J. Phys. G49, 055001 (2022) arXiv: 2209.03217

SPACELIKE AND TIMELIKE KERNEL FUNCTIONS FOR THE HADRONIC VACUUM POLARIZATION CONTRIBUTION TO THE MUON ANOMALOUS MAGNETIC MOMENT

A.V. Nesterenko

Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research, Dubna, Russian Federation nesterav (at) theor.jinr.ru, nesterav (at) gmail.com

> Fifth Plenary Workshop of the Muon g–2 Theory Initiative Edinburgh, United Kingdom, 5–9 September 2022

INTRODUCTION

The theoretical description of $a_{\mu} = (g_{\mu} - 2)/2$ is a long-standing challenging issue of the elementary particle physics.

<u>Theory</u>: $a_{\mu}^{\text{theor}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}} = (11659181.0 \pm 4.3) \times 10^{-10} \quad (0.37 \text{ ppm})$ Aoyama et al., Phys. Rept. 887, 1 (2020) [and references therein].

Experiment: $a_{\mu}^{exp} = (11659206.1 \pm 4.1) \times 10^{-10} (0.35 \text{ ppm})$ BNL E821 (2002–2006); FNAL E989 Run–1 (2021).

The discrepancy $a_{\mu}^{exp} - a_{\mu}^{theor} = (25.1 \pm 5.9) \times 10^{-10}$ (4.2 σ) may be an evidence for the existence of a new physics beyond the Standard Model.

The uncertainty of evaluation of a_{μ}^{theor} is largely dominated by the a_{μ}^{HVP} term.

A.V.Nesterenko

$$\begin{aligned} a_{\mu}^{\text{HVP}} &= A_0 \int_0^{\infty} \mathcal{K}_{\Pi}(Q^2) \bar{\Pi}(Q^2) \frac{dQ^2}{4m_{\mu}^2} = A_0 \int_0^{\infty} \tilde{\mathcal{K}}_{\Pi}(\zeta) \bar{\Pi}(4\zeta m_{\mu}^2) d\zeta = \\ &= A_0 \int_0^{\infty} \mathcal{K}_D(Q^2) D(Q^2) \frac{dQ^2}{4m_{\mu}^2} = A_0 \int_0^{\infty} \tilde{\mathcal{K}}_D(\zeta) D(4\zeta m_{\mu}^2) d\zeta, \qquad \zeta = \frac{Q^2}{4m_{\mu}^2}. \end{aligned}$$

In this equation A_0 is a constant prefactor, $Q^2 = -q^2 \ge 0$ denotes a spacelike kinematic variable, $\overline{\Pi}(Q^2) = -\Pi(-Q^2)$ stands for the subtracted at zero hadronic vacuum polarization function, $D(Q^2)$ is the Adler function, $K_{\Pi}(Q^2)$ and $K_D(Q^2)$ denote the corresponding spacelike kernel functions.

Here the perturbative results for $\overline{\Pi}(Q^2)$ and $D(Q^2)$ have to be supplemented with the relevant nonperturbative inputs, that can be provided by

- lattice simulations
- MUonE @ CERN measurements
- reliable phenomenological models

A.V.Nesterenko

$$a_{\mu}^{\rm HVP} = A_0 \int_{s_0}^{\infty} K_R(s) R(s) \frac{ds}{4m_{\mu}^2} = A_0 \int_{\chi}^{\infty} \tilde{K}_R(\eta) R(4\eta m_{\mu}^2) d\eta, \quad \eta = \frac{s}{4m_{\mu}^2}, \quad \chi = \frac{s_0}{4m_{\mu}^2}.$$

In this equation $s = q^2 \ge 0$ stands for a timelike kinematic variable, s_0 denotes the hadronic threshold, R(s) is the *R*-ratio of electron-positron annihilation into hadrons, and $K_R(s)$ stands for the respective timelike kernel function.

Here the perturbative results for R(s) are usually complemented by the lowenergy experimental data on the *R*-ratio, that constitutes the data-driven method of evaluation of a_{μ}^{HVP} .

The timelike kernel functions $K_R(s)$ have been extensively studied over the past decades, whereas the corresponding spacelike kernel functions $K_{\Pi}(Q^2)$ and $K_D(Q^2)$ remain largely unavailable.

The hadronic vacuum polarization function $\Pi(q^2)$ is defined as the scalar part of the hadronic vacuum polarization tensor

 $\Pi_{\mu\nu}(q^2) = i \int d^4x \ e^{iqx} \langle 0 | T \{ J_{\mu}(x) \ J_{\nu}(0) \} | 0 \rangle = \frac{i}{12\pi^2} (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2), \quad q^2 < 0.$ The physical kinematic restrictions imply that $\Pi(q^2)$ has the only cut starting at the hadronic threshold $q^2 \ge s_0$ = Feynman (1972); Adler (1974).

