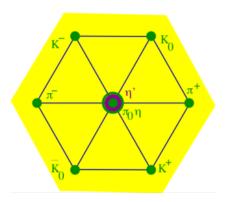
The η and η' physics at JLab

Liping Gan University of North Carolina Wilmington (for the GlueX Collaboration)


Outline

- 1. Overview of η and η' physics
- 2. Two experimental programs at JLab
 - Primakoff experiment
 - JLab Eta Factory (JEF) experiment

3. Summary

Why η is a unique probe for QCD and BSM physics?

A Goldstone boson due to spontaneous breaking of chiral symmetry in QCD
 η plays important role in bridging our understanding of low-energy hadron dynamics and underlying QCD

All its possible strong and EM decays are forbidden in the lowest order so that η has narrow decay width (Γ_η =1.3KeV compared to Γ_ω=8.5 MeV)
 Enhanced sensitivity to the higher order contributions (by a factor of ~7000 compared to ω decays) for new physics search

◆ Eigenstate of P, C, CP, and G: I^GJ^{PC}=0⁺0⁻⁺
 → tests for C, CP

All its additive quantum numbers are zero and its decays are flavor-conserving

Rich n and n' Physics

Standard Model Tests:

- Chiral symmetry and anomalies •
- Extract η - η ' mixing angle and quark • mass ratio
- Theory inputs to HLbL for $(g-2)_{\mu}$ ٠
- Scalar dynamics in ChPT ٠

Fundamental Symmetry Tests:

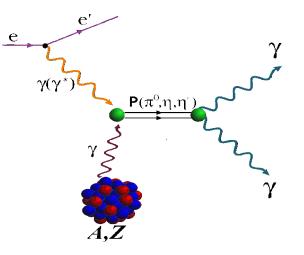
- C, CP violations
- P, CP violations ٠

BSM Physic Searches:

- Vector bosons (B boson, dark ٠ photon and X boson)
- Dark scalars •
- Pseudoscalars (ALPs) ٠
- BSM weak decays ٠

	.		
Channel	Expt. branching ratio	Discussion	
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η - η' mixing	
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	
$\eta \to \pi^{\bar{0}} \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars	
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma \prime$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	
$\eta \rightarrow 4\gamma$	$<2.8\times10^{-4}$	< 10 ⁻¹¹ [54]	
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars	
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation	
$\eta \to \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic <i>X</i> boson	
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon	
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	
$\eta ightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation	
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	
$\eta \to \pi^+ \pi^- e^{+} e^{-}$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs	
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs	
$\eta \rightarrow e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	
$\eta \rightarrow e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
$\eta \to \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only	
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current	
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [55]	<i>P</i> / <i>CP</i> violation	
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation arXiv:2007.00664	
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P</i> / <i>CP</i> violation	

Primakoff Program at JLab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

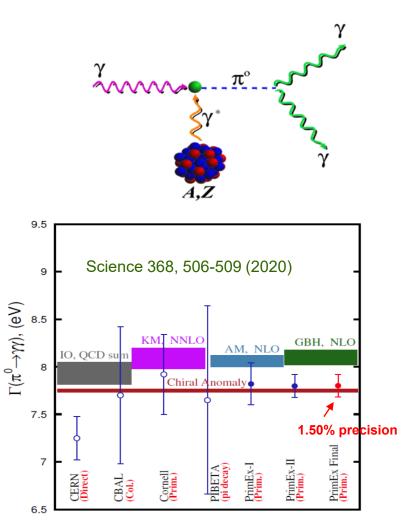
- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ

b) Transition Form Factors at Q² of 0.001-0.3 GeV²/c²: $F(\gamma\gamma^* \rightarrow \pi^0), F(\gamma\gamma^* \rightarrow \eta), F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:

- π⁰,η and η' electromagnetic interaction radii
- is the η' an approximate
 Goldstone boson?
- \succ input to calculate HLbL in (g-2)_µ

Status of Primakoff Program at JLab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

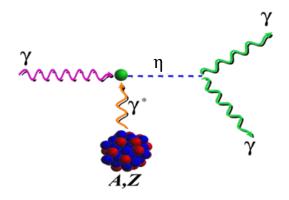
- 1) $\Gamma(\pi^0 \rightarrow \gamma \gamma) @ 6 \text{ GeV}$
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ

Theory and Experiments

Status of Primakoff Program at JLab 6 & 12 GeV

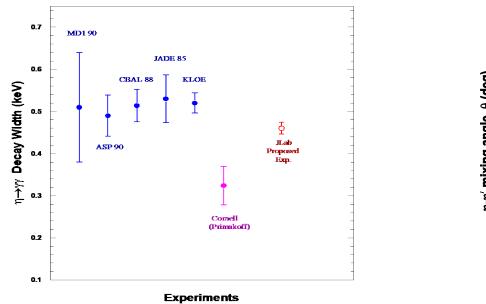

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

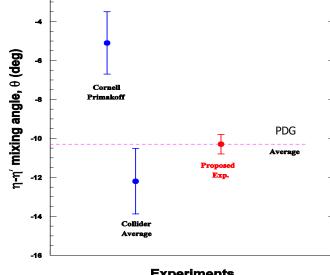
a) Two-Photon Decay Widths:

