$B_{d,s} \rightarrow \mu^{+} \mu^{-} \gamma$ phenomenology

- overview -

Diego Guadagnoli CNRS, LAPTh Annecy

• The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• $B_s \rightarrow \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \rightarrow \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2

- The additional photon lifts chirality suppression
 - For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude
- $B_s \rightarrow \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \rightarrow \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2
- High-q² $B_s \rightarrow \mu\mu \gamma$ spectrum can be accessed from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed

- The additional photon lifts chirality suppression
 - For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude
- $B_s \rightarrow \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \rightarrow \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2
- High-q² $B_s \rightarrow \mu\mu \gamma$ spectrum can be accessed from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- With Run 3 (\Box hopefully comparable e and μ efficiencies), $B_s \rightarrow \mu \mu \gamma / B_s \rightarrow ee \gamma$ no more science fiction

$$B_s \rightarrow \mu \mu \gamma$$
 from $B_s \rightarrow \mu \mu$

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

Basic Idea

Extract $B_s \rightarrow \mu\mu \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

 $B_s \rightarrow \mu \mu \gamma$: "indirect" method

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

 $B_s \rightarrow \mu \mu \gamma$: "indirect" method

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

 $B_s \rightarrow \mu \mu \gamma$: "indirect" method

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

- Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset
- \cdots to access $B_s \rightarrow \mu\mu\gamma$, that probes flavour anomalies more thoroughly

[thanks F. Dettori]

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

• Signal is a shoulder, not a peak, like several semilep. *B* decays

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak, like several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below (4.2 GeV)², cc pollution

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak, like several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below (4.2 GeV)², cc pollution
- Trigger efficiency and reco somewhat below $B_s \to \,\mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS
- Calibration not trivial no "analogous" channel

Backgrounds

[thanks F. Dettori]

4.....

Backgrounds

[thanks F. Dettori]

Backgrounds

[thanks F. Dettori]

[LHCb-PAPER-2021-007] [LHCb-PAPER-2021-008

The elephant in the room (f.f.'s)

Radiative leptonic f. f.'s in LQCD

ري المحمد الم

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Radiative leptonic f. f.'s in LQCD

Large E_{γ}

 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior
 [Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial - e.g. it doesn't seem to hold if there are hadronic final states along with the γ

Radiative leptonic f. f.'s in LQCD

Large E_{γ}

 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior
 [Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial - e.g. it doesn't seem to hold if there are hadronic final states along with the γ

• However, the low-q² spectrum of $B_s \rightarrow \mu \mu \gamma$ is dominated by resonant contributions (~98% of the BR), that LQCD is unable to capture

f.f.'s at low q^2

within factorization

[Beneke-Bobeth-Wang, '20]

For low q² ≤ (6 GeV)², B_s → χ^{*} f.f.'s can be calculated in a systematic expansion in 1/m_b, 1/E_γ

$B_s \rightarrow \mu \mu \ \gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_{\gamma}$
- In particular
 - LP (\triangleleft expressible in terms of the B-meson LCDA) + $O(\alpha_s)$ corr's

$B_s \rightarrow \mu \mu \ \gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low q² ≤ (6 GeV)², B_s → γ^{*} f.f.'s can be calculated in a systematic expansion in 1/m_b, 1/E_γ
- In particular
 - LP (sepressible in terms of the B-meson LCDA)
 + O(α_s) corr's
 - local NLP

Amplitude structure [Beneke-Bobeth-Wang, '20] Take the weak operators as $O_i \equiv J_i^{(1)} J_i^{(q)}$ • and i = 9,10 for definiteness (and simplicity) $\overline{A} \propto \epsilon_{\mu}^{*} \left\{ \sum_{i} C_{i} \left[T_{i}^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \left| 0 \right\rangle \right. \right.$ $T_{i}^{\mu\nu} \propto \mathrm{FT}_{x} \langle 0 | T\{J_{\mathrm{em}}^{\mu}(x), J_{i}^{(q)\nu}(0)\} | B \rangle$

