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Motivation
Why is B̄ → K̄`+`− interesting?

Lepton Flavour Universality (LFU) predicted by SM.

One can thus define lepton flavour universality ratios, such as
RK :

RK

[
q2

min, q
2
max

]
=

∫ q2
max

q2
min

dq2 dΓ(B→Kµ+µ−)
dq2∫ q2

max

q2
min

dq2 dΓ(B→Ke+e−)
dq2

,

where q2 = (`+ + `−)
2
.

Naively expect RK = 1 +O(απ ), whereas LHCb [2103.11769]
reports

RK

[
1.1GeV2, 6GeV2

]
= 0.846+0.042+0.013

−0.039−0.012

This represents a 3.1 σ deviation from the SM.
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Motivation
Why are QED corrections to B̄ → K̄`+`− important?

QED corrections are expected to be small, since α
π ≈ 2·10−3.

Due to kinematic effects however, QED corrections are enhanced
to O(απ ) ln m̂` & 2− 3 % [Note: m̂` ≡ m`

mB
].

Moreover, RK is a theoretically clean observable.

Therefore, need to make sure QED corrections properly accounted
for in experiments (PHOTOS).

Also, precise determination of CKM matrix elements.

Based on 2009:00929 [G. Isidori, SN, R. Zwicky] and 2205.08635
[G. Isidori, D. Lancierini, SN, R. Zwicky]

and future work to come...
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Motivation

Bordone et al. [1605.07633] already performed a calculation to
estimate QED corrections in B̄ → K̄`+`− and RK , working in
single differential in q2.

In our work,

I Results at the full (double) differential level are given, and
hence they can be used for angular analysis (moments).
Moreover, knowledge of the lepton angles are necessary for
applying cuts on the photon energy.

I We work with full matrix elements (real and virtual), starting
from an EFT Lagrangian description. Hence, we can capture
effects beyond collinear ln m̂` terms, such as ln m̂K which are
not necessarily so small.

I We present a detailed discussion on IR divergences, and
demonstrate explicitly the conditions under which they cancel.
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Theoretical Framework
EFT

We use an EFT, for B̄(pB)→ K̄ (pK ) `+(`2) `−(`1).

LEFT
int = geff L

µV EFT
µ + h.c. ,

V EFT
µ =

∑
n≥0

f
(n)
± (0)

n!
(−D2)n[(DµB

†)K ∓ B†(DµK )] ,

where Dµ is the covariant derivative and f
(n)
± (0) denotes the nth

derivative of the B → K form factor f±(q2).

Hµ
0 (q2

0) ≡ 〈K̄ |Vµ|B̄〉 = f+(q2
0)(pB +pK )µ + f−(q2

0)(pB−pK )µ

= 〈K̄ |V EFT
µ |B̄〉+O(e),

Lµ ≡ ¯̀
1Γµ`2 , Vµ ≡ s̄γµ(1− γ5)b ,

geff ≡
GF√

2
λCKM, Γµ ≡ γµ(CV + CAγ5) CV (A) = α

C9(10)

2π
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Theoretical Framework
Differential Variables

pK

θ(2)γ

pB

q

k

p̄B -RF q -RF

θℓ

ℓ1

ℓ̄2

q0

k

pB -RF

pK

θ(1)γ

q0 -RF

θ0

ℓ1

ℓ̄2

pBpK

k

θ(4)γ

{q2
a , ca} =

 q2
` = (`1 + `2)2, c` = −

(
~̀
1·~pK
| ~̀1||~pK |

)
q−RF

[“Hadron collider”] ,

q2
0 = (pB − pK )2 , c0 = −

(
~̀
1·~pK
| ~̀1||~pK |

)
q0−RF

[“B-factory”] ,

where q − RF and q0 − RF denotes the rest frames of q ≡ `1 + `2

and q0 ≡ pB − pK = q + k respectively.
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Theoretical Framework
Differential variables and cut-off on the photon energy

For the real contribution to the differential rate, we implement a
physical cut-off on the photon energy (based on the visible
kinematics),

p̄2
B ≡ mB

2
rec = (pB − k)2 = (`1 + `2 + pK )2.

