# Status of the MUonE experiment

Riccardo Nunzio Pilato University and INFN Pisa

for the MUonE Collaboration







The 5<sup>th</sup> Plenary Workshop of the Muon g-2 Theory Initiative University of Edinburgh, September 9, 2022



Extraction of  $\Delta \alpha_{had}(t)$  from the shape of the  $\mu e \rightarrow \mu e$  differential cross section



- A beam of 160 GeV muons allows to get the whole a<sup>HVP</sup><sub>µ</sub> (88% directly measured + 12% extrapolated).
- Correlation between muon and electron angles allows to select elastic events and reject background (e<sup>+</sup>e<sup>-</sup> pair production).
- Boosted kinematics:  $\theta_{\mu} < 5 \text{ mrad}, \theta_{e} < 32 \text{ mrad}.$



# The experimental apparatus



# **Achievable accuracy**



40 stations 3 (60 cm Be) +

years of data taking  
(~4x10<sup>7</sup> s)  
(
$$I_{\mu} \sim 10^7 \mu^+/s$$
)  
~4x10<sup>12</sup> events  
with E<sub>e</sub> > 1 GeV

~0.3% statistical accuracy on  $a_{\mu}^{\ 
m HVP}$ 

Competitive with the latest theoretical predictions.

Main challenge: keep systematic accuracy at the same level of the statistical one

Systematic uncertainty of 10 ppm at the peak of the integrand function (low  $\theta_{e}$ , large  $\theta_{\mu}$ )

Main systematic effects:

- Longitudinal alignment (~10 μm)
- Knowledge of the beam energy (few MeV)
- Multiple scattering (~1%)
- Angular intrinsic resolution (few %)

### $\Delta \alpha_{had}$ parameterization



Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6}\right)\frac{2}{\sqrt{1 - \frac{4M}{t}}}\ln\left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right|\right\}$$
2 parameters: K, M

Allows to calculate the full value of  $a_{\mu}^{\ \mathrm{HVP}}$ 

Dominant behaviour in the MUonE kinematic region:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$



# Extraction of $a_{\mu}^{}{}^{ m HVP}$



6

Extraction of  $\Delta \alpha_{had}(t)$  through a template fit to the 2D ( $\theta_{e}, \theta_{u}$ ) distribution







7

# A 3 weeks Test Run with a reduced detector has been approved by SPSC, to validate our proposal.



- Pretracker +
- 2 MUonE stations +
- ECAL

- Confirm the system engineering.
- Monitor mechanical and thermal stability.
- Assess the systematic errors.
- Initial sensitivity to  $\Delta \alpha_{had}(t)$ .
- Possible measurement of  $\Delta \alpha_{lep}(t)$ .

# **Tracker: CMS 2S modules**



Silicon strip sensors currently in production for the CMS-Phase2 upgrade.

Two close-by strip sensors reading the same coordinate:

- Background suppression from single-sensor hits.
  - Rejection of large angle tracks.

2s\_18\_5\_IPG-0002

- Thickness: 2 × 320 μm
- Pitch: 90 μm (σ<sub>x</sub> ~ 26 μm)
- Readout rate: 40 MHz
- Sensitive area: 10×10 cm<sup>2</sup>

Four 2S modules assembled by CMS Perugia assembly center for MUonE.

Modules performance to be tested in real beam conditions during Beam Test 2022 campaign.

# **Tracking station**





#### Tracking station: status readiness

2 Aluminum stations assembled:

• One at CERN, currently in use at the Beam Test.

• One at INFN Trieste, to test the holographic system.





2 INVAR stations completed. Will be shipped to CERN next week.

#### 11

### Beam Test 2021

#### Parasitic beam test at M2 beam line, 3 weeks in October/November 2021

- Joint test with CMS Tracker.
- Apparatus located downstream of NA64.
- 160 GeV muons, asynchronous rate of ~16 kHz.

#### Four 2S modules tested in beam:

- 2 modules built for MUonE in the MUonE station.
- 2 modules built for CMS Tracker in the CMS box.







#### 12

### Beam Test 2021

First demonstration of the full DAQ chain with the M2 asynchronous beam

 Continuous stream of 40 MHz data from 2S modules captured to disk. DGB

- Reliable readout over >6h runs.
- 30 TB of raw data collected to disk, ~1 TB after empty packets removal (low beam rate).
- Offline analysis ongoing: check data integrity and modules synchronization, beam behaviour, track reconstruction...







## Beam Test 2022



- Joint test with CMS Tracker.
- M2 beam line upstream of Compass (final MUonE location).
- June/October: Opportunity to run for ~48h while Compass (main user) is not using the beam.
- Trolley installed to insert/remove our station from beam.
- 1 week as main users in October.