[Beneke-Bobeth-Wang, '20]

Three sources

- coupling of γ to b quark
- power corr's to SCET, correlator at tree level
- annihilation-type insertions of 4q operators 📫 local

[Beneke-Bobeth-Wang, '20]

local

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET, correlator at tree level
 - annihilation-type insertions of 4q operators

[Beneke-Bobeth-Wang, '20]

local

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET, correlator at tree level
 - annihilation-type insertions of 4q operators

- Two soft f.f.'s
 - $\xi(E_{\gamma})$: computable as in $B_u \rightarrow \ell \vee \gamma$ [Beneke-Rohrwild, '11]
 - For B-type contributions: $\tilde{\xi}(E_{\gamma})$ Its Im develops resonances, thus escaping a factorization description

Resonances

......

[Beneke-Bobeth-Wang, '20]

- $T_{7B}^{\mu\nu}$ leads to \overline{A}_{res}
 - standard spectral repr. (à la BW)
 - formally power-suppressed

hence inclusion won't lead to double counting of some short-distance contributions

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)

Concluding comments

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + little phase space available + large λ_B dependence challenge a precise $B_s \rightarrow \mu \mu \gamma$ prediction at low q^2

Concluding comments

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + little phase space available + large λ_B dependence challenge a precise $B_s \rightarrow \mu \mu \gamma$ prediction at low q^2
- Prediction

 $\langle \mathcal{B} \rangle_{[4m_{\mu}^{2}, 6.0]} = (12.51^{+3.83}_{-1.93}) \cdot 10^{-9}, \quad \langle \mathcal{B} \rangle_{[2.0, 6.0]} = (0.30^{+0.25}_{-0.14}) \cdot 10^{-9}$

i.e. ϕ region gives 97.6% of the BR

[Janowski, Pullin, Zwicky, '21] see also [Pullin, Zwicky, '21; Albrecht *et al.*, 19]

• Calculation includes: NLO at twist 1&2; LO at twist 3; partial twist 4

Some specific observables

Guidelines

- focus on high q²
- *minimise dependence on LD physics*

 $B_{\xi} \rightarrow \mu\mu\gamma$ spectrum

Then main focus on large-q² region, above narrow charmonium.
 Broad-charmonium pollution estimated with similar resonant ansatz

D. Guadagnoli, QED in Weak Decays, Edinburgh, 22-24 June, 2022

D. Guadagnoli, QED in Weak Decays, Edinburgh, 22-24 June, 2022

..... $B_s \rightarrow \mu\mu\gamma$ effective lifetime de Bruyn et al., *'12* Natural exp observable: untagged rate $\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$ Recalling the time dependence of the respective |amplitudes|² $|\overset{_{\frown}}{\mathcal{A}}_{f}(t)|^{2} = \frac{e^{-\Gamma_{s}t}}{2} \Big[\Big(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cosh(\Delta\Gamma_{s}t/2) \pm \Big(|\mathcal{A}_{f}|^{2} - |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cos(\Delta M_{s}t) \Big] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \frac{1}$ $- 2\operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sinh(\Delta\Gamma_{s}\,t/2) \mp 2\operatorname{Im}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sin(\Delta M_{s}\,t)$

 $B_s \rightarrow \mu\mu\gamma$ effective lifetime de Bruyn et al., *'12* Natural exp observable: untagged rate $\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$ Recalling the time dependence of the respective $|amplitudes|^2$ $|\vec{\mathcal{A}}_{f}(t)|^{2} = \frac{e^{-\Gamma_{s}t}}{2} \Big[\Big(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cosh(\Delta\Gamma_{s}t/2) \pm \Big(|\mathcal{A}_{f}|^{2} - |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cos(\Delta M_{s}t) \Big]$ $- 2\operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sinh(\Delta\Gamma_{s}\,t/2) \mp 2\operatorname{Im}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sin(\Delta M_{s}\,t)$ yields the following quantity sensitive to new CPV $A^f_{\Delta\Gamma_s} = rac{-2\int_{ ext{PS}} \operatorname{Re}\left(q/p\,ar{\mathcal{A}}_f \mathcal{A}_f^*
ight)}{\int_{ ext{PS}}\left(|\mathcal{A}_f|^2 + |q/p|^2|ar{\mathcal{A}}_f|^2
ight)}$