with
p̄2
B ≥ m2

B (1− δex) ,

For the virtual contribution, since there is no photon-emission,
there is no difference between the {q2, c`}- and
{q2

0 , c0}-variables.
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Theoretical Framework
Amplitudes

Real Amplitudes:

Virtual Amplitudes:

L1

K̄

ℓ̄2

γ
ℓ1

B̄

L2 P Kγ Bγ

L1L1 PL1 L2L2 PL2

L1L2KγKγPKγKγL2KγL1

PBγBγBγBγKγBγL2BγL1

ℓ1 ℓ̄2

K̄B̄

=⇒ Explicit gauge invariance
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IR Divergences
Formalism

The real integrals are split into IR sensitive parts which can be
done analytically and a necessarily regular part which is dealt with
numerically.

F (a)
ij (δex) =

d2Γ LO

dq2dc`
F̃ (s)
ij (ωs) + F̃ (hc)(a)

ij (δ) + ∆F (a)
ij (δ) ,

with F̃ (s)
ij (F̃ (hc)(a)

ij ) containing all soft (hard-collinear)
singularities, whereas ∆F is regular.

We adopt the phase space slicing method, which requires the
introduction of two auxiliary (unphysical) cut-offs ωs,c ,

ωs � 1 ,
ωc

ωs
� 1 .

[Note: Hard-collinear ≡ ln m̂` sensitive terms.]
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IR Divergences
Formalism

Phase Space slicing conditions

p̄2
B ≥ m2

B (1− ωs) ⇐⇒ EpB−RF
γ ≤ ωsmB

2
,

k ·`1,2 ≤ ωcm
2
B

All soft divergences cancel between real and virtual, independent of
the choice of differential variables.
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IR Divergences
Hard Collinear

In the collinear limit (k ||`1), the matrix element squared
factorises:

|A(1)
`1||γ |

2 =
e2

(k ·`1)
Q̂2
`1
P̃f→f γ(z)|A(0)(q2

0 , c0)|2 +O(m2
`1

) ,

where |A(0)(q2
0 , c0)|2 = |A(0)

B̄→K̄`1γ
¯̀
2
|2 and P̃f→f γ(z) is the collinear

part of the splitting function for a fermion to a photon

P̃f→f γ(z) ≡
(

1 + z2

1− z

)
.

z gives the momentum fraction of the photon and lepton.

`1 = z`1γ , k = (1− z) `1γ

which then implies

q2 = zq2
0

Lower limit on z integration: Depends on the cut-off δex.
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IR Divergences
Cancellation of hard-collinear logs

In {q2
0 , c0} variables, when fully photon inclusive,

d2Γ

dq2
0dc0

∣∣∣∣
ln m̂`1

=
d2Γ LO

dq2
0dc0

(α
π

)
Q̂2
`1

ln m̂`1 × C
(0)
`1

,

where

C
(0)
`1

=

[
3

2
+ 2 ln z̄(ωs)

]
F̃ (hc)

+

[
−1− 2 ln z̄(ωs)

]
F̃ (s)

+

[
3

2
− 2

]
H̃

= 0

On the other hand, in {q2, c`} variables,

d2Γ

dq2dc`

∣∣∣
hc

=
α

π
(Q̂2

`1
Khc(q2, c`) ln m̂`1 + Q̂2

`2
Khc(q2,−c`) ln m̂`2) ,

where Khc(q2, c`) is a non-vanishing function.

After integration over q2 and c`, the above vanishes.

However, with a cut-off δex, collinear logs survive in both
differential variables!
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IR Divergences
Structure-dependent terms

Q: Do we miss any ln m̂` contributions due to structure
dependence, by doing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional
contributions. [Sec. 3.4, Isidori, SN, Zwicky ’20]

However, using the EFT analysis, we do not capture all of the
ln m̂K effects, which are not so small.

=⇒ Structure Dependent Contributions: See Roman’s talk!
[Ongoing].
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Results

We consider relative corrections. For a single differential in
d
dq2

a
,

∆(a)(q2
a ; δex) =

(
dΓLO

dq2
a

)−1
dΓ(δex)

dq2
a

∣∣∣∣∣
α

,

where the numerator and denominator are integrated separately
over

∫ 1
−1 dca respectively.