The once-subtracted Cauchy's integral formula yields

$$\Pi(q^2) - \Pi(q_0^2) = (q^2 - q_0^2) \int_{s_0}^{\infty} \frac{R(\sigma)}{(\sigma - q^2)(\sigma - q_0^2)} d\sigma,$$

where

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left(\Pi(s + i\varepsilon) - \Pi(s - i\varepsilon) \right) = \frac{\sigma(e^+e^- \to \text{hadrons}; s)}{\sigma(e^+e^- \to \mu^+\mu^-; s)}$$

denotes the *R*-ratio of electron-positron annihilation into hadrons.

Fifth Plenary Workshop of the Muon g-2 Theory Initiative (Edinburgh 2022)

Re ξ

 m^2

 $r \rightarrow \infty$

 \tilde{a}^2

For practical purposes it proves to be particularly convenient to deal with the Adler function

$$D(Q^2) = -\frac{d \Pi(-Q^2)}{d \ln Q^2}, \qquad D(Q^2) = Q^2 \int_{s_0}^{\infty} \frac{R(\sigma)}{(\sigma + Q^2)^2} d\sigma, \qquad Q^2 = -q^2 > 0$$

Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

The dispersion relation enables one to extract the experimental prediction for the Adler function from the respective data on the *R*-ratio.

The inverse relations between the functions on hand read

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta}$$

Radyushkin (1982); Krasnikov, Pivovarov (1982)

$$\Pi(-Q^2) - \Pi(-Q_0^2) = -\int_{Q_0^2}^{Q^2} D(\xi) \frac{d\xi}{\xi}$$

Pennington, Ross (1977), (1981), (1984); Pivovarov (1992).

In the ℓ -th order in the electromagnetic coupling the hadronic vacuum polarization contribution to the muon anomalous magnetic moment reads

$$a_{\mu}^{\text{HVP}(\ell)} = A_{0}^{(\ell)} \int_{0}^{\infty} \mathcal{K}_{\Pi}^{(\ell)}(Q^{2}) \bar{\Pi}(Q^{2}) \frac{dQ^{2}}{4m_{\mu}^{2}} = \\ = A_{0}^{(\ell)} \int_{0}^{\infty} \mathcal{K}_{D}^{(\ell)}(Q^{2}) D(Q^{2}) \frac{dQ^{2}}{4m_{\mu}^{2}} = \\ = A_{0}^{(\ell)} \int_{s_{0}}^{\infty} \mathcal{K}_{R}^{(\ell)}(s) R(s) \frac{ds}{4m_{\mu}^{2}}. \qquad \text{[timelike]}$$

The kernel functions $K_{\Pi}(Q^2)$, $K_D(Q^2)$, and $K_R(s)$ appearing in these equations can all be expressed in terms of each other

Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph].

A.V.Nesterenko

Kernel function $K_{\Pi}(Q^2)$ in terms of $K_R(s)$

$$\bar{\Pi}(-q^2) = -\Pi(q^2)$$
: Cut $q^2 \ge s_0$ = Feynman (1972); Adler (1974).

 $K_R(q^2)$: Cut $q^2 \le 0$ Barbieri, Remiddi (1975).

The contour integral of their product vanishes

$$\oint_C K_R(q^2)\overline{\Pi}(-q^2)dq^2=0,$$

that implies

$$-\frac{1}{2\pi i}\lim_{\varepsilon\to 0_+}\int_0^{-\infty}\bar{\Pi}(-p^2)\Big(K_R(p^2+i\varepsilon)-K_R(p^2-i\varepsilon)\Big)dp^2=\int_{s_0}^{\infty}K_R(p^2)R(p^2)dp^2.$$

Thus, the relation, which expresses $K_{\Pi}(Q^2)$ in terms of $K_R(s)$, reads

$$K_{\Pi}(Q^2) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \Big(K_R(-Q^2 + i\varepsilon) - K_R(-Q^2 - i\varepsilon) \Big), \qquad Q^2 \ge 0$$

Nesterenko, J. Phys. G **49**, 055001 (2022); arXiv:2112.05009 [hep-ph].

This relation has also been independently derived in a different way in

Balzani, Laporta, Passera, arXiv:2112.05704 [hep-ph].