 $B_s \rightarrow \mu\mu\gamma$ effective lifetime de Bruyn et al., '12 Natural exp observable: untagged rate $\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$ Recalling the time dependence of the respective $|amplitudes|^2$ $|\vec{\mathcal{A}}_{f}(t)|^{2} = \frac{e^{-\Gamma_{s}t}}{2} \Big[\Big(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cosh(\Delta\Gamma_{s}t/2) \pm \Big(|\mathcal{A}_{f}|^{2} - |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cos(\Delta M_{s}t) \Big]$ $- 2\operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sinh(\Delta\Gamma_{s}\,t/2) \mp 2\operatorname{Im}\left(q/p\,\bar{\mathcal{A}}_{f}\mathcal{A}_{f}^{*}\right)\sin(\Delta M_{s}\,t)$ yields the following quantity sensitive to new CPV $A^f_{\Delta\Gamma_s} = rac{-2\int_{ ext{PS}} \operatorname{Re}\left(q/p\,ar{\mathcal{A}}_f\mathcal{A}_f^*
ight)}{\int_{ ext{PS}}\left(|\mathcal{A}_f|^2 + |q/p|^2|ar{\mathcal{A}}_f|^2
ight)}$ $A_{\Delta\Gamma}$ can be extracted from (an accurate measurement of)

the effective lifetime

[Carvunis et al., '21]

• $A_{\Delta\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

[Carvunis et al., '21]

• $A_{\Delta\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

... while ratio will still (partly) cancel hadr. matrix elem. dependence

 A_{ΔΓ} looks like a natural "ratio-of-amplitudes-squared" observable With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

......

Motivation

- ... while ratio will still (partly) cancel hadr. matrix elem. dependence
- NP with non-standard CPV less constrained than NP with CKM CPV

(For NP with non-standard CPV, also constraints on Re(WCs) get looser)

 Identify NP scenarios (within WET) accounting for the anomalies & with large CPV on top

(Wealth of $b \rightarrow s$ data still under-constraining for WC shifts w/ large non-CKM weak phases.)

Scenario	$O \parallel C_7^{\mathrm{NP}}$	$C_9^{ m NP}$	$C_{10}^{ m NP}$
C_7	0.02 - 0.13i	0	0
C_9	0	-1.0-0.9i	0
C_{10}	0	0	1.0 + 1.4i
C_{LL}	0	-0.7 - 1.4i	0.7 + 1.4i

£2.....

 Identify NP scenarios (within WET) accounting for the anomalies & with large CPV on top

(Wealth of $b \rightarrow s$ data still under-constraining for WC shifts w/ large non-CKM weak phases.)

Scenario	$C_7^{\rm NP}$	$C_9^{ m NP}$	$C_{10}^{ m NP}$
C_7	0.02 - 0.13i	0	0
C_9	0	-1.0 - 0.9i	0
C_{10}	0	0	1.0 + 1.4i
C_{LL}	0	-0.7 - 1.4i	0.7+1.4i

- Survey $A_{\Delta\Gamma}$ sensitivity to these scenarios
 - for both low and high q²
 - taking into account f.f. & resonance-modelling errors

Impact of broad cc Carvunis et al., '21 Parameterize the effect most generally (e.g. discussion in [Lyon, Zwicky, '14]) $C_9 \rightarrow C_9 - \frac{9\pi}{\alpha^2} \bar{C} \sum_V |\eta_V| e^{i\delta_V} \frac{\hat{m}_V \mathcal{B}(V \rightarrow \mu^+ \mu^-) \hat{\Gamma}_{\text{tot}}^V}{\hat{q}^2 - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_{\text{tot}}^V}$ $|\eta_V| \in [1, 3] \& \delta_V \in [0, 2\pi)$ (uniformly and independently for the 5 resonances) $S_{\psi(2S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)} = \{0.47, 0.49, 0.57, 0.61, 0.68\}$ for $S_{min} \in [0.5, 0.7] \ m_{Bs}^2$ for all TH scenarios