It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.

QED corrections are taken into account in the experimental
analysis. =⇒ See Davide’s talk!
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Results
B− → K−`+`− in q2

a
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I In photon-inclusive case (δex = δinc
ex , dashed lines), all IR

sensitive terms cancel in the q2
0 variable locally.

I (Approximate) lepton universality on the plots on the left.

I δex effects are sizeable since hard-collinear logs do not cancel
in that case. More pronounced for electrons.

I In charged case, we see finite effects of the O(2%) due to
ln m̂K effects which do not cancel.
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Results
Distortion of the B̄ → K̄`+`− spectrum
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Effects are more prominent in the photon-inclusive case
(δex = δinc

ex ) since there is more phase space for the q2- and
q2

0-variables to differ. In fact, a fixed q2 probes the full range of q2
0

in that case!!

Could be problematic for probing RK in q2 ∈ [1.1, 6] GeV2 range,
due to charmonium resonances!
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Results
Migration of radiation

` mrec
B [ GeV] δex (q2

0)max

µ 5.175 0.0486 q2 + 1.36 GeV2

e 4.88 0.146 q2 + 4.07 GeV2

I (q2
0)max = q2 + δexm

2
B for zero angle between the photon and

the radiating particle.

I Photon energy cut-off on the muon is tighter, so the
migration of radiation effect is smaller.

Thus for q2 = 6 GeV2, in the electron case, the system probes the
pole location of the first charmonium resonance, but not the
second one:

m2
Ψ(2S) ≈ 13.6 GeV2 > (q2

0)max > m2
J/Ψ ≈ 9.58 GeV2.
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Results
RK

The net QED correction that should be applied to RK according to
our analysis amounts to

∆QEDRK ≈
∆ΓKµµ

ΓKµµ

∣∣∣∣mrec
B =5.175 GeV

q2
0∈[1.1,6] GeV2

−∆ΓKee

ΓKee

∣∣∣∣mrec
B =4.88 GeV

q2
0∈[1.1,6] GeV2

≈ +1.7%

=⇒ Well below the current experimental error reported by
LHCb.

However, effect of cuts can be significant. In Bordone et al. ’16, in
addition to the above energy cuts, a tight angle cut was also used,
and a correction to RK of

∆QEDRK ≈ +3.0% ,

was reported.

=⇒ Highlights the importance of building a MC to cross-check
the experimental analysis: PHOTOS.
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Results
RK

Our work

2 4 6 8 10
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Bordone et al. ’16
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I The different photon energy cuts for the electron and the
muon cases causes the shift in RK due to QED corrections to
be relatively low.
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Effect of charmonium resonances
Implementation

2205.08635 [G. Isidori, D. Lancierini, SN, R. Zwicky]

Charmonium resonances implemented through

C eff
9 (q2) = C9 + ∆C9(q2) ,

∆C9(q2) = ∆C9(0) +
∑
ψ

ηψe
iδψ

q2

m2
ψ

mψΓψ(
m2
ψ − q2

)
− imψΓJ/ψ

,

using single-subtracted dispersion relation (at q2 = 0).

The parameter ηJ/ψ is fixed by using the measured values of the

branching fractions B(B̄ → K̄J/ψ) and B(J/ψ → µ+µ−).
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Splitting function formalism
Focussing on collinear logs

Master equation for collinear divergences (k ||`1)

∆
(`)
hc (q̂2

0 , c0) =
α

π
Q̂2
`1

(
d2Γ LO

dq̂0
2dc0

)−1
(∫ 1

zδex`1

dzPf→f γ(z)
d2Γ LO

dq̂0
2dc0

)
ln
µhc

m`
,

where µ2
hc = O(m2

B) ≈ 6q2
0 , and

Pf→f γ(z) = lim
z∗→0

[
1 + z2

(1− z)
θ((1− z∗)− z) + (

3

2
+ 2 ln z∗)δ(1− z)

]
,

is the splitting function of a fermion to a photon.

