QED corrections in $\overline{B} \rightarrow \overline{K}\ell^+\ell^-$ at the fully differential level: An EFT approach QED in Weak Decays Workshop

Saad Nabeebaccus IJCLab

June 22, 2022

Lepton Flavour Universality (LFU) predicted by SM.

One can thus define *lepton flavour universality* ratios, such as R_{K} :

$$R_{K}\left[q_{\min}^{2},q_{\max}^{2}
ight]=rac{\int_{q_{\min}^{2}}^{q_{\max}^{2}}dq^{2}rac{d\Gamma\left(B
ightarrow K\mu^{+}\mu^{-}
ight)}{dq^{2}}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}}dq^{2}rac{d\Gamma\left(B
ightarrow Ke^{+}e^{-}
ight)}{dq^{2}}},$$

where $q^2 = (\ell^+ + \ell^-)^2$.

Naively expect $R_{\mathcal{K}} = 1 + \mathcal{O}(\frac{\alpha}{\pi})$, whereas LHCb [2103.11769] reports

$${\it R_{K}}\left[1.1{\rm GeV}^2,6{\rm GeV}^2\right]=0.846^{+0.042+0.013}_{-0.039-0.012}$$

This represents a 3.1 σ deviation from the SM.

QED corrections are expected to be small, since $\frac{\alpha}{\pi} \approx 2 \cdot 10^{-3}$.

Due to kinematic effects however, QED corrections are enhanced to $\mathcal{O}(\frac{\alpha}{\pi}) \ln \hat{m}_{\ell} \gtrsim 2 - 3\%$ [Note: $\hat{m}_{\ell} \equiv \frac{m_{\ell}}{m_{B}}$].

Moreover, R_K is a theoretically *clean observable*.

Therefore, need to make sure QED corrections properly accounted for in experiments (PHOTOS).

Also, precise determination of CKM matrix elements.

Based on 2009:00929 [G. Isidori, SN, R. Zwicky] and 2205.08635 [G. Isidori, D. Lancierini, SN, R. Zwicky]

and future work to come...

Motivation

Bordone et al. [1605.07633] already performed a calculation to estimate QED corrections in $\bar{B} \to \bar{K}\ell^+\ell^-$ and R_K , working in single differential in q^2 .

In our work,

- Results at the *full (double)* differential level are given, and hence they can be used for angular analysis (moments). Moreover, knowledge of the lepton angles are necessary for *applying cuts* on the photon energy.
- ▶ We work with *full matrix elements* (real and virtual), starting from an *EFT Lagrangian description*. Hence, we can capture effects beyond collinear $\ln \hat{m}_{\ell}$ terms, such as $\ln \hat{m}_{K}$ which are not necessarily so small.
- We present a *detailed discussion on IR divergences*, and demonstrate explicitly the conditions under which they cancel.

Theoretical Framework

We use an *EFT*, for
$$\bar{B}(p_B) \rightarrow \bar{K}(p_K) \ell^+(\ell_2) \ell^-(\ell_1)$$
.

$$\begin{split} \mathcal{L}_{\mathrm{int}}^{\mathrm{EFT}} &= g_{\mathrm{eff}} \, L^{\mu} V_{\mu}^{\mathrm{EFT}} + \mathrm{h.c.} \ , \\ V_{\mu}^{\mathrm{EFT}} &= \sum_{n \geq 0} \frac{f_{\pm}^{(n)}(0)}{n!} (-D^2)^n [(D_{\mu}B^{\dagger}) K \mp B^{\dagger}(D_{\mu}K)] \ , \end{split}$$

where D_{μ} is the covariant derivative and $f_{\pm}^{(n)}(0)$ denotes the n^{th} derivative of the $B \to K$ form factor $f_{\pm}(q^2)$.

$$egin{aligned} \mathcal{H}^{\mu}_{0}(q^{2}_{0}) &\equiv \langle ar{\mathcal{K}} | V_{\mu} | ar{\mathcal{B}}
angle &= f_{+}(q^{2}_{0})(p_{B} + p_{\mathcal{K}})^{\mu} + f_{-}(q^{2}_{0})(p_{B} - p_{\mathcal{K}})^{\mu} \ &= \langle ar{\mathcal{K}} | V^{\mathrm{EFT}}_{\mu} | ar{\mathcal{B}}
angle + \mathcal{O}(e), \end{aligned}$$

$$L_{\mu}\equivar{\ell}_{1}\Gamma^{\mu}\ell_{2}\,,\quad V_{\mu}\equivar{s}\gamma_{\mu}(1-\gamma_{5})b\,,$$

$$g_{
m eff} \equiv rac{G_F}{\sqrt{2}} \lambda_{
m CKM}, \qquad \Gamma^\mu \equiv \gamma^\mu (C_V + C_A \gamma_5) \qquad C_{V(A)} = lpha rac{C_{9(10)}}{2\pi}$$

