
A Complementary Dispersive Approach to
Hadronic Light-by-light Scattering

Jan Lüdtke
in collaboration with Massimiliano Procura and Peter Stoffer

University of Vienna

Fifth Plenary Workshop of the Muon g − 2 Theory Initiative
Edinburgh, 8 September 2022



Introduction and motivation
• data-driven approach to HLbL allowed for the first time to model-

independently define individual contributions and calculate them with
small and reliable uncertainties Colangelo, Hoferichter, Procura, Stoffer 2015, 2017

• error of data-driven HLbL aHLbL
µ, phen = 92(19) × 10−11 (White Paper)

dominated by suppressed contributions from 1 − 2 GeV resonances
(narrow-width approximation) and implementation of short-distance
constraints

• 2 limitations for heavier resonances:
▶ lack of (precise) data input
▶ conceptual difficulties in the present dispersive framework

• will present novel formalism addressing these conceptual difficulties

• combination of both approaches should allow for most precise
data-driven result

Jan Lüdtke (Uni Wien) DRs for HLbL 8 September 2022 1 / 18



Outline

1 Dispersion relations in four-point kinematics

2 Dispersion relations in triangle kinematics

3 The sub-process ππ → γππ

4 Conclusions and outlook

Jan Lüdtke (Uni Wien) DRs for HLbL 8 September 2022 2 / 18



Dispersion relations in four-point kinematics
CHPS, JHEP 2015, Phys. Rev. Let. 2017, JHEP 2017

• generating set of Lorentz structures free of kinematic singularities
and zeros Bardeen & Tung, Phys. Rev. 1968, Tarrach, Nuovo Cim. A 1975

Πµνλσ =
54∑

i=1
T µνλσ

i Πi

• scalar functions Πi depend on Mandelstam variables and q2
i

• write dispersion relations for Πi in s, t, u for fixed q2
i (4-point

kinematics)

• BTT set T µνλσ
i is overcomplete, which implies ambiguities in the

scalar functions Πi

Jan Lüdtke (Uni Wien) DRs for HLbL 8 September 2022 3 / 18



Dispersion relations in four-point kinematics
Singly on-shell basis and sum rules Colangelo et al., JHEP 2017

• sufficient to consider q2
4 = 0

• in this limit a Lorentz basis free of kinematic singularities in s, t, u
exists (Π̌i)

• Π̌i have different mass dimensions
→ Π̌i with lower mass dimension fall off faster at high energies
→ implies sum rules of form

∫
ds ′ ImΠ̌i(s ′) = 0

• sum rules guarantee basis independence of aHLbL
µ

• but: sum rules only fulfilled for (infinite) sum over intermediate states
→ individual contributions basis dependent

• exception: pseudoscalar poles and loops fulfill sum rules individually
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Dispersion relations in four-point kinematics
Current limitation due to singularities in photon virtualities

• in addition: Π̌i have singularities in q2
i

→ residues vanish due to sum rules for (infinite) sum over
intermediate states

• poles lead to non-convergent master-formula integrals for individual
contributions
→ must subtract poles using same prescription for all contributions
→ additional ambiguity for individual contributions

• in original basis this affects contributions with spin ≥ 1

• by basis change it can be avoided for axial-vector mesons
Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 2021

• without additional sum rules singularities are unavoidable for
intermediate states with spin ≥ 2
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How to overcome these difficulties?

→ Dispersion relations at q4 = 0 (triangle kinematics)
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Dispersion relations in triangle kinematics
General idea and advantages

• has been highlighted that dispersion relations can also be written at
q4 → 0 Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, JHEP 2020

• at q4 → 0, all redundancies disappear and a Lorentz basis free of
kinematic singularities (Π̂i) exists

• dispersion relations for Π̂i avoid ambiguities coming from
subtraction of spurious poles

• will allow to include D-wave ππ rescattering, tensor-meson poles, . . .

• at q4 = 0 only 3 independent kinematic variables: q2
1 , q2

2 , q2
3
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Dispersion relations in triangle kinematics
Addition of cuts

• suppressing additional arguments Π̂gi (q2
3) = lim

s→q2
3

Π̌i(s, q2
3) with

s = (q3 + q4)2

Im Π̂i(q2
3) = lim

s→q2
3

[
ImsΠ̌i(s, q2

3 + iϵ) + Im3Π̌i(s + iϵ, q2
3)∗
]

Im


q1

q2 q3

q4

 =

q1

q2 q3

q4

+


q1

q2 q3

q4


∗

→ s- and q2
3-channel cuts have to be added
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Dispersion relations in triangle kinematics
Topologies
• s- and q2

3-channel cuts with 1- and 2-pion intermediate states
q1

q2 q3

q4

=

q1

q2 q3

q4

+

q1

q2 q3

q4

+ . . .

q1

q2 q3

q4

=

q1

q2 q3

q4

+ . . .