A.V.Nesterenko

Fifth Plenary Workshop of the Muon g-2 Theory Initiative (Edinburgh 2022)

 $Re\,a^2$

 $Im q^2$

Kernel function $K_R(s)$ in terms of $K_{\Pi}(Q^2)$

Dispersion relation for the hadronic vacuum polarization function leads to

$$\int_0^\infty K_{\Pi}(Q^2) \bar{\Pi}(Q^2) \frac{dQ^2}{4m_{\mu}^2} = \int_0^\infty \frac{dQ^2}{4m_{\mu}^2} K_{\Pi}(Q^2) Q^2 \int_{s_0}^\infty \frac{ds}{s} \frac{R(s)}{s+Q^2} = \int_{s_0}^\infty K_R(s) R(s) \frac{ds}{4m_{\mu}^2}.$$

Hence, the relation, which expresses $K_R(s)$ in terms of $K_{\Pi}(Q^2)$, reads

$$K_R(s) = \frac{1}{s} \int_0^\infty K_{\Pi}(Q^2) \frac{Q^2}{s+Q^2} dQ^2, \qquad s \ge 0.$$

Kernel function $K_R(s)$ in terms of $K_D(Q^2)$

Dispersion relation for the Adler function yields

$$\int_0^\infty K_D(Q^2) D(Q^2) \frac{dQ^2}{4m_\mu^2} = \int_0^\infty \frac{dQ^2}{4m_\mu^2} K_D(Q^2) Q^2 \int_{s_0}^\infty \frac{R(s)}{(s+Q^2)^2} ds = \int_{s_0}^\infty K_R(s) R(s) \frac{ds}{4m_\mu^2}.$$

Therefore, the relation, which expresses $K_R(s)$ in terms of $K_D(Q^2)$, reads

$$K_R(s) = \int_0^\infty K_D(Q^2) \frac{Q^2}{(s+Q^2)^2} dQ^2, \qquad s \ge 0.$$

A.V.Nesterenko

Kernel function $K_{\Pi}(Q^2)$ in terms of $K_D(Q^2)$

Definition of the Adler function results in

$$\int_{0}^{\infty} K_{D}(Q^{2}) D(Q^{2}) dQ^{2} = -\int_{0}^{\infty} dQ^{2} K_{D}(Q^{2}) Q^{2} \frac{d \Pi(-Q^{2})}{d Q^{2}} =$$
$$= K_{D}(Q^{2}) Q^{2} \overline{\Pi}(Q^{2}) \bigg|_{0}^{\infty} - \int_{0}^{\infty} dQ^{2} \overline{\Pi}(Q^{2}) \bigg(K_{D}(Q^{2}) + \frac{d K_{D}(Q^{2})}{d \ln Q^{2}} \bigg).$$

with the integration by parts being employed. Since the first term in the second line of this equation vanishes (see also remarks given below), the relation, which expresses $K_{\Pi}(Q^2)$ in terms of $K_D(Q^2)$, reads

$$K_{\Pi}(Q^2) = -\left(K_D(Q^2) + \frac{d K_D(Q^2)}{d \ln Q^2}\right), \qquad Q^2 \ge 0$$

Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph].

A.V.Nesterenko

Kernel function $K_D(Q^2)$ in terms of $K_{\Pi}(Q^2)$

The solution to the differential equation derived on the previous page reads

$$K_D(Q^2) + \frac{d K_D(Q^2)}{d \ln Q^2} = -K_\Pi(Q^2) \longrightarrow K_D(Q^2) = \frac{1}{Q^2} \left(-\int K_\Pi(Q^2) \, dQ^2 + c_0 \right).$$

The constant c_0 has to be chosen in the way that makes $K_D(Q^2)$ vanishing at $Q^2 \to \infty$. The relation, which expresses $K_D(Q^2)$ in terms of $K_{\Pi}(Q^2)$, reads

$$K_D(Q^2) = \frac{1}{Q^2} \int_{Q^2}^{\infty} K_{\Pi}(\xi) \, d\xi = \frac{4m_{\mu}^2}{Q^2} K_0 - \frac{1}{Q^2} \int_0^{Q^2} K_{\Pi}(\xi) \, d\xi, \qquad \xi = -p^2 \ge 0.$$

In this equation K_0 denotes the infrared limiting value of the respective spacelike and timelike (see p. 8) kernel functions, namely

$$K_{0} = \lim_{Q^{2} \to 0_{+}} \frac{Q^{2}}{4m_{\mu}^{2}} K_{D}(Q^{2}) = \lim_{s \to 0_{+}} \frac{s}{4m_{\mu}^{2}} K_{R}(s) = \int_{0}^{\infty} K_{\Pi}(\xi) \frac{d\xi}{4m_{\mu}^{2}},$$

which is factually identical to the corresponding QED contribution to a_{μ} of the preceding order in the electromagnetic coupling

Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph].