Theoretical Framework Differential Variables

where q - RF and $q_0 - RF$ denotes the rest frames of $q \equiv \ell_1 + \ell_2$ and $q_0 \equiv p_B - p_K = q + k$ respectively. For the *real contribution* to the differential rate, we implement a *physical cut-off on the photon energy* (based on the visible kinematics),

$$ar{p}_B^2 \equiv m_{B_{
m rec}}^2 = (p_B - k)^2 = (\ell_1 + \ell_2 + p_K)^2.$$

with

$$ar{p}_B^2 \geq m_B^2 \left(1 - \delta_{\mathrm{ex}}
ight),$$

For the *virtual contribution*, since there is *no photon-emission*, there is no difference between the $\{q^2, c_\ell\}$ - and $\{q_0^2, c_0\}$ -variables.

Theoretical Framework

QED corrections in $\bar{B} \to \bar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

The real integrals are split into *IR sensitive parts* which can be done *analytically* and a necessarily regular part which is dealt with numerically.

$${\cal F}^{(a)}_{ij}(\delta_{
m ex}) = \; rac{d^2 \Gamma^{
m LO}}{dq^2 dc_\ell} ilde{\cal F}^{(s)}_{ij}(\omega_s) + ilde{\cal F}^{(hc)(a)}_{ij}(\underline{\delta}) + \Delta {\cal F}^{(a)}_{ij}(\underline{\delta}) \; ,$$

with $\tilde{\mathcal{F}}_{ij}^{(s)}(\tilde{\mathcal{F}}_{ij}^{(hc)(a)})$ containing all *soft* (*hard-collinear*) singularities, whereas $\Delta \mathcal{F}$ is regular.

We adopt the *phase space slicing method*, which requires the introduction of two auxiliary (unphysical) cut-offs $\omega_{s,c}$,

$$\omega_s \ll 1 \;, \quad rac{\omega_c}{\omega_s} \ll 1 \;.$$

[Note: Hard-collinear $\equiv \ln \hat{m}_{\ell}$ sensitive terms.]

QED corrections in $\bar{B} \to \bar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

Phase Space slicing conditions

$$ar{p}_B^2 \ge m_B^2 \left(1 - \omega_s
ight) \iff E_\gamma^{p_B - ext{RF}} \le rac{\omega_s m_B}{2},
onumber \ k \cdot \ell_{1,2} \le \omega_c m_B^2$$

All soft divergences cancel between real and virtual, independent of the choice of differential variables.

IR Divergences Hard Collinear

In the collinear limit $(k||\ell_1)$, the matrix element squared factorises:

$$|\mathcal{A}_{\ell_1||\gamma}^{(1)}|^2 = rac{e^2}{(k \cdot \ell_1)} \hat{Q}_{\ell_1}^2 \tilde{P}_{f o f\gamma}(z) |\mathcal{A}^{(0)}(q_0^2, c_0)|^2 + \mathcal{O}(m_{\ell_1}^2) \; ,$$

where $|\mathcal{A}^{(0)}(q_0^2, c_0)|^2 = |\mathcal{A}^{(0)}_{\bar{B} \to \bar{K}\ell_{1\gamma}\bar{\ell}_2}|^2$ and $\tilde{P}_{f \to f\gamma}(z)$ is the collinear part of the splitting function for a fermion to a photon

$$ilde{P}_{f
ightarrow f\gamma}(z)\equiv \left(rac{1+z^2}{1-z}
ight)$$

z gives the momentum fraction of the photon and lepton.

$$\ell_1 = z\ell_{1\gamma}, \quad k = (1-z)\ell_{1\gamma}$$

which then implies

$$q^2 = zq_0^2$$

Lower limit on z integration: Depends on the cut-off δ_{ex} .