- 1) Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$ (PrimEx-eta)
- 3) $\Gamma(\eta' \rightarrow \gamma \gamma)$

Input to Physics:

- precision tests of Chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ

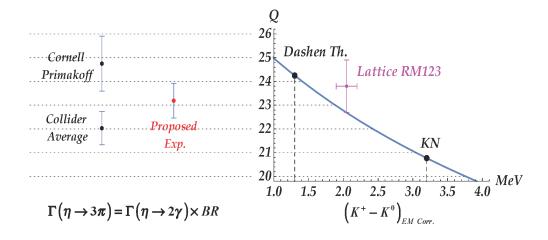

On-Going PrimEx-eta experiment


- Two data sets were collected in 2019 and in 2021.
- The third run started on Aug 18 until Dec 19, in 2022.

Physics for $\Gamma(\eta \rightarrow \gamma \gamma)$ Measurement

-2

1. Resolve long standing discrepancy between collider and Primakoff measurements: **2. Extract** η - η 'mixing angle:

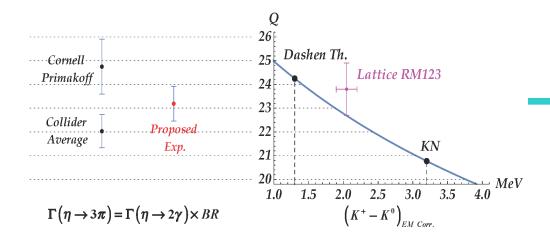

3. Improve calculation of the η -pole contribution to Hadronic Light-by-Light (HLbL) scattering in (g-2)_{\mu}

4. Improve all partial decay widths in the η -sector

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

- $\succ \alpha_{em}$ is small
- > Amplitude: $A(\eta \to 3\pi) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_\pi^2}$

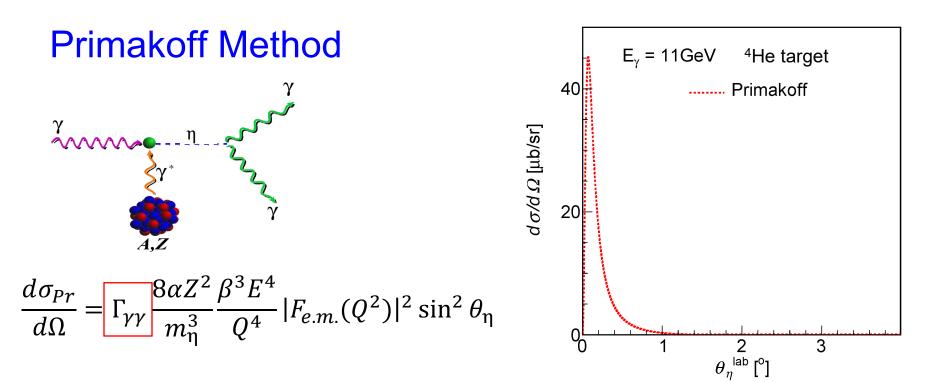

arXiv:2007.00664

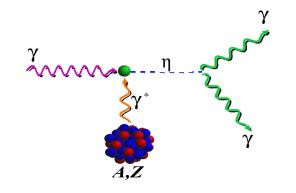
Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

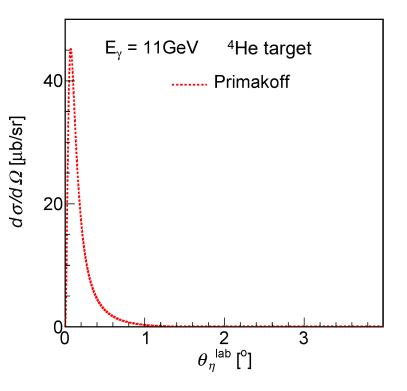
 $\succ \alpha_{em}$ is small

Amplitude:
$$A(\eta \to 3\pi) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_\pi^2}$$

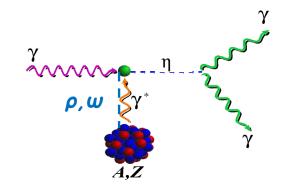



• Critical input to extract Cabibbo Angle, $V_{us} = \sin(\theta_c)$ from kaon or hyperon decays.

