \chi_{c1}$ from Czyz, Kühn, Tracz

- Search for χ_{c1} in it's main decay channel (35% B.R.): $\chi_{c1} \to J/\psi \ \gamma \to \mu^+ \mu^- \gamma$
- Large interference effects (phase angle ϕ) → distortion of the total cross section
- Implemented in PHOKHARA event generator

JG

Prediction for $e^+e^- \rightarrow \chi_{c1}$ from Czyz, Kühn, Tracz

- Search for χ_{c1} in it's main decay channel (35% B.R.): $\chi_{c1} \to J/\psi \ \gamma \to \mu^+ \mu^- \gamma$
- Large interference effects (phase angle ϕ) \rightarrow distortion of the total cross section
- Implemented in PHOKHARA event generator

- BESIII energy scan around χ_{c1} mass
- Precise energy determination via BEMS (Compton backscattering measured in HP-Ge)

Data Sample	E _{cms} [GeV]*	Lumi. [1/pb]
1	3.5080	$181.79 \pm 0.04 \pm 1.04$
2	3.5097	39.29±0.02±0.22
3	3.5104	$183.64 \pm 0.04 \pm 1.05$
4	3.5146	40.92±0.02±0.23

JG U

- High statistics data samples at ψ (3770) and 4.178 GeV, ~3 fb⁻¹ each
- Off-peak data samples at 3.581 GeV and 3.670 GeV, ~85 pb⁻¹ each
- Check $e^+e^- \rightarrow \chi_{c1}$ signal by searching for excess (reduction) of events beyond ISR background both in:
 - $\mu^+\mu^-$ mass spectrum
 - Polar angle distribution of muon tracks

Correction factors

3.1

M.... (GeV/c^2)

3.05

3.15

3.2

3.25

cos0"

0.5

0.3

2.95

Two-dimensional fit to search for excess of events beyond ISR background

Mass Spectra $e^+e^- \rightarrow \gamma J/\psi$

Mass spectra of 4 scan points after calibration procedure:

Observation of $e^+e^- \rightarrow \chi_{c1}$ with 5.1 σ Significance

Combination of 4 energy points yields a significance of 5.1σ : First observation of a non-vector resonance in e^+e^- annihilation!

Common fit to all 4 scan points \rightarrow first measurement of Γ_{ee}

 Γ_{ee} =0.12^{+0.13}-0.08 eV, ϕ =205°+15.4°-22.4°

accepted for publication in Phys. Rev. Lett.

Conclusions and Outlook

Conclusions

JG

- New Research Unit on Photon-Photon interactions at JGU Mainz, bundles Mainz efforts in:
 - Lattice QCD calculations (HVP + HLbL)
 - Hadron Phenomenology (dispersion relations & sum rules)
 - Experiment aiming for improved TFFs (BESIII → Christoph Redmer & A2/MAMI)

Spin-offs besides HLbL for muon g-2: XYZ physics, LBL, Axion searches

- Successful track record and perspectives for TFF measurements at A2/MAMI
 - Upcoming new π^0 TFF
 - Upcoming new $\omega\text{--}\pi^0\,\text{TFF}$
- First observation of production of non-vector meson (χ_{c1}) at e^+e^- collider
 - New avenue for investigations of hadrons in e^+e^- physics
 - Measure properties of convential and exotic mesons in electron-positron collision, e.g. X(3872)
 - Application of method for light-quark mesons \rightarrow input for HLbL (g-2)_µ