QED corrections in $\bar{B} \to \bar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

IR Divergences Cancellation of hard-collinear logs

In $\{q_0^2, c_0\}$ variables, when fully photon inclusive,

$$\left. \frac{d^2 \Gamma}{dq_0^2 dc_0} \right|_{\ln \hat{m}_{\ell_1}} = \frac{d^2 \Gamma^{\mathrm{LO}}}{dq_0^2 dc_0} \left(\frac{\alpha}{\pi}\right) \hat{Q}_{\ell_1}^2 \ln \hat{m}_{\ell_1} \times C_{\ell_1}^{(0)} ,$$

where

$$C_{\ell_1}^{(0)} = \left[\frac{3}{2} + 2\ln\bar{z}(\omega_s)\right]_{\tilde{\mathcal{F}}^{(hc)}} + \left[-1 - 2\ln\bar{z}(\omega_s)\right]_{\tilde{\mathcal{F}}^{(s)}} + \left[\frac{3}{2} - 2\right]_{\tilde{\mathcal{H}}} = 0$$

On the other hand, in $\{q^2,c_\ell\}$ variables,

$$\frac{d^2\Gamma}{dq^2dc_\ell}\Big|_{\rm hc} = \frac{\alpha}{\pi}(\hat{Q}_{\ell_1}^2 \mathcal{K}_{\rm hc}(q^2,c_\ell)\ln\hat{m}_{\ell_1} + \hat{Q}_{\ell_2}^2 \mathcal{K}_{\rm hc}(q^2,-c_\ell)\ln\hat{m}_{\ell_2}) ,$$

where $K_{\rm hc}(q^2, c_\ell)$ is a non-vanishing function.

After integration over q^2 and c_ℓ , the above vanishes.

However, with a cut-off δ_{ex} , collinear logs survive in both differential variables!

QED corrections in $\bar{B} \to \bar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

Q: Do we miss any $\ln \hat{m}_{\ell}$ contributions due to structure dependence, by doing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional contributions. [Sec. 3.4, Isidori, SN, Zwicky '20]

However, using the EFT analysis, we do not capture *all* of the $\ln \hat{m}_K$ effects, which are not so small.

Q: Do we miss any $\ln \hat{m}_{\ell}$ contributions due to structure dependence, by doing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional contributions. [Sec. 3.4, Isidori, SN, Zwicky '20]

However, using the EFT analysis, we do not capture *all* of the $\ln \hat{m}_K$ effects, which are not so small.

 \implies Structure Dependent Contributions: See Roman's talk! [Ongoing]. We consider *relative* corrections. For a single differential in $\frac{d}{dq_a^2}$,

$$\Delta^{(a)}(q_a^2;\delta_{\mathrm{ex}}) = \left(rac{d\Gamma^{\mathrm{LO}}}{dq_a^2}
ight)^{-1} \left.rac{d\Gamma(\delta_{\mathrm{ex}})}{dq_a^2}
ight|_lpha \,,$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} dc_a$ respectively.

It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

We consider *relative* corrections. For a single differential in $\frac{d}{dq_a^2}$,

$$\Delta^{(a)}(q_a^2;\delta_{\mathrm{ex}}) = \left(rac{d\Gamma^{\mathrm{LO}}}{dq_a^2}
ight)^{-1} rac{d\Gamma(\delta_{\mathrm{ex}})}{dq_a^2} \Bigg|_lpha \, ,$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} dc_a$ respectively.

It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

QED corrections are taken into account in the experimental analysis. \implies See Davide's talk!

- In photon-inclusive case (δ_{ex} = δ^{inc}_{ex}, dashed lines), all IR sensitive terms cancel in the q₀² variable locally.
- (Approximate) lepton universality on the plots on the left.
- ▶ δ_{ex} effects are sizeable since hard-collinear logs do not cancel in that case. More pronounced for electrons.
- ▶ In charged case, we see finite effects of the O(2%) due to In \hat{m}_{K} effects which do not cancel.

Results Distortion of the $\bar{B} \to \bar{K} \ell^+ \ell^-$ spectrum

Effects are more prominent in the photon-inclusive case $(\delta_{\text{ex}} = \delta_{\text{ex}}^{\text{inc}})$ since there is more phase space for the q^2 - and q_0^2 -variables to differ. In fact, a fixed q^2 probes the full range of q_0^2 in that case!!

Results Distortion of the $\bar{B} \to \bar{K} \ell^+ \ell^-$ spectrum

Effects are more prominent in the photon-inclusive case $(\delta_{ex} = \delta_{ex}^{inc})$ since there is more phase space for the q^2 - and q_0^2 -variables to differ. In fact, a fixed q^2 probes the full range of q_0^2 in that case!!