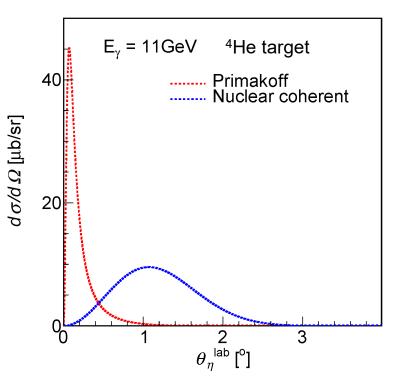
V_{us} is a cornerstone for test of CKM unitarity:


$$V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

arXiv:2007.00664

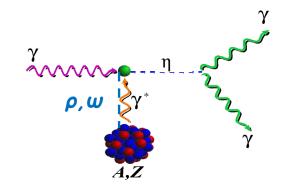


$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

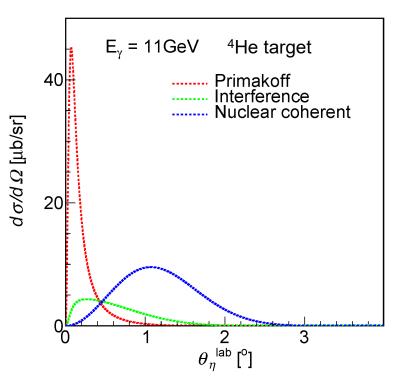


- Peaked at very small forward angle $\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

 $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$

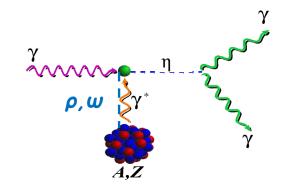


$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

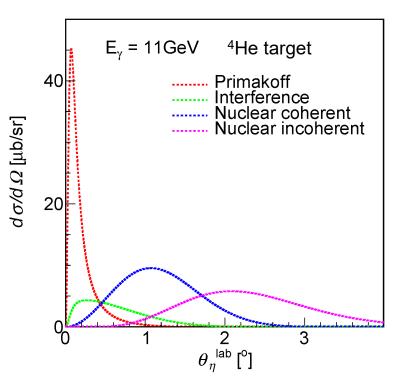


- Peaked at very small forward angle $\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

 $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$

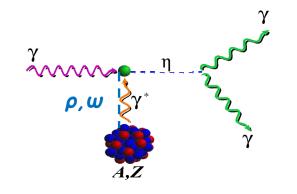


$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

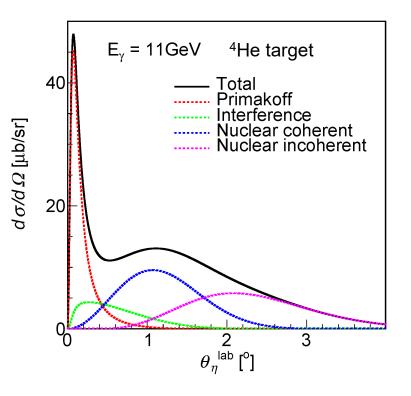


- Peaked at very small forward angle $\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

 $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$

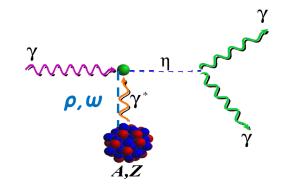


$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

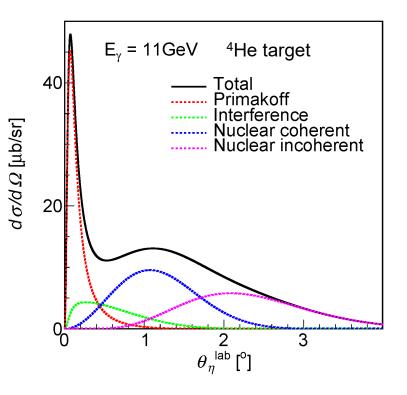


- Peaked at very small forward angle $\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

 $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$



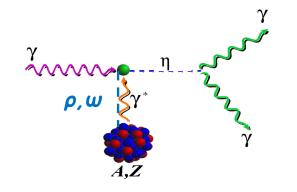
$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$



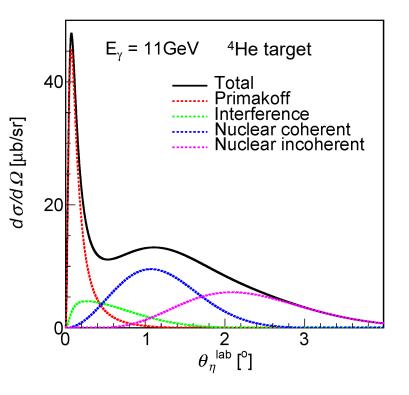
- Peaked at very small forward angle $\langle \theta_{\rm Pr} \rangle_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

 $\left\langle \frac{d\sigma_{\mathrm{Pr}}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\mathrm{Pr}} \propto Z^2 \log(E)$

$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{m_{\eta}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2 \theta_{\eta}$$



Requirement:

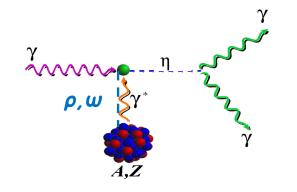

- Photon flux
- Beam energy
- Compact nuclear target

- Peaked at very small forward angle $\langle \theta_{\rm Pr} \rangle_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