A.V.Nesterenko

Kernel function $K_D(Q^2)$ in terms of $K_R(s)$

The first and the fifth derived relations between the kernel functions imply that the relation, which expresses $K_D(Q^2)$ in terms of $K_R(s)$, reads

$$\begin{split} \mathcal{K}_{D}(Q^{2}) &= -\frac{1}{2\pi i} \lim_{\varepsilon \to 0_{+}} \frac{1}{Q^{2}} \int_{Q^{2}}^{\infty} \left(\mathcal{K}_{R}(-\xi - i\varepsilon) - \mathcal{K}_{R}(-\xi + i\varepsilon) \right) d\xi = \\ &= -\frac{1}{2\pi i} \lim_{\varepsilon \to 0_{+}} \frac{1}{Q^{2}} \int_{Q^{2} + i\varepsilon}^{Q^{2} - i\varepsilon} \mathcal{K}_{R}(-p^{2}) dp^{2}, \end{split}$$

where the integration contour in the complex p^2 -plane lies in the region of analyticity of the function $K_R(-p^2)$.

The obtained six equations constitute the complete set of relations, which mutually express the spacelike and timelike kernel functions $K_{\Pi}(Q^2)$, $K_D(Q^2)$, and $K_R(s)$ in terms of each other. The obtained relations enable one to calculate the unknown kernel functions by making use of the known one Nesterenko, J. Phys. G **49**, 055001 (2022); arXiv:2112.05009 [hep-ph].

A.V.Nesterenko

Fifth Plenary Workshop of the Muon g-2 Theory Initiative (Edinburgh 2022)

 $Im p^2$

 $Q^2 - i\varepsilon$

 $Im p^{2}$

KERNEL FUNCTIONS IN THE LEADING ORDER

All three leading-order kernel functions are available, that can be used to verify the obtained relations. The contribution $a_{\mu}^{\text{HVP}(2)}$ in terms of the *R*-ratio (timelike approach) reads

Berestetskii, Krokhin, Khlebnikov (1956); Bouchiat, Michel (1961); Kinoshita, Oakes (1967).

Explicit expression for the leading-order timelike kernel function:

$$\eta \tilde{K}_{R}^{(2)}(\eta) = \frac{1}{2} + 4\eta \Big((2\eta - 1) \ln(4\eta) - 1 \Big) - 2\Big(2(2\eta - 1)^{2} - 1 \Big) \operatorname{arctanh} \Big(\psi(\eta) \Big) \frac{\sqrt{\eta}}{\sqrt{\eta - 1}}$$

Berestetskii, Krokhin, Khlebnikov (1956); Durand (1962); Brodsky, de Rafael (1968); Lautrup, de Rafael (1968).

A.V.Nesterenko

Factually, the specific form of the leading-order timelike kernel function $\mathcal{K}_{R}^{(2)}(s)$ makes it possible to express $a_{\mu}^{\text{HVP}(2)}$ in terms of the spacelike functions $\overline{\Pi}(Q^2)$ and $D(Q^2)$, namely

$$a_{\mu}^{\text{HVP}(2)} = A_{0}^{(2)} \int_{0}^{1} dx (1-x) \int_{s_{0}}^{\infty} \frac{ds}{s} \frac{R(s) m_{\mu}^{2} x^{2} (1-x)^{-1}}{s + m_{\mu}^{2} x^{2} (1-x)^{-1}} = A_{0}^{(2)} \int_{0}^{1} (1-x) \bar{\Pi} \left(m_{\mu}^{2} \frac{x^{2}}{1-x} \right) dx$$

Lautrup, Peterman, de Rafael, Phys. Rept. **3**, 193 (1972); de Rafael, Phys. Rev. D **96**, 014510 (2017).

In turn, its integration by parts eventually yields

$$a_{\mu}^{\text{HVP}(2)} = A_0^{(2)} \int_0^1 (1-x) \left(1 - \frac{x}{2}\right) D\left(m_{\mu}^2 \frac{x^2}{1-x}\right) \frac{dx}{x}$$

Knecht, Lect. Notes Phys. 629, 37 (2004); de Rafael, Phys. Rev. D 96, 014510 (2017).

It is necessary to emphasize here that this way of the derivation of the spacelike expressions for $a_{\mu}^{\text{HVP}(2)}$ from the timelike one entirely relies on the particular form of the leading-order kernel function $K_R^{(2)}(s)$.

A.V.Nesterenko

The explicit form of the leading-order spacelike kernel functions $\mathcal{K}_{\Pi}^{(2)}(Q^2)$ and $\mathcal{K}_D^{(2)}(Q^2)$ can be obtained by mapping the integration range $0 \le x < 1$ in the equations given on the previous page onto the kinematic interval $0 \le Q^2 < \infty$. Specifically, the kernel function $\mathcal{K}_{\Pi}^{(2)}(Q^2)$ takes the following form

$$\mathcal{K}_{\Pi}^{(2)}(Q^2) = \tilde{\mathcal{K}}_{\Pi}^{(2)} \left(\frac{Q^2}{4m_{\mu}^2}\right), \quad \zeta \tilde{\mathcal{K}}_{\Pi}^{(2)}(\zeta) = \frac{1}{\zeta^2} \frac{y^5(\zeta)}{1 - y(\zeta)}, \quad y(\zeta) = \zeta \left(\sqrt{1 + \zeta^{-1}} - 1\right), \quad \zeta = \frac{Q^2}{4m_{\mu}^2}$$

Groote, Korner, Pivovarov, Eur. Phys. J. C 24, 393 (2002); Blum, Phys. Rev. Lett. 91, 052001 (2003); Nesterenko, J. Phys. G 42, 085004 (2015); de Rafael, Phys. Rev. D 96, 014510 (2017).