Recall: z is the momentum fraction of the photon-lepton system
carries by the lepton (q2 = zq2

0).

The differential rate factorises from the z-integration in the above
variables.
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Effect of charmonium resonances:
Results: With window

Include contributions from J/ψ and ψ(2S) resonances.

+

+ + + + + +

+

+

-

-
- - - -

- -

-

■

■
■

■
■ ■ ■ ■ ■

+ +charm

- -charm

■ no-charm

2 4 6 8

0.90

0.95

1.00

1.05

e,

dΓNLO

dq2

dΓLO

dq2

mrec
B >4.88GeV

δJ/Ψ=0,π

δΨ(2S)=0,π

q2[ GeV2]

+

+
+

+ + + + + +

-

-
-

- - - - - -

■

■

■
■

■
■

■ ■ ■

+ +charm

- -charm

■ no-charm

2 4 6 8

0.94

0.96

0.98

1.00

1.02

µ,

dΓNLO

dq2

dΓLO

dq2

mrec
B >5.175GeV

δJ/Ψ=0,π

δΨ(2S)=0,π

q2[ GeV2]
I Peak of the resonance (only modulus squared part) eliminated

through a window ∆ω2 = 0.1 GeV2 around it.

I For q2 < 6 GeV2, the interference effects are small, even in
the electron case, and do not indicate any contamination to
RK in particular.
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Effect of charmonium resonances:
Results: Without window

+
+ + + + +
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mrec
B >5.175GeV
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δΨ(2S)=0,π

q2[ GeV2]
I Without window.

I With an electron-like photon energy cut-off, the peak of the
J/ψ is probed at q2 = 6 GeV2, due to migration of radiation
effects.

Experimental analysis takes charmonium resonances into account
in principle (incoherently!), but...
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QED Moments in B̄ → K̄`+`−
Generalities

1506.03970 [Gratrex et al.]

We can expand

d2Γ(B → K`+`−)

dq2 dc`
=
∑
l`≥0

G (l`)Pl`(c`) .

where Pl`(c`) are Legendre polynomials.

By restricting to dimension-6 operators in the effective
Hamiltonian, as well as imposing the lepton-pair factorisation
approximation (LFA), we only have S and P waves (operators of
spin=0, 1).

=⇒ l` ≤ 2

In fact, in our EFT description, the m` → 0 limit gives

d2ΓLO(B → K`+`−)

dq2 dc`
∝
(
1− c2

`

)
.
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QED Moments in B̄ → K̄`+`−
Generalities

Higher dimensional operators (in the LFA) lead to higher moments,
but are suppressed by powers of (mb/mW ).

On the other hand, QED corrections break LFA - Hence, they can
give rise to any l` ≥ 0 moments.

e.g. in the EFT description, `1 ·pB occurs
in logs and dilogs.

ℓ1 ℓ̄2

K̄B̄
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QED Moments in B̄ → K̄`+`−

Analysis of collinear logs

Important question: How big are they??

Naively, we can expect them to be relatively large, especially for
electrons, due to collinear logs, ln (m`/mB).

=⇒ G
(l`>2)
e � G

(l`>2)
µ 6= 0

Motivates experimental measurement of higher moments in
B̄ → K̄`+`−, to compare with theoretical prediction of QED
corrections.
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QED Moments in B̄ → K̄`+`−

Analysis of collinear logs

Recall master equation in splitting function formalism
(k ||`1),

∆
(`)
hc (q̂2

0 , c0) =
α

π
Q̂2
`1

(
d2Γ LO

dq̂0
2dc0

)−1
(∫ 1

zδex`1

dzPf→f γ(z)
d2Γ LO

dq̂0
2dc0

)
ln
µhc

m`
,

The z-integration can in principle introduce logs involving c`/c0,
making higher moments sensitive to collinear ln (m`/mB).

In going from
{
q2

0 , c0

}
to
{
q2, c`

}
variables, the above equation is

further complicated by a Jacobian, and the fact that d2Γ LO

dq̂0
2dc0

does

not factorise from the integral.

