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Motivation

• The error on the theory calculation of the muon g −2 is dominated by two

hadronic contributions.

LO HVP HLbL

Contribution to aµ ×1011: 6931±40 90±17 [WP, 2020]

• An error of ∼ 10% on the HLbL is needed for future experimental precision.

→ Difficult because it’s a four-point function.

• Two independent approaches to calculate the HLbL contribution

1. Direct lattice calculation of the four-point function.

2. Dispersive: data-driven (cross-section, form factors..).

→ Lattice QCD can provide valuable input to dispersive approach.

→ Agreement between two approaches is an important cross-check!
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Motivation

https://muon-gm2-theory.illinois.edu/white-paper/

Contributions Value ×1011

π0,η ,η ′-poles 93.8(4.0)

π,K -loops/boxes -16.4(0.2)

ππ scattering -8(1)

scalars + tensors -1(3)

axial vectors 6(6)

u,d ,s-loops / short distance 15(10)

c-loop 3(1)

Total 92(19)

1. π0-pole

• Contribution has been determined on the lattice by Mainz (Gérardin et al., 2016, 2019).

Preliminary results by ETM (Burri et al., 2022).

• Also computed in data-driven dispersive framework (Hoferichter et al., 2018).

2. η ,η ′-pole

• No lattice nor dispersive results (but ∼ 1/3 of the total pseudoscalar pole contribution)

• Transition Form Factor not well-known in relevant kinematical region.

• Challenges for lattice QCD: mixing between η ,η ′ and sizable disconnected diagrams.
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Motivation

• In the dispersive framework, the ‘master equation’ relates the Pseudoscalar

Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to ap−poleµ

(Knecht and Nyffeler, 2002)

ap−poleµ =
(

αe

π

)3 ∫ ∞

0
dQ1

∫
∞

0
dQ2

∫ 1

−1
dτ
[
w1(Q1,Q2,τ)Fpγ∗γ∗ (−Q2

1 ,−Q2
3 )Fpγ∗γ∗ (−Q2

2 ,0)

+w2(Q1,Q2,τ)Fpγ∗γ∗ (−Q2
1 ,−Q2

2 )Fpγ∗γ∗ (−Q2
3 ,0)

]
• Q2

3 = Q2
1 +Q2

2 + 2τQ1Q2

• τ = cosθ

• θ angle between Q1 & Q2

Figure 1: HLbL diagram and its leading contributions resulting from π0,η ,η ′ pseudoscalar

exchanges.
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Motivation

• In the dispersive framework, the ‘master equation’ relates the Pseudoscalar

Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to ap−poleµ

(Knecht and Nyffeler, 2002)

ap−poleµ =
(

αe

π

)3 ∫ ∞

0
dQ1

∫
∞

0
dQ2

∫ 1

−1
dτ
[
w1(Q1,Q2,τ)Fpγ∗γ∗ (−Q2

1 ,−Q2
3 )Fpγ∗γ∗ (−Q2

2 ,0)

+w2(Q1,Q2,τ)Fpγ∗γ∗ (−Q2
1 ,−Q2

2 )Fpγ∗γ∗ (−Q2
3 ,0)

]
We recognize two main objects

1. The TFFs Fpγ∗γ∗ (q
2
1 ,q

2
2)

2. The weight functions wi (q1,q2,τ)

Fpγ∗γ∗ (q
2
1 ,q

2
2) encodes the interaction between a pseudoscalar and two virtual

photons. E.g. for the pion

F
π0γ∗γ∗ (q

2
1 ,q

2
2) =

π0(~p)
γ∗(q1)

γ∗(q2)
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Motivation

• In the dispersive framework, the ‘master equation’ relates the Pseudoscalar

Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to ap−poleµ

(Knecht and Nyffeler, 2002)

ap−poleµ =
(

αe

π

)3 ∫ ∞

0
dQ1

∫
∞

0
dQ2

∫ 1

−1
dτ
[
w1(Q1,Q2,τ)Fpγ∗γ∗ (−Q2

1 ,−Q2
3 )Fpγ∗γ∗ (−Q2

2 ,0)

