Structure-dependent QED effects in B decays from effective theory

M. Beneke (TU München)

Workshop "QED in Weak Decays" Edinburgh, June 22 - 24, 2022

MB, Bobeth, Szafron, 1708.09152, 1908.07011 $[B_s \rightarrow \mu^+\mu^-]$ MB, Böer, Toelstede, Vos, 2008.10615 $[B \rightarrow \pi K$, charmless] MB, Böer, Finauri, Vos, 2107.03819 $[B \rightarrow D_{(s)}^{(*)+}L^-$, colour-allowed + semi-leptonic]

MB, Böer, Toelstede, Vos, 2108.05589 + 2204.09091 [LCDAs of light and heavy mesons] \rightarrow Philipp Böer's talk

Sino-German CRC110 "Emergence of Structure in QCD"

Motivation: Theory

- Precision: Traditionally focus on hadronic uncertainties. Time to look at QED. QED effects violate isospin symmetry and can cause large "lepton-flavour violating" logarithms, log mℓ.
- Photons couple weakly to strongly interacting quarks → probe of hadronic physics, requires factorization theorems, which mostly don't exist yet.
- Photons have long-range interactions with the charged particles in the initial/final state → QED factorization is more complicated than QCD factorization.

Motivation: Theory

- Precision: Traditionally focus on hadronic uncertainties. Time to look at QED. QED effects violate isospin symmetry and can cause large "lepton-flavour violating" logarithms, log mℓ.
- Photons couple weakly to strongly interacting quarks → probe of hadronic physics, requires factorization theorems, which mostly don't exist yet.
- Photons have long-range interactions with the charged particles in the initial/final state → QED factorization is more complicated than QCD factorization.

Observables

IR finite observable is

$$\Gamma_{\text{phys}} = \sum_{n=0}^{\infty} \Gamma(B \to f + n\gamma, \sum_{n} E_{\gamma,n} < \Delta E)$$
$$\equiv \omega(\Delta E) \times \Gamma_{\text{non-rad.}}(B \to f)$$

Signal window $|m_B - m_f| < \Delta \implies \Delta E = \Delta$ Assume $\Delta \ll \Lambda_{\text{QCD}} \sim$ size of hadrons Large ln ΔE .

(Ultra-) Soft photons and the point-like approximation

Universal soft radiative amplitude

$$A^{i \to f+\gamma}(p_j,k) = A^{i \to f}(p_j) \times \sum_{j=\text{legs}} \frac{-eQ_j p_j^{\mu}}{\eta_j p_j \cdot k + i\epsilon}$$

k

The amplitude implies that the charged particles (B-meson, pion, lepton, ...) are treated as point-like. Exponentiates for the decay rate, but the virtual correction is UV divergent in the soft limit. Cut-off Λ .

$$\Gamma = \Gamma_{\text{tree}}^{i \to f} \times \left(\frac{2\Delta E}{\Lambda}\right)^{-\frac{\alpha}{\pi}\sum_{i,j}Q_iQ_jf(\beta_{ij})}$$

(Ultra-) Soft photons and the point-like approximation

Universal soft radiative amplitude

$$A^{i \to f+\gamma}(p_j, k) = A^{i \to f}(p_j) \times \sum_{j=\text{legs}} \frac{-eQ_j p_j^{\mu}}{\eta_j p_j \cdot k + i\epsilon}$$

k

The amplitude implies that the charged particles (B-meson, pion, lepton, ...) are treated as point-like. Exponentiates for the decay rate, but the virtual correction is UV divergent in the soft limit. Cut-off Λ .

$$\Gamma = \Gamma_{\text{tree}}^{i \to f} \times \left(\frac{2\Delta E}{\Lambda}\right)^{-\frac{\alpha}{\pi}\sum_{i,j}Q_iQ_jf(\beta_{ij})}$$
What is Λ ?

- Present treatment of QED effects sets $\Lambda = m_B$ (e.g. using a theory of point-like mesons)
- Experimental analyses uses the PHOTOS Monte Carlo [Golonka, Was, 2005], which in addition neglects radiation from charged initial state particles.

However, the derivation implies that $\Lambda \ll \Lambda_{QCD} \sim$ size of the hadron (B-meson). Otherwise virtual corrections resolve the structure of the hadron and higher-multipole couplings are unsuppressed.