Could be problematic for probing R_K in $q^2 \in [1.1, 6]$ GeV² range, due to charmonium resonances!

l	$m_B^{ m rec}[{ m GeV}]$	$\delta_{ m ex}$	$(q_0^2)_{ m max}$
μ	5.175	0.0486	$q^2 + 1.36 \text{ GeV}^2$
е	4.88	0.146	$q^2 + 4.07 { m GeV}^2$

• $(q_0^2)_{\max} = q^2 + \delta_{\exp} m_B^2$ for zero angle between the photon and the radiating particle.

Photon energy cut-off on the muon is tighter, so the migration of radiation effect is smaller.

l	$m_B^{ m rec}[{ m GeV}]$	$\delta_{ m ex}$	$(q_0^2)_{ m max}$
μ	5.175	0.0486	$q^2 + 1.36 { m GeV}^2$
е	4.88	0.146	$q^2 + 4.07 \text{ GeV}^2$

• $(q_0^2)_{\max} = q^2 + \delta_{\exp} m_B^2$ for zero angle between the photon and the radiating particle.

Photon energy cut-off on the muon is tighter, so the migration of radiation effect is smaller.

Thus for $q^2 = 6 \text{ GeV}^2$, in the electron case, the system probes the pole location of the first charmonium resonance, but not the second one:

$$m^2_{\Psi(2S)}pprox 13.6\,{
m GeV}^2>(q^2_0)_{
m max}>m^2_{J/\Psi}pprox 9.58\,{
m GeV}^2.$$

The net QED correction that should be applied to R_K according to our analysis amounts to

$$\Delta_{\text{QED}} R_{K} \approx \left. \frac{\Delta \Gamma_{K\mu\mu}}{\Gamma_{K\mu\mu}} \right|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}^{m_{B}^{\text{rec}} = 5.175 \text{ GeV}} - \frac{\Delta \Gamma_{Kee}}{\Gamma_{Kee}} \left|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}^{m_{B}^{\text{rec}} = 4.88 \text{ GeV}} \approx +1.7\%\right|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}$$

 \implies Well below the current experimental error reported by LHCb.

However, effect of cuts can be significant. In Bordone et al. '16, in addition to the above energy cuts, a tight angle cut was also used, and a correction to R_K of

$$\Delta_{
m QED} R_K \approx +3.0\%$$
 ,

was reported.

The net QED correction that should be applied to R_K according to our analysis amounts to

$$\Delta_{\text{QED}} R_{K} \approx \left. \frac{\Delta \Gamma_{K\mu\mu}}{\Gamma_{K\mu\mu}} \right|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}^{m_{B}^{\text{rec}} = 5.175 \text{ GeV}} - \frac{\Delta \Gamma_{Kee}}{\Gamma_{Kee}} \left|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}^{m_{B}^{\text{rec}} = 4.88 \text{ GeV}} \approx +1.7\%\right|_{q_{0}^{2} \in [1.1,6] \text{ GeV}^{2}}$$

 \implies Well below the current experimental error reported by LHCb.

However, effect of cuts can be significant. In Bordone et al. '16, in addition to the above energy cuts, a tight angle cut was also used, and a correction to R_K of

$$\Delta_{
m QED} R_K \approx +3.0\%$$
 ,

was reported.

 \implies Highlights the importance of building a MC to cross-check the experimental analysis: PHOTOS.

QED corrections in $ar{B} o ar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

► The different photon energy cuts for the electron and the muon cases causes the shift in R_K due to QED corrections to be relatively low.

2205.08635 [G. Isidori, D. Lancierini, SN, R. Zwicky]

Charmonium resonances implemented through

$$egin{aligned} C_9^{ ext{eff}}(q^2) &= C_9 + \Delta C_9(q^2) \;, \ \Delta C_9(q^2) &= \Delta C_9(0) + \sum_\psi \eta_\psi e^{i\delta_\psi} rac{q^2}{m_\psi^2} rac{m_\psi \Gamma_\psi}{\left(m_\psi^2 - q^2
ight) - im_\psi \Gamma_{J/\psi}} \;, \end{aligned}$$

using single-subtracted dispersion relation (at $q^2 = 0$).

The parameter $\eta_{J/\psi}$ is fixed by using the measured values of the branching fractions $\mathcal{B}(\bar{B} \to \bar{K}J/\psi)$ and $\mathcal{B}(J/\psi \to \mu^+\mu^-)$.