+w2(Q1,Q2,τ)Fpγ∗γ∗ (−Q2
1 ,−Q2

2 )Fpγ∗γ∗ (−Q2
3 ,0)

]
We recognize two main objects

1. The TFFs Fpγ∗γ∗ (q
2
1 ,q

2
2)

2. The weight functions wi (q1,q2,τ)

Weight functions are peaked at low spacelike Q2 so lattice QCD is the perfect method.
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Phenomenology

• Normalization of TFF related to partial decay widths Γ(p→ γγ),

Γ(p→ γγ) =
πα2

em
3
p

4
Fpγ∗γ∗ (0,0)

• Current values are:

1. Γ(π0→ γγ) = 7.802(0.117) eV (Larin et al., 2020).

2. Γ(η → γγ) = 0.516(0.18) keV (PDG, 2020).

3. Γ(η ′→ γγ) = 4.28(0.19) keV (PDG, 2020).

→ Errors are relatively small (few %), so can be really useful to combine with

lattice data, especially for η ,η ′.

• Such a constraint already tested for pion TFF in (Gérardin et al., 2019), reduced

total error on a
π−pole
µ by more than 30%.
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Experimental Data TFF η ,η ′

• A lot of experimental data avalaible for TFF in singly virtual (SV) regime at large

Q2.

• No data in regime where both photons are virtual below 6 GeV2.

• Absence of precise data at low Q2, important region for a
p−pole
µ

→ can be provided by lattice QCD.

• Combination of lattice and experimental data can also be an interesting

comparison to pure lattice result.
8
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Transition Form Factor from the Lattice

The TFF for a pseudoscalar meson is defined by the matrix elements Mµν

Mµν (p,q1) = i
∫

d4x e iq1 ·x 〈Ω|T{Jµ (x)Jν (0)}|P(~p)〉= εµναβq
α
1 q

β

2 FPγ∗γ∗ (q
2
1 ,q

2
2)

where Jµ is the EM current. (Euclidean) Matrix elements are related to 3-point

correlation function C
(3)
µν on lattice

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z

where τ is the time-separation between the two EM currents and

1. In the Euclidean:

ME
µν =

2EP

ZP

∫
∞

−∞

dτ eω1τ Ãµν (τ) with Ãµν ∼ C
(3)
µν

2. EP ,ZP energy and overlap of the pseudoscalar that are extracted from two-point

correlations functions.

3. q1 = (ω1,~q1) and q2 = (EP −ω1,~p−~q1)
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Reach in (q2
1 ,q

2
2) plane
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• We have a dense covering of the whole (q2
1 ,q

2
2) plane.

• In the rest of the presentation we only display TFF for two regimes

(1) q2
1 = q2

2 (doubly-virtual)

(2) q2
1 = 0, q2

2 6= 0 (singly-virtual).
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Correlation Function on the Lattice: Wick Contractions

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z

The correlation function receives contributions from (potentially) four different Wick

contractions

1. • For the π0

P
π0 (x) =

1√
2

(
uγ5u(x)−dγ5d(x)

)
! We work in the isospin limit ⇒ (2) and (4) do not contribute.

! Diagram (3) is small O(1−2%) (Gérardin et al., 2019).

2. • For the η ,η ′

Pη8
(x) =

1√
6

(
uγ5u(x) +dγ5d(x)−2sγ5s(x)

)
Pη0

(x) =
1√
3

(
uγ5u(x) +dγ5d(x) + sγ5s(x)

)
! All four diagrams contribute.

! Disconnected diagram (2) is large!

! η8 and η0 mix to create physical η ,η ′.
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Gauge Ensembles

2 + 1 + 1 dynamical staggered fermions with 4 steps of stout smearing

(subset of ensembles used for the LO HVP calculation (Borsanyi et al., 2021))

• Gauge ensembles at (nearly) physical pion & kaon mass.