Scales and Effective Field theories (EFTs)

Multiple scales: $m_W, m_b, \sqrt{m_b \Lambda_{\text{QCD}}}, \Lambda_{\text{QCD}}, m_\mu, \Delta E$

Scales and Effective Field theories (EFTs)

Multiple scales: $m_W, m_b, \sqrt{m_b \Lambda_{\text{QCD}}}, \Lambda_{\text{QCD}}, m_\mu, \Delta E$

Short-distance QED at $\mu \gtrsim m_b$ can be included in the usual weak effective Lagrangian (extended Fermi theory) + renormalization group.

Far IR (ultrasoft scale) described by theory of point-like hadrons.

Scales and Effective Field theories (EFTs)

Multiple scales: $m_W, m_b, \sqrt{m_b \Lambda_{\text{QCD}}}, \Lambda_{\text{QCD}}, m_\mu, \Delta E$

Short-distance QED at $\mu \gtrsim m_b$ can be included in the usual weak effective Lagrangian (extended Fermi theory) + renormalization group.

Far IR (ultrasoft scale) described by theory of point-like hadrons.

Goal: Theory for QED corrections between the scales m_b and Λ_{QCD} (structure-dependent effects).

 $B_s \rightarrow \mu^+ \mu^-$

1708.09152, 1908.07011, with C. Bobeth and R. Szafron

Some facts about $B_s \rightarrow \mu^+ \mu^-$

"Instantaneous", "non-radiative" branching fraction

$$Br(B_s \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 \tau_{B_s} m_{B_s}^3 |V_{tb} V_{ts}^*|^2 \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \times \left\{ \left| \frac{2m_{\mu}}{m_{B_s}} (C_{10} - C_{10}') + (C_P - C_P') \right|^2 + \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2}\right) |C_s - C_s'|^2 \right\}$$

- Long-distance QCD effects are very simple. Local annihilation. Only $\langle 0|\bar{q}\gamma^{\mu}\gamma_{5}b|\bar{B}_{q}(p)\rangle = if_{B_{q}}p^{\mu}$ Task for lattice QCD (1.5% [Aoki et al. 1607.00299], 0.5% [FNAL/MILC 1712.09262]).
- Only the operator Q_{10} from the weak effective Lagrangian enters.
- No scalar lepton current $\bar{\ell}\ell$, only $\bar{\ell}\gamma_5\ell \Longrightarrow$

$$\mathcal{A}^{\lambda}_{\Delta\Gamma} = 1$$
 $C_{\lambda} = S_{\lambda} = 0$

Some facts about $B_s \rightarrow \mu^+ \mu^-$

"Instantaneous", "non-radiative" branching fraction

$$Br(B_s \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 \tau_{B_s} m_{B_s}^3 |V_{tb} V_{ts}^*|^2 \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \times \left\{ \left| \frac{2m_{\mu}}{m_{B_s}} (C_{10} - C_{10}') + (C_P - C_P') \right|^2 + \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2}\right) |C_s - C_s'|^2 \right\}$$

- Long-distance QCD effects are very simple. Local annihilation. Only $\langle 0|\bar{q}\gamma^{\mu}\gamma_{5}b|\bar{B}_{q}(p)\rangle = if_{B_{q}}p^{\mu}$ Task for lattice QCD (1.5% [Aoki et al. 1607.00299], 0.5% [FNAL/MILC 1712.09262]).
- Only the operator Q_{10} from the weak effective Lagrangian enters.
- No scalar lepton current $\bar{\ell}\ell$, only $\bar{\ell}\gamma_5\ell \Longrightarrow$

$$\mathcal{A}_{\Delta\Gamma}^{\lambda} = 1 \qquad C_{\lambda} = S_{\lambda} = 0$$

None of these are exactly true in the presence of electromagnetic corrections

Enhanced electromagnetic effect

 m_B/Λ power-enhanced and (double) logarithmically enhanced, purely virtual correction

The virtual photon probes the *B* meson structure. *B*-meson LCDA and $1/\lambda_B$ enters.

$$\frac{m_B}{\lambda_B} \equiv m_B \int_0^\infty \frac{d\omega}{\omega} \phi_{B+}(\omega) \sim 20 \qquad \ln \frac{m_b \omega}{m_{\mu}^2} \sim 6$$