Still, no odd moments present, since collinear contributions are
even in c`. (c` → −c` swaps `+ and `− in the collinear limit)
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α

π
Q̂2
`1

(
d2Γ LO

dq̂0
2dc0

)−1
(∫ 1

zδex`1

dzPf→f γ(z)
d2Γ LO

dq̂0
2dc0

)
ln
µhc

m`
,

The z-integration can in principle introduce logs involving c`/c0,
making higher moments sensitive to collinear ln (m`/mB).

In going from
{
q2

0 , c0

}
to
{
q2, c`

}
variables, the above equation is

further complicated by a Jacobian, and the fact that d2Γ LO

dq̂0
2dc0

does

not factorise from the integral.

Still, no odd moments present, since collinear contributions are
even in c`. (c` → −c` swaps `+ and `− in the collinear limit)
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Summary
Take-home messages

I EFT analysis shows that hard collinear logs (ln m̂`) cancel
when differential in

{
q2

0 , c0

}
variables when fully photon

inclusive.

I Using gauge invariance, it can be shown that there are no
further collinear logs from structure-dependent contributions.

I Charmonium resonances could potentially affect the q2 bin
relevant for RK .

=⇒ Perform refined q2-binning for RK !

I QED corrections enhance higher moments, which are typically
suppressed by powers of (mb/mW ).
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Future Work

I Fixing ambiguities in the UV counterterms, and
structure-dependent corrections (including ln m̂K

contributions) [Ongoing].

I Analysis of moments of the angular distribution. Also
differential in mrec

B . [Ongoing].

I Charged-current semileptonic decays (B̄ → D`ν).
Unidentified neutrino in final state makes it hard to
reconstruct B meson and to apply a cut-off on photon energy.

The END
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IR Divergences
Structure-dependent terms

The real amplitude can be decomposed,

A(1) = Q̂`1a
(1)
`1

+ δA(1) ,

into a term Q̂`1a
(1)
`1

with all terms proportional to Q̂`1 , and the

remainder δA(1).

a
(1)
`1

= −egeffū(`1)

[
2ε∗ ·`1+/ε∗/k

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

which contains all 1/(k ·`1)-terms.

The structure-dependence of this term is encoded in the form
factor H0.
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IR Divergences
Structure-dependent terms

The amplitude square is given by∑
pol

|A(1)|2 =
∑
pol

|δA(1)|2− Q̂2
`1

∑
pol

|a(1)
`1
|2 +2Q̂`1Re[

∑
pol

A(1)a
(1)∗
`1

] ,

where it will be important that A(1) is gauge invariant.

The first term is manifestly free from hard-collinear logs
lnm`1 .

We use gauge invariance and set ξ = 1 under which the
polarisation sum∑

pol

ε∗µεν = (−gµν + (1− ξ)kµkν/k
2)→ −gµν

collapses to the metric term only.
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IR Divergences
Structure-dependent terms

The second term evaluates to∫
dΦγ Q̂

2
`1

∑
pol

|a(1)
`1
|2 =

∫
dΦγ Q̂

2
`1

O(m2
`1

) +O(k ·`1)

(k · `1)2
= O(1) Q̂2

`1
lnm`1 ,

where we used k − `1 = O(m2
`1

), valid in the collinear region.
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IR Divergences
Structure-dependent terms

We now turn to the third term.

Using anticommutation relations, k − `1 = O(m2
`1

) in the collinear

limit, and the EoMs, we rewrite a
(1)
`1

as

a
(1)
`1

= −egeffū(`1)

[
4ε∗ ·`1+m`1/ε

∗

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

Gauge invariance k ·A(1) = 0 implies `1 ·A(1) = O(m2
`1

) in the
collinear region
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IR Divergences
Structure-dependent terms

Therefore, the first part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c2Q̂`1Q̂X

O(m2
`1

)

(k · `1)

where X ∈ {B̄, K̄ , ¯̀
2}.