→ all sub-processes except for γ∗γ∗ → ππγ well-known
→ cancellation of soft singularities in π+π− intermediate states
between s- and q2

3-cuts demonstrated
• q2

3 cut with π0-pole in sub-process gives momentum dependence of
pion TFF Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, JHEP 2020

→ reshuffling of contributions compared to 4-point kinematics
• s-channel resonance contributions given in terms of TFFs
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The sub-process γ∗γ∗ → ππγ

• performed BTT decomposition and seen that ambiguities disappear
in limit q4 → 0 using ππ-crossing symmetry

• again 2 different (s-channel) cuts

q1

q2

p1

p2

q4

=

q1

q2

p1

p2

q4

+

q1

q2

p1

p2

q4

+ . . .

q1

q2

p1

p2

q4

=

q1

q2

p1

p2

q4

+ . . .

→ all sub-processes except for ππ → γππ well-known
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The sub-process ππ → γππ
Kinematics and Lorentz decomposition
• focus on sub-process ππ → γππ for the rest of the talk

▶ shares many features with γ∗γ∗ → ππγ and HLbL
▶ Lorentz structure much simpler

• amplitude M(π0π0 → γπ+π−) = ϵ∗
µMµ

• charged channel (π+π− → γπ+π−) also needed, but related to mixed
channel through isospin symmetry Kühn, Nucl. Phys. B 1999

• BTT decomposition Mµ =
∑6

i=1 T̂ µ
i Mi leads to 3 Tarrach

redundancies

T̂ µ
1 = pµ

2 (p3 · q) − pµ
3 (p2 · q) , T̂ µ

4 = qµ(p1 · q) − pµ
1 q2 ,

T̂ µ
2 = pµ

3 (p1 · q) − pµ
1 (p3 · q) , T̂ µ

5 = qµ(p2 · q) − pµ
2 q2 ,

T̂ µ
3 = pµ

1 (p2 · q) − pµ
2 (p1 · q) , T̂ µ

6 = qµ(p3 · q) − pµ
3 q2

• 5-particle process has 10 kinematic invariants, 5 fixed by on-shell
conditions
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The sub-process ππ → γππ
Soft-photon limit and singularities
• in principle only lim

q→0
∂

∂qν
Mµ needed

• but: limit does not exist due to
p1

p2

p3

p4

q

→ split Mµ = Mµ
sing + Mµ

reg

• ambiguity to shift finite terms between Mµ
sing and Mµ

reg

• for Mµ
reg the limit can be performed and the problem reduces to

4-point kinematics → Mandelstam variables
• Tarrach redundancies drop out in this limit (using crossing symmetry)

→ 2D basis exists
• singularities cancel when plugged into HLbL
• need gauge-invariant definition of Mµ

sing
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The sub-process ππ → γππ
Definition of Mµ

sing

• Low’s theorem relates terms of order q−1 and q0 to ππ → ππ

• but: higher-order singular pieces also needed (limit of pi ·q
pj ·q depends on

direction of q)

• suitable definition achieved from unitarity with a single-pion
intermediate state
→ also only depends on ππ → ππ amplitude T

Mµ
sing = F V

π (q2)
( (2p3 + q)µ

(p3 + q)2 − m2
π

T (s, t̃ − u) −
(2p4 + q)µ

(p4 + q)2 − m2
π

T (s, t − ũ) − 2(p1 − p2)µ∆T
)

∆T =
T (s, t̃ − u) − T (s, t − ũ)

t̃ − u − t + ũ

kinematic variables are defined in 2 → 3 kinematics

p1

p2

p3

p4

q
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The sub-process ππ → γππ
Unitarity relation and cancellation of singularities

• two-pion intermediate states in unitarity relations involve ππ → γππ
as a sub-process (similarly in t- and u-channels)

p1

p2

p3

p4

q

=

p1

p2

p3

p4

q

+ . . .

p1

p2

p3

p4

q

=

p1

p2

p3

p4

q

+ . . .

→ contains the soft-singular piece Mµ
sing

• checked that sum of cuts reproduces the singularities of ImππMµ
sing

→ finite difference is ImππMµ
reg and can be projected onto Lorentz

basis in limit q → 0 (M̄i)
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The sub-process ππ → γππ
Threshold singularities

• Mµ
reg is regular at q → 0, but defined as difference of two singular

functions Mµ
reg = Mµ − Mµ

sing

• first two terms in expansion around q = 0 cancel and the third term
is the result
→ involves second derivatives of Mµ and Mµ

sing

• Mµ and Mµ
sing can be expanded in positive powers of

√
t − 4m2

π at
t-channel threshold
→ derivatives lead to singularities of form (t − 4m2

π)−3/2 and
(t − 4m2

π)−1/2 in scalar functions M̄i
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The sub-process ππ → γππ
Threshold singularities
• (t − 4m2

π)−3/2-singularities make standard dispersion relations for
scalar functions invalid
→ write instead dispersion relations for