In turn, for the kernel function $K_D^{(2)}(Q^2)$ the foregoing mapping the integration range $0 \le x < 1$ onto the kinematic interval $0 \le Q^2 < \infty$ yields

$$\mathcal{K}_{D}^{(2)}(Q^{2}) = \tilde{\mathcal{K}}_{D}^{(2)} \left(\frac{Q^{2}}{4m_{\mu}^{2}}\right), \quad \zeta \tilde{\mathcal{K}}_{D}^{(2)}(\zeta) = (2\zeta+1)^{2} - 2(2\zeta+1)\sqrt{\zeta(\zeta+1)} - \frac{1}{2}, \quad \zeta = \frac{Q^{2}}{4m_{\mu}^{2}}$$

Groote, Korner, Pivovarov, Eur. Phys. J. C 24, 393 (2002); de Rafael, Phys. Rev. D 96, 014510 (2017).

A.V.Nesterenko

It is straightforward to verify that all six obtained relations for the spacelike and timelike kernel functions hold for $\mathcal{K}_{\Pi}^{(2)}(Q^2)$, $\mathcal{K}_{D}^{(2)}(Q^2)$, and $\mathcal{K}_{R}^{(2)}(s)$

Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph].

The aforementioned infrared limiting value of the spacelike and timelike kernel functions

$$K_0^{(2)} = \lim_{Q^2 \to 0_+} \frac{Q^2}{4m_{\mu}^2} K_D^{(2)}(Q^2) = \lim_{s \to 0_+} \frac{s}{4m_{\mu}^2} K_R^{(2)}(s) = \int_0^\infty K_{\Pi}^{(2)}(\xi) \frac{d\xi}{4m_{\mu}^2} = \frac{1}{2}$$

corresponds to the leading Schwinger contribution Schwinger, Phys. Rev. 73, 416 (1948).

KERNEL FUNCTIONS IN THE NEXT-TO-LEADING ORDER

In the next-to-leading order of perturbation theory (i.e., in the third order in the electromagnetic coupling) the hadronic vacuum polarization contribution to the muon anomalous magnetic moment consists of three parts, namely

$$a_{\mu}^{\mathsf{HVP}(3)} = a_{\mu}^{\mathsf{HVP}(3a)} + a_{\mu}^{\mathsf{HVP}(3b)} + a_{\mu}^{\mathsf{HVP}(3c)}$$

Kernel functions (3a)

Here the explicit expression for the timelike kernel function $K_R^{(3a)}(s)$ is available, whereas the spacelike kernel functions $K_{\Pi}^{(3a)}(Q^2)$ and $K_D^{(3a)}(Q^2)$ can be calculated by making use of the relations obtained above. Namely,

$$\begin{split} \eta \tilde{K}_{R}^{(3a)}(\eta) &= -\frac{139}{144} + \frac{115}{18}\eta + \left(\frac{19}{12} - \frac{7}{9}\eta + \frac{23}{9}\eta^{2} + \frac{1}{4(\eta - 1)}\right) \ln(4\eta) + \\ &+ \left(\frac{2}{3\eta} - \frac{127}{18} + \frac{115}{9}\eta - \frac{46}{9}\eta^{2}\right) \frac{A(\eta)}{\psi(\eta)} + \left(\frac{9}{4} + \frac{5}{6}\eta - 8\eta^{2} - \frac{1}{2\eta}\right) \zeta_{2} + \frac{5}{6}\eta^{2} \ln^{2}(4\eta) + \\ &+ \left(\frac{14}{3}\eta - 1\right) (\eta - 1) \frac{1}{\psi(\eta)} T_{1}(\eta) + \left(\frac{19}{6} + \frac{53}{3}\eta - \frac{58}{3}\eta^{2} - \frac{1}{3\eta} + \frac{2}{\eta - 1}\right) A^{2}(\eta) + \\ &+ \left(\frac{13}{12\eta} - \frac{7}{6} + \eta - \frac{8}{3}\eta^{2} - \frac{1}{4\eta(\eta - 1)}\right) \frac{T_{2}(\eta)}{\psi(\eta)} + \left(\frac{1}{2} - \frac{14}{3}\eta + 8\eta^{2}\right) T_{3}(\eta), \quad \eta = \frac{s}{4m_{\mu}^{2}}, \end{split}$$

with $s = q^2 \ge 0$ being the timelike kinematic variable, $A_0^{(3a)} = (2/3)(\alpha/\pi)^3$,