M. Beneke (TU München), QED effects in B decays

Edinburgh, 23 June 2022 7

Interpretation of the m_B/Λ -enhanced QED correction

Local annihilation and helicity flip.

$$\langle 0| \int d^4x T\{j_{\text{QED}}(x), \mathcal{L}_{\Delta B=1}(0)\} |\bar{B}_q \rangle$$

Helicity-flip and annihilation delocalized by a hard-collinear distance

The virtual photon probes the *B* meson structure. Annihilation/helicity-suppression is "smeared out" over light-like distance $1/\sqrt{m_B\Lambda}$ [\rightarrow B-LCDA]. Still short-distance.

Logarithms are not the standard soft logarithms, but due to hard-collinear, collinear and soft regions, including final-state soft lepton exchange.

All orders, EFT, summation of logarithms

Back-to-back energetic lepton pair

Collinear (lepton n_+p_ℓ large) and anti-collinear (anti-lepton $n_-p_{\bar{\ell}}$ large) modes

- Modes in the EFT classified by virtuality and rapidity
- Matching QCD+QED \rightarrow SCET_I \rightarrow SCET_{II}

mode	relative scaling	absolute scaling	virtuality k^2
hard	(1, 1, 1)	(m_b, m_b, m_b)	m_b^2
hard-collinear	$(1, \lambda, \lambda^2)$	$(m_b, \sqrt{m_b \Lambda_{\rm QCD}}, \Lambda_{\rm QCD})$	$m_b \Lambda_{\rm QCD}$
anti-hard-collinear	$(\lambda^2, \lambda, 1)$	$(\Lambda_{\rm QCD}, \sqrt{m_b \Lambda_{\rm QCD}}, m_b)$	$m_b \Lambda_{\rm QCD}$
collinear	$(1, \lambda^2, \lambda^4)$	$(m_b, m_\mu, m_\mu^2/m_b)$	m^2_{μ}
anticollinear	$(\lambda^4, \lambda^2, 1)$	$(m_\mu^2/m_b, m_\mu, m_b)$	m^2_{μ}
soft	$(\lambda^2,\lambda^2,\lambda^2)$	$(\Lambda_{\rm QCD},\Lambda_{\rm QCD},\Lambda_{\rm QCD})$	$\Lambda^2_{\rm QCD}$

M. Beneke (TU München), QED effects in B decays

SCET interpretation of the one-loop QED correction to $B_s \rightarrow \mu^+ \mu^-$

• After tree-level matching to SCET_I need matrix element of

$$\begin{array}{l} \text{SCET}_{I} \quad \int_{0}^{1} du \, \left(C_{9}^{\text{eff}}(u) + \frac{C_{7}^{\text{eff}}}{u} \right) \bar{\chi}_{\text{hc}}(\bar{u}p_{\ell}) \Gamma h_{\nu} \, \bar{\ell}_{\text{hc}}(up_{\ell}) \Gamma' \ell_{\text{hc}}(p_{\bar{\ell}}) \\ &+ \bar{\chi}_{\text{hc}}(p_{\ell}) \gamma_{\perp}^{\mu} h_{\nu} \, \mathcal{A}_{\text{hc}, \perp \mu}^{\gamma}(p_{\bar{\ell}}) \end{array}$$

- Sum of hard-collinear and collinear loop in SCET_{II} gives a structure-dependent collinear logarithm $\ln(m_b \Lambda/m_{\mu}^2)$
- Endpoint (rapidity) divergence for $u \to 0$ in C_7^{eff} term. Cancelled by soft lepton exchange.

Matching, RGE, leading-(double) log resummation - sketch

• Factorization and resummation of logs only understood for the *Q*₉ operator up to now [MB, Bobeth, Szafron, 2019]

SCET_{II} factorization and soft rearrangement

 $\widetilde{\mathcal{J}}_{\mathcal{A}\chi}^{B1}(v,t) = \overline{q}_s(vn_-)Y(vn_-,0)\frac{\not n_-}{2}P_Lh_v(0)[Y_+^{\dagger}Y_-](0)\left[\overline{\ell}_c(0)(2\mathcal{A}_{c\perp}(tn_+)P_R)\ell_{\overline{c}}(0)\right] = \widehat{\mathcal{J}}_s \otimes \widehat{\mathcal{J}}_c \otimes \widehat{\mathcal{J}}_{\overline{c}}$

- s, c, c
 d
 o not interact in SCET_{II}. Sectors are factorized.
 Anomalous dimension should be separately well defined.
- But the anomalous dimension of the soft graphs is IR divergent.