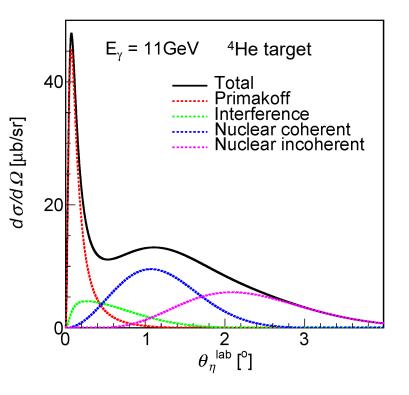
$$\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$$

$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{q^4} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

Requirement:


Photon flux

Tagged photon beam


- Beam energy
- Compact nuclear target

- Peaked at very small forward angle $\left< \theta_{\rm Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive: $/d\sigma_{\rm Pr}$

$$\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$$

$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{q^4} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\eta}$$

Requirement:

Photon flux

Tagged photon beam

- Beam energy
- Peaked at very small forward angle $\langle \theta_{\rm Pr} \rangle_{peak} \propto \frac{m^2}{2E^2}$
 - Beam energy sensitive: $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$
- Coherent process

٠

Experimental Challenges

Compared to π^0 :

\$\eta\$ mass is a factor of 4 larger
 \$smaller Primakoff cross section
 \$\larger \frac{d\sigma_{\mathbf{Pr}}}{d\Omega}\rangle_{\sigma eak} \approx \frac{E^4}{m^3}\$
 \$larger overlap between Primakoff and hadronic processes;

$$\left\langle heta_{
m Pr}
ight
angle_{peak} \propto rac{m^2}{2E^2} \quad \left\langle heta_{
m NC}
ight
angle_{peak} \propto rac{2}{E ullet A^{1/3}}$$

 larger momentum transfer (coherency, form factors, FSI,...)

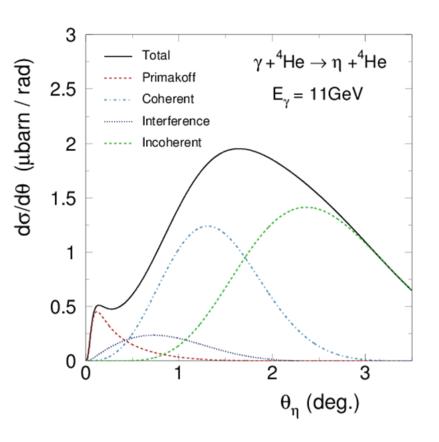
Experimental Challenges

Compared to π^0 :

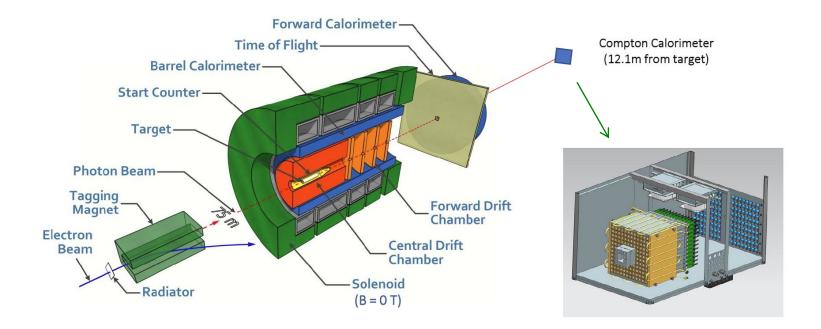
FSI,...)

 \succ η mass is a factor of 4 larger smaller Primakoff cross section $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{\rm mode} \propto \frac{E^4}{m^3}$ Iarger overlap between Primakoff and hadronic processes $\left\langle \theta_{\mathrm{Pr}} \right\rangle_{peak} \propto \frac{m^2}{2E^2} \quad \left\langle \theta_{\mathrm{NC}} \right\rangle_{peak} \propto \frac{2}{E \bullet 4^{1/3}}$ larger momentum transfer (coherency, form factors,

- Higher beam energy
- 2. Light targets

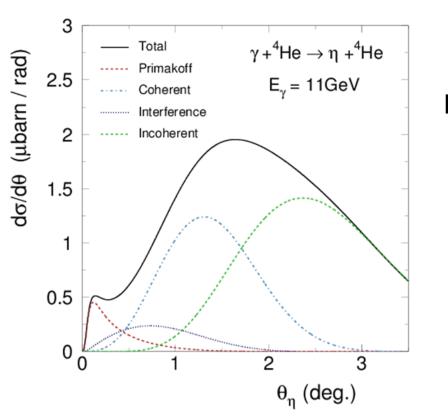

Advantage of Light Targets

Low A targets to control:


- Coherency: compact nucleus
- Separate background

 $\left\langle heta_{
m Pr}
ight
angle_{peak} \propto rac{m^2}{2E^2} \qquad \left\langle heta_{
m NC}
ight
angle_{peak} \propto rac{2}{E ullet A^{1/3}}$