A.V.Nesterenko

$$T_{1}(\eta) = A(\eta) \ln(4\eta) + 2\left\{\text{Li}_{2}\left(1 - B(\eta)\right) + A^{2}(\eta)\right\}, \quad T_{2}(\eta) = \text{Li}_{2}\left(-B(\eta)\right) + A^{2}(\eta) + \frac{1}{2}\zeta_{2},$$

$$T_{3}(\eta) = -6\text{Li}_{3}\left(B(\eta)\right) - 3\text{Li}_{3}\left(-B(\eta)\right) + 4\ln\left(1 - B(\eta)\right)A^{2}(\eta) + \left(2A^{2}(\eta) + 3\zeta_{2}\right)\ln\left(1 + B(\eta)\right) - 4\left\{\text{Li}_{2}\left(-B(\eta)\right) + 2\text{Li}_{2}\left(-B(\eta)\right)\right\}A(\eta),$$

$$A(\eta) = \arctan\left(\psi(\eta)\right), \qquad B(\eta) = \frac{1 - \psi(\eta)}{1 + \psi(\eta)}, \qquad \psi(\eta) = \frac{\sqrt{\eta - 1}}{\sqrt{\eta}},$$

$$\text{Li}_{2}(y) = -\int_{0}^{y}\ln(1 - t)\frac{dt}{t}, \qquad \text{Li}_{3}(y) = \int_{0}^{y}\text{Li}_{2}(t)\frac{dt}{t}, \qquad \zeta_{t} = \sum_{\eta = 1}^{\infty}\frac{1}{n^{t}}$$

Barbieri, Remiddi, Nucl. Phys. B **90**, 233 (1975).

Spacelike kernel functions in terms of the timelike one (see p. 7 and p. 10): $\mathcal{K}_{\Pi}^{(3a)}(Q^{2}) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_{+}} \left(\mathcal{K}_{R}^{(3a)}(-Q^{2} + i\varepsilon) - \mathcal{K}_{R}^{(3a)}(-Q^{2} - i\varepsilon) \right), \qquad Q^{2} \ge 0,$ $\mathcal{K}_{D}^{(3a)}(Q^{2}) = \frac{1}{Q^{2}} \int_{Q^{2}}^{\infty} \mathcal{K}_{\Pi}^{(3a)}(\xi) \, d\xi = \frac{4m_{\mu}^{2}}{Q^{2}} \mathcal{K}_{0}^{(3a)} - \frac{1}{Q^{2}} \int_{0}^{Q^{2}} \mathcal{K}_{\Pi}^{(3a)}(\xi) \, d\xi, \quad \xi = -p^{2} \ge 0.$

A.V.Nesterenko

The explicit expression for the spacelike kernel function $K_{\Pi}^{(3a)}(Q^2)$ reads

$$\begin{split} \zeta \tilde{K}_{\Pi}^{(3a)}(\zeta) &= -\left(\frac{19}{12} + \frac{7}{9}\zeta + \frac{23}{9}\zeta^2 - \frac{1}{4(\zeta+1)}\right) + \left(\frac{1}{3\zeta} + \frac{127}{36} + \frac{115}{18}\zeta + \frac{23}{9}\zeta^2\right) \psi(\zeta+1) - \\ &- \left(\frac{14}{3}\zeta+1\right)(\zeta+1)\psi(\zeta+1)\left\{\frac{1}{2}\ln(4\zeta) + 3A(\zeta+1) + 2\ln\left(1+B(\zeta+1)\right)\right\} + \\ &+ \left(-\frac{19}{6} + \frac{53}{3}\zeta + \frac{58}{3}\zeta^2 - \frac{1}{3\zeta} + \frac{2}{\zeta+1}\right)A(\zeta+1) - \frac{5}{3}\zeta^2\ln(4\zeta) + \\ &+ \left(\frac{13}{12\zeta} + \frac{7}{6} + \zeta + \frac{8}{3}\zeta^2 + \frac{1}{4\zeta(\zeta+1)}\right)\psi(\zeta+1)A(\zeta+1) - \\ &- \left(\frac{1}{2} + \frac{14}{3}\zeta + 8\zeta^2\right)\left\{2A(\zeta+1)\left\{2\ln\left(1+B(\zeta+1)\right) + \ln\left(1-B(\zeta+1)\right)\right\}\right\} - \\ &- 2\left\{\text{Li}_2(B(\zeta+1)) + 2\text{Li}_2(-B(\zeta+1))\right\}\right\}, \qquad \zeta = \frac{Q^2}{4m_{\mu}^2} \end{split}$$

Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph].

An equivalent form of this equation has been independently derived in Balzani, Laporta, Passera, arXiv:2112.05704 [hep-ph].