• Exploit up to six different lattice spacings ranging between [0.0640 - 0.1315] fm.

• Consider boxes of ∼ 3,4 and 6 fm for finite-size effect studies.

• Ensembles in isosymmetric limit (→ no mixing between π0 and η(′)).
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Spectroscopy of the η ,η ′ Mesons



Extraction η(′) masses

• From the quark model, the SU(3) octet η8 and singlet η0 states are

O8 =
1√
6

(
uγ5u+dγ5d−2sγ5s

)
O0 =

1√
3

(
uγ5u+dγ5d + sγ5s

)
• Consider matrix of correlators

C(t) =

(
〈O8(t)O†

8 (0)〉 〈O8(t)O†
0 (0)〉

〈O0(t)O†
8 (0)〉 〈O0(t)O†

0 (0)〉

)

=

(
1
3 (C` + 2Cs + 4D`s −2D``−2Dss)

√
2

3 (C` +D`s +Dss −Cs −2D``)√
2

3 (C` +D`s +Dss −Cs −2D``)
1
3 (2C` +Cs −4D``−4D`s −Dss)

)
• The spectral decomposition of 〈O8(t)O†

8 (0)〉 takes the form

〈O8(t)O†
8 (0)〉=

Zη

8 Zη

8

2Eη

e−Eη t + . . .

• However, a standard technique to extract ground states and excitations is a

Generalized Eigenvalue Problem (GEVP)

C(t)vn(t,t0) = λn(t,t0)C(t0)vn(t,t0)

where the eigenvalues λn are related to the meson mass through

meff
n (t) = log

(
λn(t,t0)

λn(t + 1,t0)

)
, n = η ,η ′
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Choice of Interpolating Operator

1. Classification of the staggered mesonic operator by Golterman (Golterman, 1986).

2. Two (taste-singlet) operators couple to the η(′) mesons:

• 3-link operator O3 (couples to spin ⊗ taste = γ4γ5⊗1 and 1⊗ γ4γ5), defined as

(Altmeyer et al., 1993)

O3(x) =
1

6 ∑
ijk

εijkχ(x)[ηi∆i [ηj∆j [ηk∆k ]]]χ(x)≡ χ(x)Ô3χ(x)

Symmetric shift ∆µ χ(x) =
1

2

[
Uµ (x)χ(x + µ̂) +U†

µ (x− µ̂)χ(x− µ̂)
]

• Con: Oscillating parity partner state (scalar).

• 4-link operator O4 (couples to γ5⊗1), defined as

Used in analysis−→ O4(x) =
1

2
η4(x)

[
χ(x)Ô3χ+(x) + χ+(x)Ô3χ(x)

]
χ+(x) = U0(x)χ(x + 0̂)

• Con: Non-local in time.

• Pro: Parity partner state contribution is highly suppressed.
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Correlation Functions
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• Very precise data for the π0 effective mass.

• We reach the gauge noise for the disconnected correlators.
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Analysis Techniques (Effective Mass η(′))

1. 1.1 ETM observed that there are very little excited states in the disconnected diagrams

(Michael et al., 2013).

1.2 Remove excited states in connected correlation function C`,s by fitting it to a

one-exponential fit

C`,s (t) = A`,s (exp(−E`,s t) + exp(−E`,s (T − t))) ,

Dii (t) = unchanged, i = `,s,

in region where excited states are highly suppressed −→ Replace C`,s by fit result in the

GEVP (Neff et al., 2001).

2. 2.1 For |~p|= 0 we observe quite large autocorrelations between timeslices (Aoki et al.,

2007).

2.2 Instead of C(t) we consider C ′(t)≡ C(t)−C(t + ∆t) (here: ∆t/a = 2) in the GEVP

(Ottnad and Urbach, 2018)

→ Reduces correlations between time-slices and improves point error.