• Well known form factors

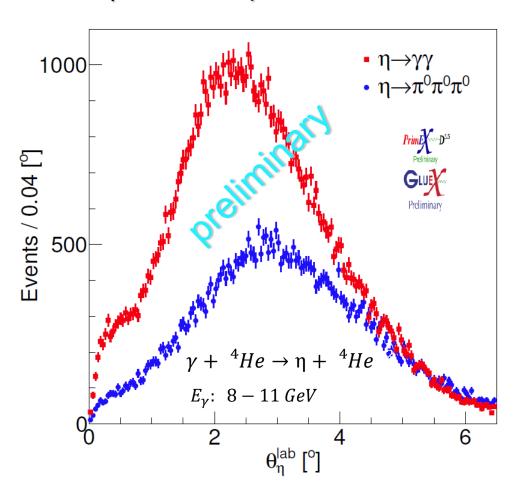


PrimEx-eta Experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D

- Tagged photon beam (~8.0-11.7 GeV)
- Pair spectrometer and a TAC detector for the photon flux control
- Liquid Hydrogen (3.5% R.L.) and ⁴He targets (~4% R.L.)
- Forward Calorimeter (FCAL) detects the η decay photons; the GlueX spectrometer will detect the charged particles from the η decays.
- CompCal and FCAL to measure electron Compton scattering for control of overall systematics.

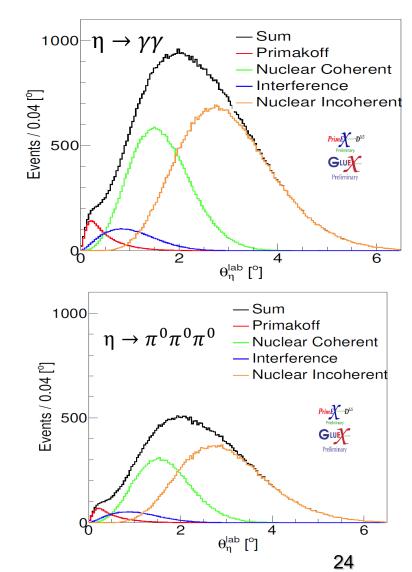
How to measure η ?

Reconstruct η via three decay channels:

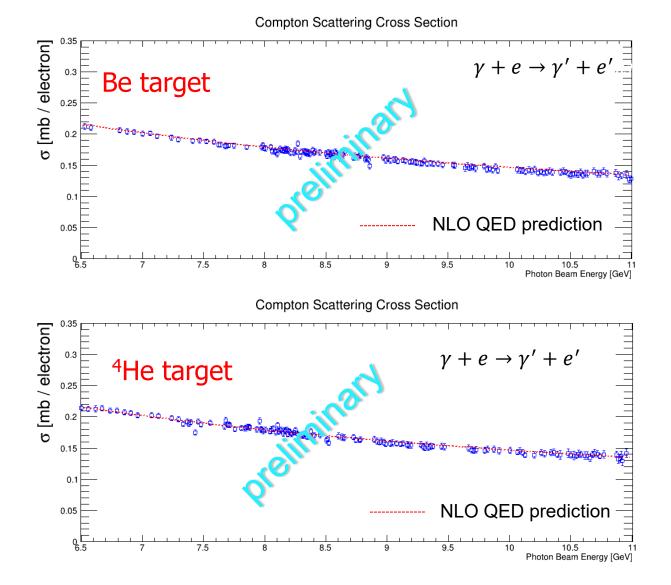

(1)
$$\eta \rightarrow \gamma \gamma (B.R. = 39.41\%)$$

(2)
$$\eta \rightarrow 3\pi^0$$
 (*B*. *R*. = 32.69%)

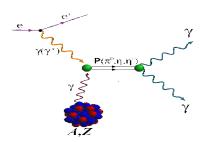
(3)
$$\eta \to \pi^+ \pi^- \pi^0$$
 (B. R. = 22.92%)


Measure the $\gamma + {}^{4}He \rightarrow \eta + {}^{4}He$ cross section via three η decay channels to control experimental systematics

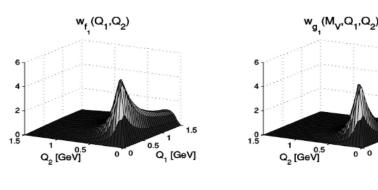
Preliminary Results on the η Yield


 η Yield from phase I data:

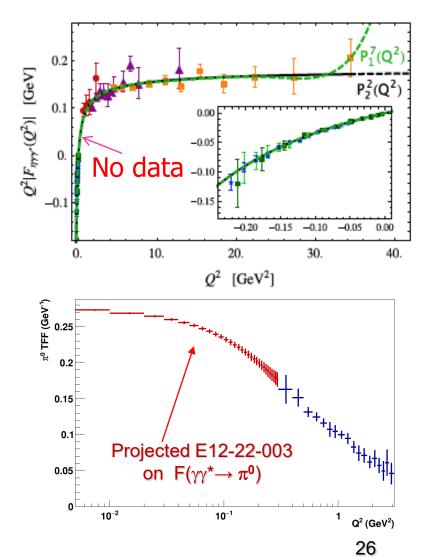
Simulations:


More details presented by Igal Jaegle, Y07.00003

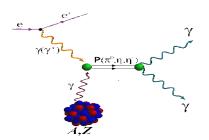
Control Systematics with Compton Scattering



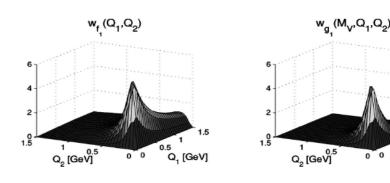
Space-Like Transition Form Factors (Q²: 0.001-0.3 GeV²/c²)


0.5 Q₁ [GeV]

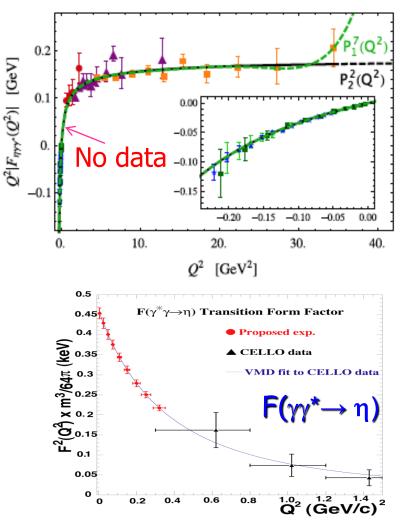
- Direct measurement of slopes
 - Interaction radii:
 F_{γγ*P}(Q²)≈1-1/6 · <r²>_PQ²
 - ChPT for large N_c predicts relation between the three slopes. Extraction of O(p⁶) low-energy constant in the chiral Lagrangian
- Input for hadronic light-by-light calculations in muon (g-2)

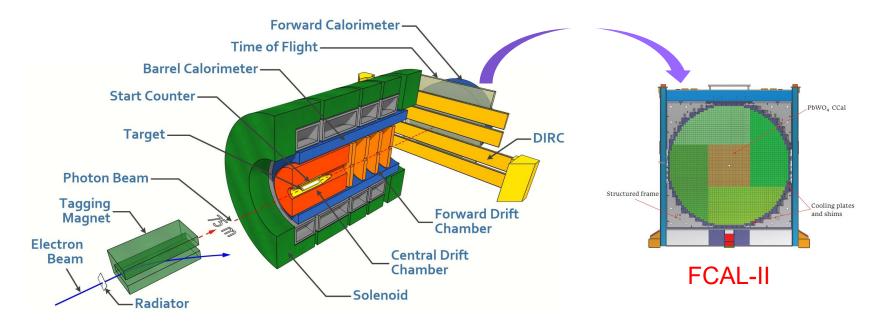


Phys.Rev.D65,073034



Space-Like Transition Form Factors (Q²: 0.001-0.3 GeV²/c²)


0.5 Q₁ [GeV]


- Direct measurement of slopes
 - Interaction radii:
 F_{γγ*P}(Q²)≈1-1/6 · <r²>_PQ²
 - ChPT for large N_c predicts relation between the three slopes. Extraction of O(p⁶) low-energy constant in the chiral Lagrangian
- Input for hadronic light-by-light calculations in muon (g-2)

Phys.Rev.D65,073034

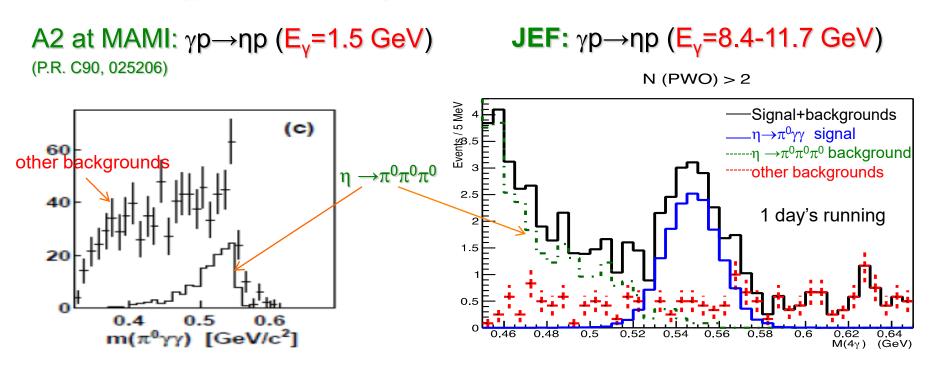
JLab Eta Factory (JEF) Experiment

- Simultaneously produce η/η' on LH₂ target with 8.4-11.7 GeV tagged photon beam via $\gamma+p \rightarrow \eta/\eta'+p$
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector
- Upgraded Forward Calorimeter with High resolution, high granularity PWO insertion (FCAL-II) to detect multi-photons from the η/η' decays
- The GlueX detector will detect the charged products from the η/η' decays