Splitting function formalism Focussing on collinear logs

Master equation for collinear divergences $(k||\ell_1)$

$$\Delta_{\rm hc}^{(\ell)}(\hat{q}_0^2, c_0) = \frac{\alpha}{\pi} \hat{Q}_{\ell_1}^2 \left(\frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right)^{-1} \left(\int_{z_{\ell_1}^{\delta_{\rm ex}}}^1 dz P_{f \to f\gamma}(z) \frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right) \ln \frac{\mu_{\rm hc}}{m_{\ell}}$$

where $\mu^2_{\sf hc} = {\cal O}(m^2_B) pprox 6 q^2_0$, and

$$P_{f o f \gamma}(z) = \lim_{z^* o 0} \left[rac{1+z^2}{(1-z)} heta((1-z^*)-z) + (rac{3}{2}+2\ln z^*) \delta(1-z)
ight] \; ,$$

is the splitting function of a fermion to a photon.

Recall: z is the momentum fraction of the photon-lepton system carries by the lepton $(q^2 = zq_0^2)$.

The differential rate factorises from the *z*-integration in the above variables.

Effect of charmonium resonances:

Results: With window

Include contributions from J/ψ and $\psi(2S)$ resonances.

- ▶ Peak of the resonance (only modulus squared part) eliminated through a window $\Delta \omega^2 = 0.1 \text{ GeV}^2$ around it.
- For q² < 6 GeV², the interference effects are small, even in the electron case, and do not indicate any contamination to R_K in particular.

Effect of charmonium resonances:

Results: Without window

• With an electron-like photon energy cut-off, the peak of the J/ψ is probed at $q^2 = 6 \text{ GeV}^2$, due to migration of radiation effects.

Experimental analysis takes charmonium resonances into account in principle *(incoherently!)*, but...

QED Moments in $ar{B} o ar{K} \ell^+ \ell^-$

1506.03970 [Gratrex et al.]

We can expand

$$rac{d^2 \Gamma(B o K \ell^+ \ell^-)}{dq^2 \, dc_\ell} = \sum_{l_\ell \geq 0} \, G^{(l_\ell)} P_{l_\ell}(c_\ell) \; .$$

where $P_{I_{\ell}}(c_{\ell})$ are Legendre polynomials.

By restricting to *dimension-6 operators* in the effective Hamiltonian, as well as imposing the *lepton-pair factorisation approximation (LFA)*, we only have S and P waves (operators of spin=0, 1).

 $\implies l_\ell \leq 2$

In fact, in our EFT description, the $m_\ell
ightarrow$ 0 limit gives

$$rac{d^2 \Gamma_{
m LO}(B
ightarrow {\cal K} \ell^+ \ell^-)}{dq^2\, dc_\ell} \propto \left(1-c_\ell^2
ight).$$

Higher dimensional operators (in the LFA) lead to higher moments, but are suppressed by powers of (m_b/m_W) .

On the other hand, QED corrections break LFA - Hence, they can give rise to any $I_\ell \geq 0$ moments.

e.g. in the EFT description, $\ell_1 \cdot p_B$ occurs in logs and dilogs.

Important question: How big are they??

Naively, we can expect them to be relatively large, especially for electrons, due to collinear logs, $\ln (m_\ell/m_B)$.

$$\implies G_e^{(l_\ell>2)}\gg G_\mu^{(l_\ell>2)}\neq 0$$

Motivates experimental measurement of higher moments in $\bar{B} \rightarrow \bar{K} \ell^+ \ell^-$, to compare with theoretical prediction of QED corrections.

Recall master equation in splitting function formalism $(k||\ell_1)$,

$$\Delta_{\rm hc}^{(\ell)}(\hat{q}_0^2, c_0) = \frac{\alpha}{\pi} \hat{Q}_{\ell_1}^2 \left(\frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right)^{-1} \left(\int_{z_{\ell_1}^{\delta_{\rm ex}}}^1 dz P_{f \to f\gamma}(z) \frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right) \ln \frac{\mu_{\rm hc}}{m_{\ell}}$$

The z-integration can in principle introduce logs involving c_{ℓ}/c_0 , making higher moments sensitive to collinear ln (m_{ℓ}/m_B) .