[Carvunis et al., '21]

• Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$

But broad-cc shift to C_9 typically O(5%) – and with random phase

Far from obvious why such a small impact on $A_{\Delta\Gamma}$

- Closer look (App. D for an analytic understanding)
 Cancellation is a conspiracy between
 - Complete dominance of contributions quadratic in C₉ and C₁₀
 - Multiplying f.f.'s $F_V, F_A \in \mathbb{R}$
 - Broad $c\bar{c}$ can be treated as small modif. of (numerically large) C_9

Ease cancellations between num & den in $A_{\Delta\Gamma}$

- Broad $c\bar{c}$ only shifts C_9
- efficient cancellations possible
- f.f.'s enter in different ways (all numerically relevant) for the different WC combinations
- In short
 - f.f. error still too important to resolve between TH scenarios
 - Yet, dominance of jointly $C_9 \& C_{10}$ implies high sensitivity to C_{LL} could be resolvable with ~ half the current f.f. error

- Low impact of broad $c\overline{c}$ encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"
- Maybe worthwhile to look for more observables with such properties

Im shifts to WCs: how large?

·

		Pre-Moriond 2021			Post-Moriond 2021		
Scenario		Best-fit	Pull	<i>p</i> -value	Best-fit	Pull	<i>p</i> -value
C_7	${\rm I\!R}$	-0.0079	0.58σ	0.11%	-0.0079	0.57σ	0.12%
	C	-0.0045 - 0.056i	0.61σ	0.11%	-0.0044 - 0.056i	0.61σ	0.11%
C_9	\mathbb{R}	-0.97	6.4σ	10.0%	-0.93	6.7σ	12.0%
	C	-0.98 - 0.22i	6.1σ	9.4%	-0.93 - 0.25i	6.4σ	12.0%
C_{10}	\mathbb{R}	0.72	5.8σ	6.1%	0.68	6.0σ	5.7%
	C	0.80 + 0.74i	5.6σ	6.0%	0.76 + 0.75i	5.8σ	5.6%
C_{LL}	\mathbb{R}	-1.1	6.9σ	18.0%	-0.96	7.0σ	16.0%
	C	-1.2-1.5i	6.7σ	18.0%	-1.1 - 1.4i	6.8σ	16.0%
C_{LR}	\mathbb{R}	0.34	1.2σ	0.13%	0.28	1.1σ	0.09%
	C	0.34 + 0.032i	0.74σ	0.11%	0.28 + 0.017i	0.59σ	0.08%
C'_7	${\rm I\!R}$	0.004	0.28σ	0.12%	0.005	0.29σ	0.07%
	C	0.004 - 0.001i	0.05σ	0.10%	0.005 - 0.0003i	0.05σ	0.06%
C'_9	${\rm I\!R}$	0.14	0.74σ	0.13%	0.0044	0.06σ	0.09%
	C	0.13+0.24i	0.54σ	0.12%	0.0012 + 0.2i	0.24σ	0.08%
C_{10}^{\prime}	${\rm I\!R}$	-0.18	1.7σ	0.14%	-0.09	0.81σ	0.08%
	C	-0.20 - 0.14i	1.3σ	0.13%	-0.063 - 0.11i	0.45σ	0.07%
C_{RL}	\mathbb{R}	0.22	1.5σ	0.17%	0.088	0.23σ	0.07%
	C	0.24+0.40i	1.3σ	0.16%	0.085 + 0.32i	0.40σ	0.07%
C_{RR}	\mathbb{R}	-0.37	1.4σ	0.17%	-0.28	1.1σ	0.09%
	C	-0.37 - 0.003i	0.93σ	0.15%	-0.28 - 0.004i	0.65σ	0.08%