Production Rate

JEF for 100 days of beam:

	η	η
Tagged mesons	6.5x10 ⁷	4.9×10^{7}


Previous Experiments:

Experiment	Total η	Total η′
CB at AGS	10 ⁷	-
CB MAMI-B	2x10 ⁷	-
CB MAMI-C	6x10 ⁷	10 ⁶
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	-
KLOE-II	3x10 ⁸	5x10 ⁵
BESIII	~107	~5x10 ⁷

JEF offers a competitive η/η' factory

Uniqueness of JEF Experiment

Highly suppressed background in decay channels:
 a) η/η' energy boost; b) an upgraded calorimeter (FCAL-II)

2. Simultaneously produce tagged η and η' with similar rates (~5x10⁷ per 100 beam days)

Main JEF Physics Objectives

1. Search for sub-GeV hidden bosons

vector:

• Leptophobic vector B '

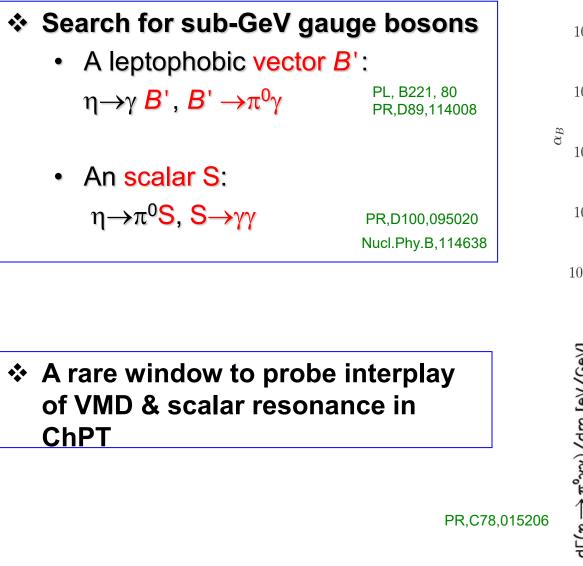
 $\eta, \eta' \to B' \gamma \to \pi^0 \gamma \gamma, \ (0.14 < m_{B'} < 0.62 \text{ GeV});$ $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma, \ (0.62 < m_{B'} < 1 \text{ GeV}).$

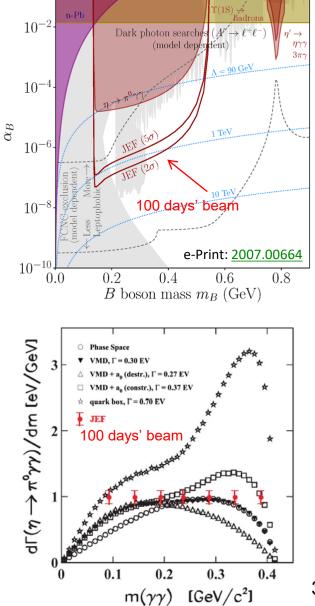
• Hidden or dark photon: $\eta, \eta' \to X\gamma \to e^+e^-\gamma$.

scalar S:
$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma, \ \pi^0 e^+ e^-, \ (10 \text{ MeV} < m_S < 2m_\pi);$$

 $\eta, \eta' \to \pi^0 S \to 3\pi, \ \eta' \to \eta S \to \eta \pi \pi, \ (m_S > 2m_\pi).$

Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma, \pi \pi e^+ e^-$


2. Directly constrain CVPC new physics: $\eta^{(\prime)} \rightarrow 3\gamma$, $\eta^{(\prime)} \rightarrow 2\pi^{0}\gamma$, $\eta^{(\prime)} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

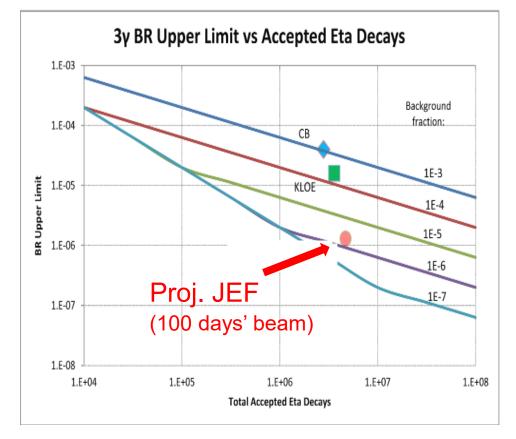

3. Precision tests of low-energy QCD:

- Interplay of VMD & scalar dynamics in ChPT: $\eta \to \pi^0 \gamma \gamma \quad \eta' \to \pi^0 \gamma \gamma$
- Time-like Transition Form Factors of $\eta^{(\prime)}: \eta^{(\prime)} \rightarrow e^+ e^- \gamma$