In going from $\{q_0^2, c_0\}$ to $\{q^2, c_\ell\}$ variables, the above equation is further complicated by a *Jacobian*, and the fact that $\frac{d^2\Gamma^{LO}}{d\hat{q_0}^2 dc_0}$ does *not factorise* from the integral.

Recall master equation in splitting function formalism $(k||\ell_1)$,

$$\Delta_{\rm hc}^{(\ell)}(\hat{q}_0^2, c_0) = \frac{\alpha}{\pi} \hat{Q}_{\ell_1}^2 \left(\frac{d^2 \Gamma^{\rm LO}}{d \hat{q}_0^2 d c_0} \right)^{-1} \left(\int_{z_{\ell_1}^{\delta_{\rm ex}}}^1 dz P_{f \to f\gamma}(z) \frac{d^2 \Gamma^{\rm LO}}{d \hat{q}_0^2 d c_0} \right) \ln \frac{\mu_{\rm hc}}{m_{\ell}}$$

The z-integration can in principle introduce logs involving c_{ℓ}/c_0 , making higher moments sensitive to collinear ln (m_{ℓ}/m_B) .

In going from $\{q_0^2, c_0\}$ to $\{q^2, c_\ell\}$ variables, the above equation is further complicated by a *Jacobian*, and the fact that $\frac{d^2\Gamma^{LO}}{d\hat{q_0}^2 dc_0}$ does *not factorise* from the integral.

Still, no odd moments present, since collinear contributions are even in c_{ℓ} . ($c_{\ell} \rightarrow -c_{\ell}$ swaps ℓ^+ and ℓ^- in the collinear limit)

- ▶ EFT analysis shows that hard collinear logs ($\ln \hat{m}_{\ell}$) cancel when differential in $\{q_0^2, c_0\}$ variables when fully photon inclusive.
- Using gauge invariance, it can be shown that there are no further collinear logs from structure-dependent contributions.
- Charmonium resonances could potentially affect the q^2 bin relevant for R_K .

- ▶ EFT analysis shows that hard collinear logs ($\ln \hat{m}_{\ell}$) cancel when differential in $\{q_0^2, c_0\}$ variables when fully photon inclusive.
- Using gauge invariance, it can be shown that there are no further collinear logs from structure-dependent contributions.
- Charmonium resonances could potentially affect the q^2 bin relevant for R_K .

 \implies Perform refined q²-binning for R_K !

- ▶ EFT analysis shows that hard collinear logs ($\ln \hat{m}_{\ell}$) cancel when differential in $\{q_0^2, c_0\}$ variables when fully photon inclusive.
- Using gauge invariance, it can be shown that there are no further collinear logs from structure-dependent contributions.
- Charmonium resonances could potentially affect the q^2 bin relevant for R_K .

 \implies Perform refined q²-binning for $R_K!$

• QED corrections enhance higher moments, which are typically suppressed by powers of (m_b/m_W) .

- Fixing ambiguities in the UV counterterms, and structure-dependent corrections (including ln m
 _K contributions) [Ongoing].
- Analysis of moments of the angular distribution. Also differential in m^{rec}_B. [Ongoing].
- ► Charged-current semileptonic decays (\$\bar{B}\$ → D\$\ell\$\nu\$). Unidentified neutrino in final state makes it hard to reconstruct \$B\$ meson and to apply a cut-off on photon energy.

- Fixing ambiguities in the UV counterterms, and structure-dependent corrections (including ln m
 _K contributions) [Ongoing].
- Analysis of moments of the angular distribution. Also differential in m^{rec}_B. [Ongoing].
- Charged-current semileptonic decays $(\bar{B} \rightarrow D\ell\nu)$. Unidentified neutrino in final state makes it hard to reconstruct *B* meson and to apply a cut-off on photon energy.

The END

BACKUP SLIDES

The real amplitude can be decomposed,

$$\mathcal{A}^{(1)} = \hat{Q}_{\ell_1} a^{(1)}_{\ell_1} + \delta \mathcal{A}^{(1)} \; ,$$

into a term $\hat{Q}_{\ell_1} a_{\ell_1}^{(1)}$ with all terms proportional to \hat{Q}_{ℓ_1} , and the remainder $\delta \mathcal{A}^{(1)}$.

$$a_{\ell_1}^{(1)} = -eg_{ ext{eff}}ar{u}(\ell_1) \left[rac{2\epsilon^*\cdot\ell_1 + \epsilon\!\!\!/^*k}{2k\cdot\ell_1} \Gamma\cdot H_0(q_0^2)
ight] v(\ell_2) \ ,$$

which contains all $1/(k \cdot \ell_1)$ -terms.