A.V.Nesterenko

The infrared limiting value of the spacelike and timelike kernel functions

$$\begin{aligned} \mathcal{K}_{0}^{(3a)} &= \lim_{Q^{2} \to 0_{+}} \frac{Q^{2}}{4m_{\mu}^{2}} \, \mathcal{K}_{D}^{(3a)}(Q^{2}) = \lim_{s \to 0_{+}} \frac{s}{4m_{\mu}^{2}} \, \mathcal{K}_{R}^{(3a)}(s) = \int_{0}^{\infty} \mathcal{K}_{\Pi}^{(3a)}(\xi) \, \frac{d\xi}{4m_{\mu}^{2}} = \\ &= \frac{197}{144} + \frac{1}{2}\zeta_{2} - 3\zeta_{2}\ln(2) + \frac{3}{4}\zeta_{3} \simeq -0.328479 \end{aligned}$$

corresponds to the QED contribution Sommerfield (1957), (1958); Petermann (1957), (1958).

A.V.Nesterenko

Kernel functions (3b)

For the timelike kernel function $K_R^{(3b)}(s)$ the integral representation of the following form is available:

$$a_{\mu}^{\text{HVP}(3b)} = A_{0}^{(3b)} \int_{s_{0}}^{\infty} \mathcal{K}_{R}^{(3b)}(s) R(s) \frac{ds}{4m_{\mu}^{2}}, \quad A_{0}^{(3b)} = \frac{2}{3} \left(\frac{\alpha}{\pi}\right)^{3}, \quad \underbrace{\qquad}_{e,\tau}^{\mu} \mathcal{K}_{R}^{(3b)}(s) = \frac{4m_{\mu}^{2}}{s} \int_{0}^{1} \frac{x^{2}(1-x)}{x^{2}+(1-x)s/m_{\mu}^{2}} \bar{\Pi}_{\ell} \left(\frac{x^{2}}{1-x}m_{\mu}^{2}\right) dx, \quad s = q^{2} \ge 0, \quad \eta = \frac{s}{4m_{\mu}^{2}}$$

Calmet, Narison, Perrottet, de Rafael, Phys. Lett. B 61, 283 (1976)

where

$$\bar{\Pi}_{\ell}(Q^2) = 2\int_0^1 y(1-y) \ln\left[1+z_{\ell}y(1-y)\right] dy =$$
$$= -\frac{5}{9} + \frac{4}{3z_{\ell}} + \frac{2}{3}\left(1-\frac{2}{z_{\ell}}\right)\sqrt{1+\frac{4}{z_{\ell}}} \operatorname{arctanh}\left(\frac{1}{\sqrt{1+4/z_{\ell}}}\right), \quad z_{\ell} = \frac{Q^2}{m_{\ell}^2} \ge 0$$

and m_{ℓ} is the mass of the corresponding lepton Akhiezer, Berestetskii, (1965).

A.V.Nesterenko

Since the diagram on hand factually constitutes an additional lepton loop insertion into the only internal photon line of the leading-order diagram (see p. 12), the spacelike kernel function $\mathcal{K}_{\Pi}^{(3b)}(Q^2)$ is the product of the kernel function of the preceding order $\mathcal{K}_{\Pi}^{(2)}(Q^2)$ (see p. 14) and the leptonic vacuum polarization function $\overline{\Pi}_{\ell}(Q^2)$ (see p. 21), namely

$$K_{\Pi}^{(3b)}(Q^2) = K_{\Pi}^{(2)}(Q^2)\bar{\Pi}_{\ell}(Q^2).$$

Note that the spacelike kernel function $\mathcal{K}_{\Pi}^{(3b)}(Q^2)$ has also been derived from the timelike one $\mathcal{K}_{R}^{(3b)}(s)$ by making use of the relevant dispersion relation • Chakraborty, Davies, Koponen, Lepage, de Water, (2018); Balzani, Laporta, Passera, arXiv:2112.05704 [hep-ph]. In turn, the spacelike kernel function $\mathcal{K}_{D}^{(3b)}(Q^2)$ can be calculated by making use of the relation obtained earlier (see p. 10):

$$K_D^{(3b)}(Q^2) = \frac{1}{Q^2} \int_{Q^2}^{\infty} K_{\Pi}^{(3b)}(\xi) \, d\xi = \frac{4m_{\mu}^2}{Q^2} K_0^{(3b)} - \frac{1}{Q^2} \int_0^{Q^2} K_{\Pi}^{(3b)}(\xi) \, d\xi, \quad \xi = -p^2 \ge 0.$$

All the relevant details can be found in

■ Nesterenko, J. Phys. G 49, 055001 (2022); arXiv:2112.05009 [hep-ph]; arXiv:2209.03217 [hep-ph]. A.V.Nesterenko Fifth Plenary Workshop of the Muon g-2 Theory Initiative (Edinburgh 2022)