M̌i = M̄i − ci(s)
(4m2

π − t)3/2 ± ci(s)
(4m2

π − u)3/2

with ci(s) chosen such that the leading singularities cancel

• ci(s) have to be real for M̄i to be real between the cuts
→ fully determined from unitarity

c1(s) = −1
2c2(s) = − (a2

0)2

1024πmπ

• unitarity relations for M̌i follow immediately from those for M̄i

singularities do not reduce the predictive power of dispersion relations!
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Conclusions

• the established dispersive formalism for HLbL has been very
successful for most important contributions

• complementary dispersive approach promises to overcome roadblocks
in inclusion of higher-spin intermediate states

• important steps towards this goal already achieved:
▶ unitarity relations
▶ cancellation of soft singularities
▶ tensor decomposition for γ∗γ∗ → ππγ (no redundancies at q4 = 0!)
▶ new dispersive formalism for ππ → γππ
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Outlook

• solution of dispersion relations will complete study of ππ → γππ

• with ππ → γππ as input, similar study possible for γ∗γ∗ → ππγ
▶ more complicated Lorentz structure (already derived)
▶ but: many similarities concerning kinematics, cancellation of soft

singularities and phase-space integrals expected

• this will allow for a treatment of all 1- and 2-particle intermediate
states in HLbL including angular momenta ≥ 2

• study in detail reshuffling of contributions between the 2 dispersive
approaches to HLbL
▶ learn how to combine them to include as many contributions as

possible
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Thank you for your attention!



Backup



Master formula
• for aHLbL

µ we need two-loop integral over

lim
q4→0

∂

∂q4ρ
Πµνλσ

• 35 linear combinations of the 54 structures vanish in this limit

• 5 of the 8 integrals can be performed in full generality
• due to symmetry only 12 linear combinations of scalar functions in

the limit q4 → 0 enter the master formula

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1 − τ2Q3
1Q3

2

12∑
i=1

Ti (Q1, Q2, τ)Π̄i (Q1, Q2, τ)

• Qi =
√

−q2
i , τ = τ(Q1, Q2, Q3)

• kernel functions Ti known analytically
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Addition of cuts
• suppress additional arguments and use simplified notation

ImΠ̂i(q2
3) = lim

s→q2
3

Π̌i(s, q2
3) with s = (q3 + q4)2

Im Π̂i(s) = lim
q2

3→s

Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 − iϵ)
2i

= lim
q2

3→s

[ Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 + iϵ)
2i

+ Π̌i(s − iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 − iϵ)
2i

]
= lim

q2
3→s

[ Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 + iϵ)
2i

+
(

Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s + iϵ, q2

3 − iϵ)
2i

)∗ ]
=: lim

q2
3→s

[
ImsΠ̌i(s, q2

3 + iϵ) + Im3Π̌i(s + iϵ, q2
3)∗
]
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Isospin symmetry and mixing of s- and t-channel
amplitudes
• in the isospin limit charged and mixed channels are related through

Mπ+π−→γπ+π−(p1, p2, p3, p4) = −Mµ(p3, p4, p2, p1) − Mµ(p3, p1, p2, p4)
− Mµ(p2, p4, p3, p1) − Mµ(p2, p1, p3, p4)

• the charged channel appears in a sub-process of the s-channel
unitarity relation for the mixed channel
p1

p2

p3

p4

q

• this makes the s-channel imaginary part depend on the t-channel
amplitude
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Low’s theorem

• Low’s theorem: terms of order q−1 obtainable from

p1

p2

p3

p4

q

with scalar QED vertex for soft photon,
terms of order q0 fixed by imposing Ward identity Adler & Dothan, Phys. Rev. 1966

→ terms up to order q0 given in terms of ππ → ππ

• but: lim
q→0

∂
∂qν

(Mµ − Mµ
sing) still does not exist due to terms like

qµ pi ·q
pj ·q (of order q1, but limit depends on direction of q)
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Dispersive definition of Mµ
sing

Mµ
sing = F V

π (q2)
( (2p3 + q)µ

(p3 + q)2 − m2
π

T (s, t̃ − u) −
(2p4 + q)µ

(p4 + q)2 − m2
π

T (s, t − ũ) − 2(p1 − p2)µ∆T
)

∆T =
T (s, t̃ − u) − T (s, t − ũ)

t̃ − u − t + ũ

• variables defined as

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p1 + p4)2 ,

s̃ = (p3 + p4)2 , t̃ = (p2 + p4)2 , ũ = (p2 + p3)2

• obtained from dispersion relation in w3 = (p3 + q)2 with s,
t ′ − u′ = 1

2(t + t̃ − u − ũ), q2, w1 and w2 fixed

• w4-singularity appears as pole in w3
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Cancellation of soft singularities
• for π0π0 intermediate state, the cancellation takes place between the

different orders of cuts in

p1

p2

p3

p4

q

• in the case of the π+π− intermediate state, there is in addition a
cancellation between the two cuts

p1

p2

p3

p4

q p1

p2

p3

p4

q

Jan Lüdtke (Uni Wien) DRs for HLbL 8 September 2022 24 / 18


	Dispersion relations in four-point kinematics
	Dispersion relations in triangle kinematics
	The sub-process 
	Conclusions and outlook