The structure-dependence of this term is encoded in the form factor H_0 .

The amplitude square is given by

$$\sum_{\text{pol}} |\mathcal{A}^{(1)}|^2 = \sum_{\text{pol}} |\delta \mathcal{A}^{(1)}|^2 - \hat{Q}_{\ell_1}^2 \sum_{\text{pol}} |\mathbf{a}_{\ell_1}^{(1)}|^2 + 2\hat{Q}_{\ell_1} \text{Re}[\sum_{\text{pol}} \mathcal{A}^{(1)} \mathbf{a}_{\ell_1}^{(1)*}] ,$$

where it will be important that $\mathcal{A}^{(1)}$ is gauge invariant.

The *first term* is manifestly free from hard-collinear logs $\ln m_{\ell_1}$.

We use gauge invariance and set $\xi = 1$ under which the polarisation sum

$$\sum_{
m pol} \epsilon_\mu^* \epsilon_
u = (-g_{\mu
u} + (1-\xi)k_\mu k_
u/k^2)
ightarrow - g_{\mu
u}$$

collapses to the metric term only.

QED corrections in $\bar{B} \rightarrow \bar{K} \ell^+ \ell^-$ at the fully differential level: An EFT approach

The second term evaluates to

$$\int d\Phi_{\gamma} \, \hat{Q}_{\ell_1}^2 \sum_{\text{pol}} |a_{\ell_1}^{(1)}|^2 = \int d\Phi_{\gamma} \, \hat{Q}_{\ell_1}^2 \frac{\mathcal{O}(m_{\ell_1}^2) + \mathcal{O}(k \cdot \ell_1)}{(k \cdot \ell_1)^2} = \mathcal{O}(1) \, \hat{Q}_{\ell_1}^2 \ln m_{\ell_1}$$

where we used $k - \ell_1 = \mathcal{O}(m_{\ell_1}^2)$, valid in the collinear region.

We now turn to the *third term*.

Using anticommutation relations, $k - \ell_1 = \mathcal{O}(m_{\ell_1}^2)$ in the collinear limit, and the EoMs, we rewrite $a_{\ell_1}^{(1)}$ as

$$a_{\ell_1}^{(1)} = -eg_{ ext{eff}}ar{u}(\ell_1) \left[rac{4\epsilon^*\cdot\ell_1 + m_{\ell_1}\epsilon^*}{2k\cdot\ell_1}\Gamma\cdot H_0(q_0^2)
ight]v(\ell_2) \ ,$$

Gauge invariance $k \cdot A^{(1)} = 0$ implies $\ell_1 \cdot A^{(1)} = O(m_{\ell_1}^2)$ in the collinear region

Therefore, the first part of $a_{\ell_1}^{(1)}$ contributes to

$$\hat{Q}_{\ell_1} \operatorname{Re}[\sum_{\text{pol}} \mathcal{A}^{(1)} a_{\ell_1}^{(1)*}] \to c_1 \hat{Q}_{\ell_1}^2 \frac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)^2} + c_2 \hat{Q}_{\ell_1} \hat{Q}_X \frac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)}$$

where
$$X \in \{\overline{B}, \overline{K}, \overline{\ell}_2\}.$$

The second part of $a_{\ell_1}^{(1)}$ contributes to

$$\hat{Q}_{\ell_1} \mathrm{Re}[\sum_{\mathrm{pol}} \mathcal{A}^{(1)} a_{\ell_1}^{(1)*}] \to c_1' \hat{Q}_{\ell_1}^2 \frac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)^2} + c_2' \hat{Q}_{\ell_1} \hat{Q}_X \frac{\mathcal{O}(m_{\ell_1})}{(k \cdot \ell_1)}$$

Thus, using gauge invariance, one concludes that $\delta A^{(1)}$ (indicated by terms $\propto \hat{Q}_X$ in the above) does not lead to collinear logs.

- In photon-inclusive case (δ_{ex} = δ^{inc}_{ex}, dashed lines), all IR sensitive terms cancel in the q₀² variable locally.
- (Approximate) lepton universality on the plots on the left.
- Effects due to the photon energy cuts are sizeable since hard-collinear logs do not cancel in that case. More pronounced for electrons.