→ Removes (potential) bias in disconnected correlators due to incorrect sampling

topological charge.
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Effective Mass and Mixing Parameters

1. Effective mass is extracted from 1-exp fit to eigenvalues of the GEVP system.

0.3

0.35

0.4

0.45

0.5

2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

2 4 6 8 10 12

t/a

|~p| = 0
|~p| = 1

aEη
eff

t/a

aEη′

eff

• mη larger than physical value (purple dashed line)

• mη ′ around physical value.

2. Overlap factors with our interpolating operators are given by

A
(n)
i =

√
2E (n)

∑
N
j=1 Cij (t)v

(n)
j (t,t0)√

(vn(t,t0),C(t)vn(t,t0))
(

exp(−E (n)t)
(

1−e−E (n)∆t
)) .

where i = 0,8 and n = η ,η ′.

3. Error on mass and overlap are propagated through the entire analysis of the TFF.
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η ,η ′ Transition Form Factors



Correlation Function on the Lattice: Wick Contractions

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z .

The correlation function receives contributions from (potentially) four different Wick

contractions

1. • For the π0

P
π0 (x) =

1√
2

(
uγ5u(x)−dγ5d(x)

)
.

! We work in the isospin limit ⇒ (2) and (4) do not contribute.

! Diagram (3) is small O(1−2%)

2. • For the η ,η ′

Pη8
(x) =

1√
6

(
uγ5u(x) +dγ5d(x)−2sγ5s(x)

)
,

Pη0
(x) =

1√
3

(
uγ5u(x) +dγ5d(x) + sγ5s(x)

)
.

! All four diagrams contribute.

! Disconnected Diagram (2) is large!

! η8 and η0 mix to create physical η ,η ′.

Some notation: Pseudoscalar is indicated by P and

vector current by V, and a ‘disconnection’ by a hyphen.

So (1) is PVV, (2) is P-VV (3) is PV-V and (4) P-V-V.
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π0 TFF on one ensemble

0
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0
γ
∗
γ
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(−
Q

2
,−
Q

2
)

Q2 [GeV]2

|~p| = 0

|~p| = 1

π0

• L/a = 96, a = 0.0640 fm (6 fm box).

• Good agreement between two frames of the π0: ~p =~0 & ~p = 2π

L (0,0,1).

• Error on TFF grows with decreasing Q2.
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Volume Effects π0 TFF

• Smaller volumes reduce the cost of simulations drastically.

→ Could be useful for η ,η ′ TFF where the noise/signal ratio increases rapidly.

• To test this possibility we study finite size effects (FSE) for the π0 (precise data)

→ Compare signal at a = 0.0640 fm between 6fm and 3fm box
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Volume Effects π0 TFF

• We see a discrepancy between the two box sizes.

• Backward propagating pions may contribute signifcantly to correlation function if

time-exent is relatively small (for details see (Gérardin et al., 2016)).
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Volume Effects π0 TFF

• We see a discrepancy between the two box sizes.

• Backward propagating pions may contribute signifcantly to correlation function if

time-exent is relatively small (for details see (Gérardin et al., 2016)).
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• Discrepancy can be satisfactorily explained by FTE correction

• We do not observe significant FSE for the π0 and thus compute the η ,η ′ TFFs

mainly on small volumes (3fm and 4fm).
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Analysis (TFF η ,η ′)

• Noise/signal ratio is relatively large for η ,η ′ TFF.

• Besides addings more statistics we can consider other techniques to improve the

signal/noise ratio.

• Reminder: the correlation function we consider is

• For the π0 one can simply use a very large tsep (no noise problem).

→ May be unnecessarily large for η ,η ′.

• Idea: compute the correlation function for different values of tsep .

→ Con: have to generate the connected correlation functions for all desired tsep .
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Example (TFF η ,η ′)

• Plot integrand Ã(τ) for every τ as a function of tsep .