The infrared limiting value of the spacelike and timelike kernel functions

$$\mathcal{K}_{0}^{(3b)} = \lim_{Q^{2} \to 0_{+}} \frac{Q^{2}}{4m_{\mu}^{2}} \mathcal{K}_{D}^{(3b)}(Q^{2}) = \lim_{s \to 0_{+}} \frac{s}{4m_{\mu}^{2}} \mathcal{K}_{R}^{(3b)}(s) = \int_{0}^{\infty} \mathcal{K}_{\Pi}^{(3b)}(\xi) \frac{d\xi}{4m_{\mu}^{2}} \simeq \begin{cases} 1.094258, & \text{[electron]} \\ 0.780758 \times 10^{-4}, & \text{[τ-lepton]} \end{cases}$$

corresponds to the QED contribution Elend, Phys. Lett. 20, 682 (1966); 21, 720(E) (1966).

A.V.Nesterenko

Kernel functions (3c)

The contribution $a_{\mu}^{\text{HVP}(3c)}$ takes a particularly simple form in terms of the hadronic vacuum polarization function $\overline{\Pi}(Q^2)$

$$a_{\mu}^{\text{HVP}(3c)} = A_0^{(3c)} \int_0^{\infty} K_{\Pi}^{(2)}(Q^2) \left(\bar{\Pi}(Q^2)\right)^2 \frac{dQ^2}{4m_{\mu}^2}, \quad A_0^{(3c)} = \frac{1}{9} \left(\frac{\alpha}{\pi}\right)^3, \quad \text{(HVP)} \in \mathbb{R}^{+1}$$

where $\mathcal{K}_{\Pi}^{(2)}(Q^2)$ stands for the spacelike kernel function of the preceding order (see p. 14). The contribution $a_{\mu}^{\text{HVP}(3c)}$ can also be represented in terms of the Adler function $D(Q^2)$ by making use of the relevant dispersion relation (see p. 5):

$$a_{\mu}^{\mathrm{HVP}(3c)} = A_0^{(3c)} \int_0^{\infty} \frac{dQ^2}{4m_{\mu}^2} K_{\Pi}^{(2)}(Q^2) \left(\int_0^{Q^2} \frac{d\xi}{\xi} D(\xi) \right)^2,$$

with $\xi = -p^2 \ge 0$ being a spacelike kinematic variable.

A.V.Nesterenko

In turn, the contribution $a_{\mu}^{\text{HVP}(3c)}$ can be expressed in terms of the *R*-ratio of electron-positron annihilation into hadrons by making use of the pertinent dispersion relation (see p. 4):

$$a_{\mu}^{\mathsf{HVP}(3c)} = A_0^{(3c)} \int_{s_0}^{\infty} \frac{ds_1}{s_1} \int_{s_0}^{\infty} \frac{ds_2}{s_2} K_R^{(3c)}(s_1, s_2) R(s_1) R(s_2),$$

where

$$K_R^{(3c)}(s_1, s_2) = \int_0^\infty \frac{K_\Pi^{(2)}(Q^2) Q^4}{(s_1 + Q^2)(s_2 + Q^2)} \frac{dQ^2}{4m_\mu^2}$$

Calmet, Narison, Perrottet, de Rafael, Phys. Lett. B **61**, 283 (1976).

The explicit form of the timelike kernel function $K_R^{(3c)}(s_1, s_2)$ was given in **B**. Krause, Phys. Lett. B **390**, 392 (1997).

A.V.Nesterenko

- The complete set of relations, which mutually express the spacelike and timelike kernel functions for a_{μ}^{HVP} in terms of each other, is obtained.
- It is shown that the infrared limiting value of the spacelike $Q^2 K_D(Q^2)$ and timelike $s K_R(s)$ kernel functions is identical to the corresponding QED contribution to a_μ of the preceding order in the electromagnetic coupling.
- By making use of the derived relations the explicit expression for the NLO spacelike kernel function $\mathcal{K}_{\Pi}^{(3a)}(Q^2)$ is obtained and the kernel functions $\mathcal{K}_{D}^{(3a)}(Q^2)$ and $\mathcal{K}_{D}^{(3b)}(Q^2)$ are calculated numerically.
- The obtained results can be employed in the assessments of a_{μ}^{HVP} within the spacelike methods, such as lattice studies, MUonE project, and others.

A.V.Nesterenko

Alexander V. Nesterenko

Strong Interactions in Spacelike and Timelike Domains Dispersive Approach

The detailed discussion of many other closely related topics can also be found in

A.V. Nesterenko

Strong interactions in spacelike and timelike domains: Dispersive approach

Elsevier, Amsterdam, 2017

https://www.elsevier.com/books/isbn/9780128034392

A.V.Nesterenko