SCET_{II} factorization and soft rearrangement

 $\widetilde{\mathcal{J}}_{\mathcal{A}\chi}^{B1}(v,t) = \overline{q}_{s}(vn_{-})Y(vn_{-},0)\frac{\#_{-}}{2}P_{L}h_{v}(0)[Y_{+}^{\dagger}Y_{-}](0)\left[\overline{\ell}_{c}(0)(2\mathcal{A}_{c\perp}(tn_{+})P_{R})\ell_{\overline{c}}(0)\right] = \widehat{\mathcal{J}}_{s}\otimes\widehat{\mathcal{J}}_{c}\otimes\widehat{\mathcal{J}}_{\overline{c}}$

- s, c, c
 do not interact in SCET_{II}. Sectors are factorized.
 Anomalous dimension should be separately well defined.
- But the anomalous dimension of the soft graphs is IR divergent.

• Soft rearrangement $\widehat{\mathcal{J}}_s \otimes \widehat{\mathcal{J}}_c \otimes \widehat{\mathcal{J}}_{\overline{c}} = \frac{\widehat{\mathcal{J}}_s}{R_+R_-} \otimes R_+ \widehat{\mathcal{J}}_c \otimes R_- \widehat{\mathcal{J}}_{\overline{c}}$

Soft matrix element defines a generalized B-LCDA

Structure of the final result

Amplitude [evolved to μ_c]

$$\begin{split} i\mathcal{A}_{9} &= e^{\mathcal{S}_{\ell}(\mu_{b}, \mu_{c})} T_{+}(\mu_{c}) \times \int_{0}^{1} du \, e^{\mathcal{S}_{q}(\mu_{b}, \mu_{hc})} \, 2H_{9}(u; \mu_{b}) \, \int_{0}^{\infty} d\omega \, U_{s}^{\text{QED}}(\mu_{hc}, \mu_{s}; \omega) \, m_{B_{q}} F_{B_{q}}(\mu_{hc}) \, \phi_{+}(\omega; \mu_{hc}) \\ & \times \left[J_{m}(u; \omega; \mu_{hc}) + \int_{0}^{1} dw \, J_{A}(u; \omega, w; \mu_{hc}) \, \left(M_{A}(w; \mu_{c}) - \frac{\mathcal{Q}_{\ell} \overline{w}}{\beta_{0, \text{em}}} \, \ln \eta_{\text{em}} \right) \right] \\ &\equiv e^{\mathcal{S}_{\ell}(\mu_{b}, \mu_{c})} \times A_{9} \left[\overline{u}_{c}(1 + \gamma_{5}) v_{c} \right] \end{split}$$

- defines the non-radiative amplitude A_9 by extracting universal final state virtual logs. QED+QCD Logs between m_b and μ_c summed. Similarly for the A_{10} standard amplitude.

Including ultrasoft photon radiation (+ virtual ultrasoft)

$$\mathcal{N}_{\Delta B=1}C_i \left\langle \ell \bar{\ell} X_s \middle| Q_i \middle| \overline{B}_s \right\rangle = \mathcal{A}_i(\boldsymbol{\mu_c}) \left\langle X_s \middle| S_{\nu_{\ell}}^{\dagger}(0) S_{\nu_{\bar{\ell}}}(0) \middle| 0 \right\rangle(\boldsymbol{\mu_c}), \qquad i = 9, 10$$

 $-A_i$ is an exclusive amplitude, therefore IR divergent and scale-dependent. This includes the QED-generalized LCDAs (here: B-meson), which are also IR divergent. Should be viewed as a matching coefficient of SCET_{II} onto the theory of point-like hadrons at a scale $\mu_f \lesssim \Lambda_{QCD}$. This matching is non-perturbative.