#### 14

# Beam Test 2022

- Continue commissioning of the first tracking station with high rate beam:
  - Study performances of 2S modules and DAQ stability.
- Add a second station in October, to track the incoming muons:
  - Demonstrate DAQ scalability.
  - Offline track reconstruction and selection of elastic events. Validation of the Geant4 simulation.
  - First tests for software alignment.





## Calorimeter

- 5x5 PbWO<sub>4</sub> crystals:
  - area: 2.85×2.85 cm<sup>2</sup>, length: 22cm (~25 X<sub>0</sub>).
- Total area: ~14×14 cm<sup>2</sup>.
- Readout: APD sensors.

Beam Test: 20-27 July 2022, CERN East Area.

- Electrons in range 1-4 GeV.
- Overall debug of detector, DAQ.
- Absolute energy calibration, energy resolution.
- Calorimeter being installed downstream of the tracking station at the M2 beam line.







# Test Run: expected sensitivity on $\Delta \alpha_{had}(t)$



Expected luminosity for the Test Run:  $L_{TR} = 5 \text{ pb}^{-1} \longrightarrow ~10^9 \text{ events with } E_e > 1 \text{ GeV}$ ( $\theta_e < 32 \text{ mrad}$ )



Low sensitivity to the hadronic running (  $\Delta \alpha_{\rm had}(t)$  <  $10^{\text{-3}}$  )

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

 $K = 0.136 \pm 0.026$ (20% stat error)

We will be sensitive to the leptonic running ( $\Delta \alpha_{lep}(t) < 10^{-2}$ )



Main systematics have large effects in the normalization region. (no sensitivity to  $\Delta \alpha_{had}$  here)





Promising strategy: 2 steps workflow

- Use normalization region to calibrate the larger systematic effects (beam energy, angular intrinsic resolution).
- 2. Include residual systematics as nuisance parameters in a combined fit with signal.
- MESMER MC + fast detector simulation to generate template distributions.
- Combine analysis tool to perform the combined likelihood fit to the signal + systematics.

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

### Systematic error on the angular intrinsic resolution



19

±10% error on the angular intrinsic resolution: huge effect.



### Systematic error on the muon beam energy



Accelerator division provides E<sub>beam</sub> with O(1%) precision (~ 1 GeV). It must be controlled by a physical process.

Effects of such shift on E<sub>beam</sub> can be seen in our data in 1h of data taking per station.



#### Step 1: tuning larger systematic effects





1h data taking per station to tune the main systematics (assuming a fixed model for  $\Delta \alpha_{had}$ )

 $E_{beam}$ : template fit parameter  $\mu_{Intr}$ : nuisance parameter for intrinsic resolution systematics

| Selection cuts                                                                                     | Fit results                                                                    |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\begin{array}{l} \theta_{\mu} > 0.2  \mathrm{mrad} \\ \theta_{e} < 32  \mathrm{mrad} \end{array}$ | $E_{Beam} = (150.012 \pm 0.007) \text{ GeV}$<br>$\mu_{Intr} = (5.2 \pm 0.1)\%$ |

Similar results also for distributions with no PID.

## Systematic error on the multiple scattering



Expected precision on the multiple scattering model: ± 1%

G. Abbiendi et al JINST (2020) 15 P01017



#### Step 2: combined fit signal + systematics



Pseudo-data sample:

- $E_{beam} \rightarrow + 6 \text{ MeV}$
- $\sigma_{\text{Intr}} \rightarrow +5\%$
- $\sigma_{MS} \rightarrow +0.5\%$



K : signal parameter $\mu_{Ebeam}$  : nuisance parameter for beam energy $\mu_{Intr}$  : nuisance parameter for intrinsic resolution $\mu_{MS}$  : nuisance parameter for multiple scattering

| Selection cuts                                                                                     | Fit results                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\begin{array}{l} \theta_{\mu} > 0.2  \mathrm{mrad} \\ \theta_{e} < 32  \mathrm{mrad} \end{array}$ | $K = 0.135 \pm 0.026$<br>$\mu_{E_{Beam}} = (5.9 \pm 0.5) \text{ MeV}$<br>$\mu_{Intr} = (4.99 \pm 0.02)\%$<br>$\mu_{MS} = (0.51 \pm 0.03)\%$ |  |  |

Systematic effects identified with good precision. No degradation on the signal parameter.

Work in progress to optimize the procedure.

# **Conclusions and future plans**



Staged approach towards the full experiment:

- Intense Beam Test activities in 2021-2022: first experience with detector in real beam conditions.
- 3 weeks Test Run in 2023: proof of concept of the experimental proposal using 3 tracking stations + calorimeter.
- Possibly 10 stations before LS3 (2026): ~2% (stat) measurement of a<sup>HVP</sup><sub>µ</sub> in 4 months of data taking.