Results c_a distribution

We consider *relative* QED corrections. For a single differential in $\frac{d}{da^2}$,

$$\Delta^{(a)}(q_a^2;\delta_{\mathrm{ex}}) = \left(rac{d\Gamma^{\mathrm{LO}}}{dq_a^2}
ight)^{-1} rac{d\Gamma(\delta_{\mathrm{ex}})}{dq_a^2}\Big|_lpha \, ,$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} dc_a$ respectively. In addition, we define the single differential in $\frac{d}{dc_a}$

$$\Delta^{(a)}(c_a, [q_1^2, q_2^2]; \delta_{\mathrm{ex}}) = \left(\int_{q_1^2}^{q_2^2} \frac{d^2 \Gamma^{\mathrm{LO}}}{dq_a^2 dc_a} dq_a^2
ight)^{-1} \int_{q_1^2}^{q_2^2} \frac{d^2 \Gamma(\delta_{\mathrm{ex}})}{dq_a^2 dc_a} dq_a^2 \Big|_{lpha} \, ,$$

where the non-angular variable is binned.

It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

Enhanced effect towards the endpoints $\{-1,1\}$ is partly due to the special behaviour of the LO differential rate which behaves like $\propto (1-c_\ell^2) + \mathcal{O}(m_\ell^2)$ and explains why the effect is less pronounced for muons.

Even in c_{ℓ} . Almost even in c_0 (up to non-collinear effects).

Results c_a distribution

- Same comments as before apply.
- More enhanced than the neutral meson case.
- 'Collinear' In m_K odd in c_0/c_ℓ .

Results Hard collinear $\ln \hat{m}_{\ell}$ contributions in q_a^2

• Cancellation of hc ln \hat{m}_{ℓ} in fully inclusive case ($\delta_{ex} = \delta_{ex}^{inc}$).

Tighter cut larger corrections

• Electron and muon cases are scaled by a factor $\approx \frac{\ln \hat{m}_e}{\ln \hat{m}_u} \approx 2.36$

Tighter cut on electrons than muons \implies Partial compensation \implies QED corrections to R_K 'relatively' small.

To understand the distortion better, consider the following analysis in the collinear region:

$$|\mathcal{A}^{(0)}(q_0^2,c_0)|^2 \propto f_+(q_0^2)^2 = f_+(q^2/z)^2.$$

Since z < 1 in general, it is clear that momentum transfers of a higher range are probed.

For example, when $c_\ell = -1$, maximising the effect, one gets

$$z_{\delta_{\mathrm{ex}}}(q^2)\Big|_{c_\ell=-1} = rac{q^2}{q^2+\delta_{\mathrm{ex}}m_B^2} \ , \quad (q_0^2)_{\mathsf{max}} = q^2+\delta_{\mathrm{ex}}m_B^2 \ ,$$

For $\delta_{
m ex}=0.15$, $q^2=6\,{
m GeV}^2$ one has $(q_0^2)_{
m max}=10.18\,{
m GeV}^2$

 \implies Problematic for probing R_K in $q^2 \in [1.1, 6]$ GeV² range, due to charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z becomes $z_{\rm inc}(c_\ell)|_{m_K \to 0} = \hat{q}^2$ such that $(q_0^2)_{\rm max} = m_B^2$.

 \implies Entire spectrum is probed for any fixed value of q^2

QED Moments in $ar{B} o ar{K} \ell^+ \ell^-$

Features:

- 1. Approximate LFU in c_0 with δ_{ex}^{inc} .
- 2. Even in c_{ℓ} .
- 3. (almost) even in c_0 , since c_0 measured wrt to ℓ_1 in q_0 -RF.

${f QED}\ {f M}$ oments in $ar{B} ightarrowar{K}\ell^+\ell^-$

Features:

- 1. As before, approximate LFU in c_0 with δ_{ex}^{inc} .
- 2. Effects of odd moments are smallest in c_{ℓ} , with $\delta_{\text{ex}}^{\text{inc}}$ and $m_{\ell} = m_e$, as collinear $\ln (m_{\ell}/m_B)$ (which are even in c_{ℓ}) dominate.

QED Moments in $ar{B} o ar{K} \ell^+ \ell^-$

Heat plots from Borsato's talk:

LHCb plot

- Resonant mode has 10³ more events than non-resonant mode.
- For the electron case, the non-resonant mode has contributions from $\bar{B} \rightarrow J/\psi(e^+e^-)\bar{K}$ due to QED, and loose photon energy cut.