Structure of the final result (II)

Decay rate [including ultrasoft photon radiation]

$$\Gamma[B_q \to \mu^+ \mu^-](\Delta E) = \underbrace{\frac{m_{B_q}}{8\pi} \beta_\mu \left(|A_{10} + A_9 + A_7|^2 + \beta_\mu^2 |A_9 + A_7|^2 \right)}_{\text{non-radiative rate}} \times \underbrace{\frac{e^{S_\ell (\mu_b, \mu_c)}}{\left| \frac{e^{S_\ell (\mu_b, \mu_c)}}{2S(\nu_\ell, \nu_{\overline{\ell}}, \Delta E)} \right|^2 S(\nu_\ell, \nu_{\overline{\ell}}, \Delta E)}_{\text{ultrasoft radiation}}$$
$$= \Gamma^{(0)}[B_q \to \mu^+ \mu^-] \left(\frac{2\Delta E}{m_{B_q}} \right)^{-\frac{2\alpha}{\pi} \left(1 + \ln \frac{m_{\mu}^2}{m_{B_q}^2} \right)}$$

$$S(v_{\ell}, v_{\overline{\ell}}, \Delta E) = \sum_{X_s} |\langle X_s | s^{\dagger}_{v_{\ell}}(0) S_{v_{\overline{\ell}}}(0) | 0 \rangle|^2 \ \theta(\Delta E - E_{X_s}) \qquad \text{Ultrasoft function}$$

Structure of the final result (II)

Decay rate [including ultrasoft photon radiation]

$$\Gamma[B_q \to \mu^+ \mu^-](\Delta E) = \underbrace{\frac{m_{B_q}}{8\pi} \beta_\mu \left(|A_{10} + A_9 + A_7|^2 + \beta_\mu^2 |A_9 + A_7|^2 \right)}_{\text{non-radiative rate}} \times \underbrace{\frac{e^{\mathcal{S}_\ell \left(\mu_b, \ \mu_\ell\right)} \Big|^2 \mathcal{S}(\nu_\ell, \nu_{\overline{\ell}}, \Delta E)}_{\text{ultrasoft radiation}}}$$
$$= \Gamma^{(0)}[B_q \to \mu^+ \mu^-] \left(\frac{2\Delta E}{m_{B_q}} \right)^{-\frac{2\alpha}{\pi} \left(1 + \ln \frac{m_{\mu}^2}{m_{B_q}^2} \right)}$$

$$S(v_{\ell}, v_{\overline{\ell}}, \Delta E) = \sum_{X_s} |\langle X_s | s^{\dagger}_{v_{\ell}}(0) S_{v_{\overline{\ell}}}(0) | 0 \rangle|^2 \ \theta(\Delta E - E_{X_s}) \qquad \text{Ultrasoft function}$$

 $\Gamma^{(0)}[B_q \to \mu^+\mu^-]$ is not the point-like amplitude, but the represents the composite *B* meson including structure-dependent effects. This is an explicit counterexample to the statement [Isidori, Nabeebaccus, Zwicky, 2009.00929] that "hard-collinear" logarithms in structure-dependent terms cancel ("Any gauge invariant addition (to the point-like approximation) can at most lead to logs of the form $\mathcal{O}(\alpha)m_{\ell}^2 \ln m_{\ell}$ " [2205.06194])

Example: World with larger α_{em} and larger m_B . The power-enhanced amplitude then dominated the $B_s \rightarrow \mu^+ \mu^-$ decay width.

Can sum leading logs, and calculate all QED effects between scale m_b and a few times $\Lambda_{\rm QCD}$.

BUT: matching of SCET_{II} to the ultrasoft theory of point-like hadrons at a scale $\mu_c \sim \Lambda_{\text{OCD}}$ must be done **non-perturbatively**.

Hadronic B two-body decays $(B \rightarrow \pi K ..., D^+ L^-, ...)$

2008.10615 (charmless + semi-leptonic $B \rightarrow D$) and 2107.03819 (heavy-light + semi-leptonic $B \rightarrow D$), with P. Böer, G. Finauri, J. Toelstede and K. Vos

Charmless decays, $B \to \pi^+ \pi^-$ vs. $\mu^+ \mu^-$

- Same kinematics, charges, composite pions instead of elementary leptons. QED effects similar, identical for ultrasoft photons.
- But QCD dynamics is very different.

- Different CKM amplitudes, strong rescattering in ⟨π⁺π⁻|Q_i|B̄⟩ ⇒ (direct) CP violation, determination of CKM angles, search for new physics
- Branching fractions 10⁻⁵, first measured by CLEO in the late 1990s, now O(50 − 100) different two-body final states M₁M₂ measured.