• Determine where plateau starts and choose that value of tsep for all |~q1|

0

0.02

0.04

0.06

0.08

0.1

0.12

2 4 6 8 10 12 14 16

Ã
(1

)
(−

2)

tsep/a

|~q1|2 = 1

|~q1|2 = 5

|~q1|2 = 14

• Plateau behavior between different |~q1|2 very correlated.

• Here we would for example choose tsep/a = 8 as the start of the plateau.

• We refer to this choice as topt .

→ varying this choice will be part of the systematic
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Analysis (TFF η ,η ′)

• Largest noise in the TFF comes from the positive τ part of the integrand.

−0.05
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• Integrand between positive and negative τ are related through a Bose symmetry

Ãµν (τ,~q1,~q2) = Ãνµ (−τ,~q2,~q1)e−Epτ (1)

• Use this relation to take weighted average over postive and negative τ.
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Test Assumptions

• Two central assumptions have been made
1. Choice of topt .

2. Weighted average over positive & negative τ using Bose symmetry.

→ assumptions can be tested for the π0 TFF (more precise data)

• Look at the effect of individual assumptions and their combination
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π0

• Effect of assumption (2.) is very small, while (1.) is visible but still mostly within

1σ

→ We decide to use both assumptions for the η ,η ′.
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Consistency Check

• Relevant consistency check: use the choice of topt and to check whether adding

or subtracting units of time ∆topt significantly changes the result of aµ .

−4 −2 0 2 4 6

∆topt

aηµ

aη
′

µ

• For L/a = 32 a = 0.0952 fm (3fm box).

• We see that the signal is really stable for η ,η ′ when adding units of time.

• Below topt some (staggered) oscillations are present and the stability is slightly

less clear. 29



η Transition Form Factor Integrand

• PVV and P-VV together form the bulk of the signal.

• PV-V and P-V-V contributions are significantly smaller.

→ When computing the TFF we currently ignore the PV-V and P-V-V.
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• Ensemble with L/a = 32, a = 0.1315 fm (4fm box).
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η ′ Transition Form Factor Integrand

• PVV and P-VV together form the bulk of the signal.

• PV-V and P-V-V contributions are significantly smaller.

→ When computing the TFF we currently ignore the PV-V and P-V-V.
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• Ensemble with L/a = 32, a = 0.1315 fm (4fm box).
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η ,η ′ TFF: Result on a Single Ensemble
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• Ensemble with L/a = 32, a = 0.1315 fm.

• Good agreement between the two η(′)(~p) frames with ~p =~0 & ~p = 2π

L (0,0,1).

• Errors larger than for π0 because of difficulties mentioned before.

• Statistical error only.
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η ,η ′ TFF: Result on a Single Ensemble

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

PRELIMINARY

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

PRELIMINARY

Q
2
F η

γ
∗
γ
∗
(−
Q

2
,0
)

Q2 [GeV]2

|~p| = 0

|~p| = 1

η

Q
2
F η
′ γ
∗
γ
∗
(−
Q

2
,0
)

Q2 [GeV]2

|~p| = 0

|~p| = 1

η′

• Ensemble with L/a = 32, a = 0.1315 fm.

• Good agreement between ~p =~0 & ~p = 2π

L (0,0,1).

• Preliminary z-expansion fits with N=2 at this lattice spacing give

aη-pole
µ

∣∣∣
a=0.1315fm

= 28[5]×10−11,

aη ′-pole
µ

∣∣∣
a=0.1315fm

= 30[10]×10−11 (stat error only).
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Summary

1. Spectrocopy η ,η ′ mesons

• We now have data on 23 ensembles.

• Gauge noise reached for 1-point correlators.

• Final analysis ongoing.

2. Transition Form Factors η ,η ′

• TFF at finite lattice spacing looks promising.

• Data on several lattice spacings has already been generated.

3. Outlook

• TFF: Add at least one large volume (6fm box) → better resolution in Q2.

• Deal with the systematics of both projects by variations in the analyses.

• Do the relevant continuum extrapolations.
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