The second part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c ′1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c ′2Q̂`1Q̂X

O(m`1)

(k · `1)

Thus, using gauge invariance, one concludes that δA(1) (indicated
by terms ∝ Q̂X in the above ) does not lead to collinear logs.
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Results
B̄0 → K̄ 0`+`− in q2

a

2 4 6 8 10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

I In photon-inclusive case (δex = δinc
ex , dashed lines), all IR

sensitive terms cancel in the q2
0 variable locally.

I (Approximate) lepton universality on the plots on the left.

I Effects due to the photon energy cuts are sizeable since
hard-collinear logs do not cancel in that case. More
pronounced for electrons.
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Results
ca distribution

We consider relative QED corrections. For a single differential in
d
dq2

a
,

∆(a)(q2
a ; δex) =

(
dΓ LO

dq2
a

)−1
dΓ(δex)

dq2
a

∣∣∣
α
,

where the numerator and denominator are integrated separately
over

∫ 1
−1 dca respectively. In addition, we define the single

differential in d
dca

∆(a)(ca, [q
2
1 , q

2
2 ]; δex) =

(∫ q2
2

q2
1

d2Γ LO

dq2
adca

dq2
a

)−1 ∫ q2
2

q2
1

d2Γ(δex)

dq2
adca

dq2
a

∣∣∣
α
,

where the non-angular variable is binned.

It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.
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Results
ca distribution in neutral meson mode

-1.0 -0.5 0.0 0.5 1.0
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-0.05

0.00

0.05

0.10

0.15

Enhanced effect towards the endpoints {−1, 1} is partly due to the
special behaviour of the LO differential rate which behaves like
∝ (1− c2

` ) +O(m2
` ) and explains why the effect is less pronounced

for muons.

Even in c`. Almost even in c0 (up to non-collinear effects).
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Results
ca distribution
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Results
ca distribution in charged meson mode
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I Same comments as before apply.

I More enhanced than the neutral meson case.

I ‘Collinear’ lnmK odd in c0/c`.
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Results
Hard collinear ln m̂` contributions in q2

a

2 4 6 8 10
-0.25
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0.00
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I Cancellation of hc ln m̂` in fully inclusive case (δex = δinc
ex ).

I Tighter cut =⇒ larger corrections

I Electron and muon cases are scaled by a factor ≈ ln m̂e
ln m̂µ

≈ 2.36

Tighter cut on electrons than muons =⇒ Partial compensation
=⇒ QED corrections to RK ‘relatively’ small.
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Results
Distortion of the B̄ → K̄`+`− spectrum

To understand the distortion better, consider the following analysis
in the collinear region:

|A(0)(q2
0 , c0)|2 ∝ f+(q2

0)2 = f+(q2/z)2.

Since z < 1 in general, it is clear that momentum transfers of a
higher range are probed.
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Results
Distortion of the B̄ → K̄`+`− spectrum

For example, when c` = −1, maximising the effect, one gets

zδex(q2)
∣∣∣
c`=−1

=
q2

q2 + δexm2
B

, (q2
0)max = q2 + δexm

2
B ,

For δex = 0.15, q2 = 6 GeV2 one has (q2
0)max = 10.18 GeV2

=⇒ Problematic for probing RK in q2 ∈ [1.1, 6] GeV2 range, due
to charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z
becomes zinc(c`)|mK→0 = q̂2 such that (q2

0)max = m2
B .

=⇒ Entire spectrum is probed for any fixed value of q2
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QED Moments in B̄ → K̄`+`−
c0 distribution
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Features:

1. Approximate LFU in c0 with δinc
ex .

2. Even in c`.

3. (almost) even in c0, since c0 measured wrt to `1 in q0-RF.
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QED Moments in B̄ → K̄`+`−
c` distribution
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Features:

1. As before, approximate LFU in c0 with δinc
ex .

2. Effects of odd moments are smallest in c`, with δinc
ex and

m` = me , as collinear ln (m`/mB) (which are even in c`)
dominate.
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QED Moments in B̄ → K̄`+`−
Differential in mrec

B

Heat plots from Borsato’s talk:
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LHCb plot

I Resonant mode has 103 more events than non-resonant mode.

I For the electron case, the non-resonant mode has contributions
from B̄ → J/ψ(e+e−)K̄ due to QED, and loose photon energy cut.
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