QCD theory

"QCD factorization" [MB, Buchalla, Neubert, Sachrajda, 1999-2001], later understood and formulated as a SCET $_{II}$ problem:

$$\begin{aligned} & \operatorname{QCD} \xrightarrow{\operatorname{remove } h} \operatorname{SCET}_{\mathrm{I}} \xrightarrow{\operatorname{remove } hc} \operatorname{SCET}_{\mathrm{II}}(c,\bar{c},s) \\ & \langle M_1 M_2 | Q_i | \bar{B} \rangle = \underbrace{F^{BM_1}(0)}_{\text{form factor}} \int_0^1 du \, T_i^I(u) \Phi_{M_2}(u) & \xrightarrow{B \xrightarrow{T_i}} \underbrace{T_i}_{M_i} \xrightarrow{\Phi_{0}} \underbrace{T_i}_{M_i} & \xrightarrow{B \xrightarrow{T_i}} \underbrace{T_i}_{M_i} & \xrightarrow{\Phi_{0}} \\ \xrightarrow{\Phi_{0}} \underbrace{T_i}_{M_i} &$$

- Rigorous at leading power in $\Lambda_{\rm QCD}/m_b$
- Strong rescattering phases are δ ~ O(α_s(m_b), Λ/m_b). SCET_I matching coefficients only. Direct CP asymmetry is calculable at LP

$$A_{\rm CP}(M_1M_2) = \underbrace{a_1\alpha_s}_{1999} + \underbrace{a_2\alpha_s^2}_{2020} + \dots + \mathcal{O}(\Lambda_{\rm QCD}/m_b)$$
(Bell, MB, Huber, Li)

Including virtual QED effects into the factorization theorem

SCET_I operators

$$\mathcal{O}^{\mathrm{I}}(t) = [\bar{\chi}_{\bar{C}}(tn_{-}) \not h_{-} \gamma_{5} \chi_{\bar{C}}] [\bar{\chi}_{C} h_{v}]$$
$$\mathcal{O}^{\mathrm{II}}(t,s) = \underbrace{[\bar{\chi}_{\bar{C}}(tn_{-}) \not h_{-} \gamma_{5} \chi_{\bar{C}}]}_{M_{2}} \underbrace{[\bar{\chi}_{C} \mathcal{A}_{C,\perp}(sn_{+}) h_{v}]}_{B \to M_{1}}$$

QCD factorization formula

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = F^{BM_1}(0) \int_0^1 du \, T_i^{I,QCD}(u) f_{M_2} \phi_{M_2}(u)$$

+
$$\int_0^\infty d\omega \int_0^1 du dv \, T_i^{II,QCD}(z,u) f_B \phi_B(\omega) f_{M_1} \phi_{M_1}(v) f_{M_2} \phi_{M_2}(u)$$

Including virtual QED effects into the factorization theorem

SCET_I operators

$$\mathcal{O}^{\mathrm{I}}(t) = [\bar{\chi}_{\bar{C}}(tn_{-}) \not\!\!/_{-} \gamma_{5} \chi_{\bar{C}}] [\bar{\chi}_{C} \mathbf{S}_{n_{+}}^{\dagger(\mathcal{Q}_{M_{2}})} h_{\nu}]$$
$$\mathcal{O}^{\mathrm{II}}(t,s) = [\bar{\chi}_{\bar{C}}(tn_{-}) \not\!\!/_{-} \gamma_{5} \chi_{\bar{C}}] [\bar{\chi}_{C} \mathbf{A}_{C,\perp}(sn_{+}) \mathbf{S}_{n_{+}}^{\dagger(\mathcal{Q}_{M_{2}})} h_{\nu}]$$

$$S_{n\pm}^{(q)} = \exp\left\{-iQ_q e \int_0^\infty ds \, n_\pm A_s(sn_\pm)\right\}$$