# BACKUP



 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\mathrm{MeV}$ 

$$-0.153 \,\mathrm{GeV}^2 < t < 0 \,\mathrm{GeV}^2$$

 $\Delta \alpha_{had}(t) \lesssim 10^{-3}$ 



#### From time-like to space-like



# Extraction of $\Delta lpha_{had}(t)$





### Last years progress



- Multiple scattering studies (TB 2017).
- Beam Test at M2 beamline in 2018: the first elastic scattering events.
- LOI submitted at SPSC in 2019, and 3 weeks Test Run approved.
- Detector optimization and assembly.
- Defining the analysis strategy.
- Intense Beam Test activities in 2021-2022: first experience with detector in real beam conditions.

# **Location: M2 beam line at CERN**





- Location: upstream the COMPASS detector (CERN North Area).
- Low divergence muon beam:  $\sigma_{x'} \sim \sigma_{y'} \sim 0.3$  mrad.
- Spill duration ~ 5 s. Duty cycle ~ 25%.
- Maximum rate: 50 MHz (~  $3x10^8 \mu^+$ /spill).



32

# **BE-DAQ architecture**



#### Single Serenity communicates with frontends in the Test Run

- Expected event size : 1 Kb (Tk)
- Output data split across 4 servers via 10 Gbps Ethernet (UDP)
- Empty frames from beam gap forwarded in addition to in-spill data

#### Reduced data rate from servers

- Book-keep empty frames but do not forward to switch
- From switch to EOS/CTA with 20 Gbps



- Commissioning phase: read all data with no event selection.
- Information will be used to determine online selection algorithms to be used in the future runs.

#### Simultaneous fit signal + nuisance parameters @L<sub>TR</sub>



If the systematics are not taken into account in the fit...





#### Systematic error on the beam energy scale



#### Effect of a ± 15 MeV shift



# **GEANT4** simulations





# Effect of energy selection using the calorimeter



# **Tracker: CMS 2S modules**



Silicon strip sensors currently in production for the CMS-Phase2 upgrade.



# **Tracker: CMS 2S modules**



CMS Tracker Phase2 Upgrade - TDR

Two sensors reading the same coordinate:

- Background suppression from single-sensor hits.
  - Rejection of large angle tracks.



Stub information: position of the cluster in the seed layer + distance between position of correlation cluster and seed cluster (bend)

1) charge sharing: energy deposition of particles in the Si is shared among neightbouring strips







2) effective staggering: tilting a 2S module by 25 mrad is equivalent to stagger the two sensors by ½pitch

#### MUonE simulations: Improving resolution - tilted geometry



#### Improvement due to:

- charge sharing between adjacent strips
- effective staggering: tilting a 2S module by 25 mrad is equivalent to stagger the two sensors by ½pitch

Final resolution 22  $\mu$ m  $\rightarrow$  8-11  $\mu$ m



#### MUonE simulations: Improving resolution - tilted geometry

| Tilt angle [mrad] | <bend $>$ [strips] | threshold $[\sigma]$ | resolution $[\mu m]$ |
|-------------------|--------------------|----------------------|----------------------|
| 210               | 4.25               | 5                    | 7.8                  |
| 221               | 4.5                | 5.5                  | 11.5                 |
| 233               | 4.75               | 6                    | 8.0                  |
| 245               | 5                  | 6.5                  | 11.2                 |
| 257               | 5.25               | 7                    | 8.7                  |
| 268               | 5.5                | 7.5                  | 11.0                 |

Entries hSingleHitRes Effect of a staggering Tilt 233 mrad 17340 Entries staggering 20 um between the two sensors 600 Mean 0.009558 Std Dev 0.01126 MUonE simulation Staggering  $[\mu m]$ resolution  $[\mu m]$ bias  $[\mu m]$ 500 8.0 0 () 400 5 8.42.4109.44.9300 1510.47.3200 2011.39.6 100 2511.212.130 10.414.50.03 0.04 0.0 x<sup>module</sup> - x<sup>module</sup> [mm] –Ŏ.05 -0.03 -0.02 -0.010.01 0.02 0.05 -0.040

#### Multiple scattering: results from TB2017



Multiple scattering effects of electrons with 12 and 20 GeV on Carbon targets (8 and 20 mm)

Main goals:

- to determine a parameterization able to describe also non Gaussian tails
- to compare data with a GEANT4 simulation of the apparatus



#### Multiple scattering: results from TB2017



$$f_e(\delta\theta_e^x) = N\left[(1-a)\frac{1}{\sqrt{2\pi}\sigma_G}e^{-\frac{(\delta\theta_e^x-\mu)^2}{2\sigma_G^2}} + a\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\sigma_T\Gamma(\frac{\nu}{2})}\left(1 + \frac{(\delta\theta_e^x-\mu)^2}{\nu\sigma_T^2}\right)^{-\frac{\nu+1}{2}}\right]$$



### Test Beam 2018

![](_page_45_Figure_1.jpeg)

0.03 . θ<sub>e</sub>(rad)