4. Improve the quark mass ratio via Dalitz distributions of $\eta \rightarrow 3\pi$

A Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

32

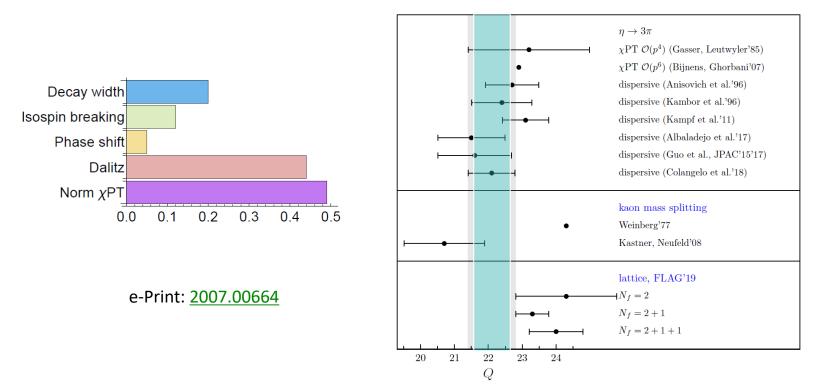

Search for CVPC Interaction via $\eta \rightarrow 3\gamma$

- SM contribution: BR(η→3γ) <10⁻¹⁹ via P-violating weak interaction.
- A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee

Phys. Rev., 139, B1650 (1965)

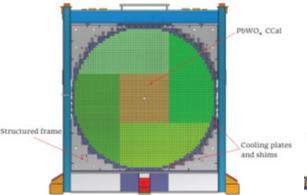
 A calculation due to such new physics by Tarasov suggests: BR(η→3γ)< 10⁻²

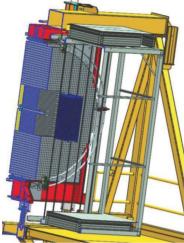
Sov.J.Nucl.Phys.,5,445 (1967)


Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

Improve Quark-Mass Ratio via $\eta \rightarrow 3\pi$ Dalitz Distributions

A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 - m_s^2}{m^2}$


$$\hat{p}^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
 $\hat{m} = \frac{m_u + m_d}{2}$


- → decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- > α_{em} is small > Amplitude: $A(s, t, u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_{\pi}^2}$
- Uncertainties in quark mass ratio

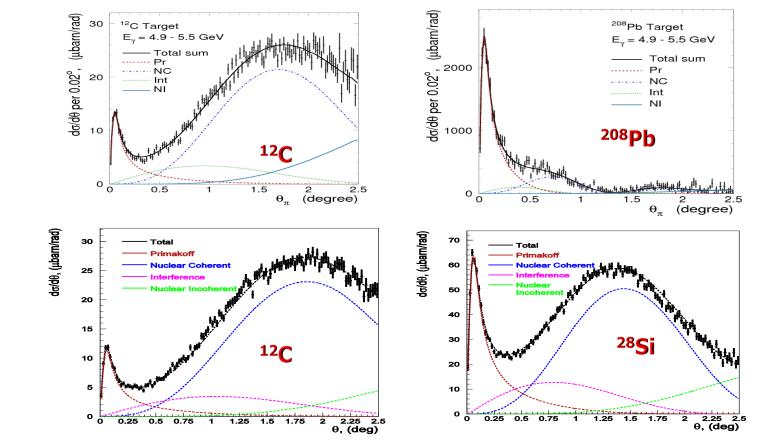
Current Status of the JEF Experiment

- 1. Non-rare decay data has been collecting with the GlueX spectroscope experiment since 2016.
- 2. A PWO insert to upgrade FCAL is under construction.
 - Mass production of 1600 PWO modules is on-going.
 - Engineering design for calorimeter frame is finalized.
 - Installation of the PWO insert is scheduled for 2023.

3. Rare decay data with FCAL-II is expected in 2024.

Undergraduate workforce

Summary


• The JLab η/η' decay measurements offer a rich physics program:

- Precision tests of Standard Model: Chiral symmetry and anomalies; inputs to HLbL in (g-2)_μ calculation; improve the light quark mass and η-η' mixing angle; scalar dynamics in ChPT
- Search for sub-GeV hidden bosons: vectors, scalars, and ALPs
- Fundamental symmetries tests: directly constrain CVPC new physics
- The PrimEx-eta experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ will complete data collection by end of 2022.
- The JEF experiment will measure η and η' decays simultaneously, with two orders of magnitude background reduction in the rare neutral modes compared to other facilities. Upgrade of Forward calorimeter with a PWO insert is currently under construction. JEF run will be expected in 2024.

Differential Cross Sections

PrimEx I:

PrimEx II:

Fitting data with new theoretical calculations to extract $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Phys.Rev. C80, 055201 (2009); Phys.Part.Nucl.Lett.,9,3 (2012)