Including virtual QED effects into the factorization theorem

SCET_I operators

$$\mathcal{O}^{\mathrm{I}}(t) = [\bar{\chi}_{\bar{C}}(tn_{-}) \not t_{-} \gamma_{5} \chi_{\bar{C}}] [\bar{\chi}_{C} \mathbf{S}_{n_{+}}^{\dagger(\mathcal{Q}_{M_{2}})} h_{\nu}]$$
$$\mathcal{O}^{\mathrm{II}}(t,s) = [\bar{\chi}_{\bar{C}}(tn_{-}) \not t_{-} \gamma_{5} \chi_{\bar{C}}] [\bar{\chi}_{C} \mathbf{A}_{C,\perp}(sn_{+}) \mathbf{S}_{n_{+}}^{\dagger(\mathcal{Q}_{M_{2}})} h_{\nu}]$$

$$S_{n\pm}^{(q)} = \exp\left\{-iQ_q e \int_0^\infty ds \, n_\pm A_s(sn_\pm)\right\}$$

QCD + QED factorization formula

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle_{|\text{non-rad.}} = \mathcal{F}_{Q_2}^{BM_1}(0) \int_0^1 du \, T_{i,Q_2}^{\text{I},\text{QCD+QED}}(u) f_{M_2} \Phi_{M_2}(u)$$

$$+ \int_{-\infty}^\infty d\omega \int_0^1 du dv \, T_{i,\otimes}^{\text{II,QCD+QED}}(z,u) f_B \Phi_{B,\otimes}(\omega) f_{M_1} \Phi_{M_1}(v) f_{M_2} \Phi_{M_2}(u)$$

- Formula retains its form, but the hadronic matrix elements are generalized. They become process-dependent through the directions and charges of the *other* particles.
- Computation of O(α_{em}) corrections to the h and hc short-distance coefficient (all poles cancel).

Example of a hard-scattering kernel

Same generalization for colour-allowed decays to D^+L^- . Hard scattering kernel

$$\begin{split} H_{-}^{(1)} &= -\mathcal{Q}_{d}^{2} \bigg\{ \frac{L_{b}^{2}}{2} + L_{b} \bigg(\frac{5}{2} - 2\ln(u(1-z)) \bigg) + h\big(u(1-z)\big) + \frac{\pi^{2}}{12} + 7 \bigg\} \\ &- \mathcal{Q}_{u}^{2} \bigg\{ \frac{L_{c}^{2}}{2} + L_{c} \bigg(\frac{5}{2} + 2\pi i - 2\ln\big(\bar{u}\frac{1-z}{z}\big) \bigg) + h\big(\bar{u}\big(1-\frac{1}{z}\big)\big) + \frac{\pi^{2}}{12} + 7 \bigg\} \\ &+ \mathcal{Q}_{d} \mathcal{Q}_{u} \bigg\{ \frac{L_{b}^{2}}{2} + \frac{L_{c}^{2}}{2} - 6L_{\nu} + 2L_{b} \bigg(2 - \ln(\bar{u}(1-z)) \bigg) \\ &- 2L_{c} \bigg(1 - i\pi + \ln\big(u\frac{1-z}{z}\big) \bigg) + g\big(\bar{u}(1-z)\big) + g\big(u\big(1-\frac{1}{z}\big)\big) + \frac{\pi^{2}}{6} - 12 \bigg\} \\ &+ \mathcal{Q}_{d} \mathcal{Q}_{u} f(z) \,, \\ H_{+}^{(1)} &= -\mathcal{Q}_{d}^{2} \sqrt{z} \, w\big(u(1-z)\big) - \mathcal{Q}_{u}^{2} \frac{1}{\sqrt{z}} \, w\big(\bar{u}\big(1-\frac{1}{z}\big)\big) - \mathcal{Q}_{d} \mathcal{Q}_{u} \sqrt{z} \, \frac{\ln z}{1-z} \,, \\ &z \equiv \frac{m_{c}^{2}}{m_{b}^{2}} \,, \qquad L_{c} \equiv \ln \frac{\mu^{2}}{m_{c}^{2}} = L_{b} - \ln z \,, \qquad L_{\nu} \equiv \ln \frac{\nu^{2}}{m_{b}^{2}} \,, \\ &h(s) \equiv \ln^{2} s - 2\ln s + \frac{s\ln s}{1-s} - 2\text{Li}_{2} \Big(\frac{s-1}{s} \Big) \,, \\ &f(z) \equiv \bigg(1 - \frac{1+z}{1-z} \ln z \bigg) L_{b} + \frac{\ln z}{1-z} \Big(\frac{1}{2} (1+z) \ln z - 2 - z \Big) \,, \dots \end{split}$$

Edinburgh, 23 June 2022 20

Size of QED effects

2009.10615 (πK) and 2107.03819 (colour-allowed *DL* and semi-leptonic $B \rightarrow D$), with P. Böer, G. Finauri, J. Toelstede and K.K. Vos

Numerical estimate of QED effects for πK and D^+L^- final states

Up to now virtual corrections to the non-radiative amplitude. Add (ultra)soft photon radiation.

- Electroweak scale to m_B: QED corrections to Wilson coefficients included
- *m_B* to μ_c: O(α_{em}) corrections to short-distance kernels included. QED effects in form factors and LCDA <u>not</u> included.
- Ultrasoft photon radiation included (same formalism as for $\mu^+\mu^-$ with $m_\mu \to m_\pi, m_K$)

$$U(M_1M_2) = \left(\frac{2\Delta E}{m_B}\right)^{-\frac{\alpha_{\rm em}}{\pi}} \left(\mathcal{Q}_B^2 + \mathcal{Q}_{M_1}^2 \left[1 + \ln\frac{m_{M_1}^2}{m_B^2}\right] + \mathcal{Q}_{M_2}^2 \left[1 + \ln\frac{m_{M_2}^2}{m_B^2}\right]\right)$$
(M1, M2 light mesons)

$$U(\pi^{+}K^{-}) = 0.914$$

$$U(\pi^{0}K^{-}) = U(K^{-}\pi^{0}) = 0.976$$

$$U(\pi^{-}\bar{K}^{0}) = 0.954 \quad \text{[for } \Delta E = 60 \text{ MeV]}$$

$$U(\bar{K}^{0}\pi^{0}) = 1$$

$$U(D^{+}K^{-}) = 0.960$$

$$U(D^{+}\pi^{-}) = 0.938$$

Isospin-protected ratios / sum rules for the πK final states

Consider ratios / sums where some QCD uncertainties drop out.

[MB, Neubert, 2003] $R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma \mathrm{Re} \ \delta_{\mathrm{E}} + \delta_{U}$

$$R_L^{\text{QCD}} - 1 \approx (1 \pm 2)\% \qquad \delta_E \approx 0.1\% \qquad \delta_U = 5.8\%$$

QED correction larger than QCD and QCD uncertainty, but short-distance QED negligible.

[Gronau, Rosner, 2006]

$$\Delta(\pi K) \equiv A_{\rm CP}(\pi^+ K^-) + \frac{\Gamma(\pi^- \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^- \bar{K}^0) - \frac{2\Gamma(\pi^0 K^-)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 K^-) - \frac{2\Gamma(\pi^0 \bar{K}^0)}{\Gamma(\pi^+ K^-)} A_{\rm CP}(\pi^0 \bar{K}^0) \equiv \Delta(\pi K)^{\rm QCD} + \delta\Delta(\pi K)$$

$$\Delta(\pi K)^{\text{QCD}} = (0.5 \pm 1.1)\% \qquad \delta \Delta(\pi K) \approx -0.4\%$$

QED correction of similar size but small. Ultrasoft factors cancel.

Numerical estimate of QED effects for $D^{(*)+}L^-$ final states

$$\begin{split} R_{L}^{(0),(*)}(\Delta E) &\equiv \frac{\Gamma(\bar{B}_{d} \to D^{(*)+}L^{-})(\Delta E)}{d\Gamma^{(0)}(\bar{B}_{d} \to D^{(*)+}\mu^{-}\bar{\nu}_{\ell})/dq^{2} \mid_{q^{2}=m_{L}^{2}}} \\ R_{L}^{(*)}(\Delta E) &\equiv \frac{\Gamma(\bar{B}_{d} \to D^{(*)+}L^{-})(\Delta E)}{d\Gamma(\bar{B}_{d} \to D^{(*)+}\mu^{-}\bar{\nu}_{\ell})(\Delta E)/dq^{2} \mid_{q^{2}=m_{L}^{2}}} \end{split}$$

- Short-distance QED effects ≈ −1%, ultrasoft up to ≈ −7% for pions, depending on the semi-leptonic normalization.
- Not large enough to explain the apparent amplitude deficit of -15% [Bordone et al., 2020], but highlights the importance of proper treatment of ultrasoft radiation effects.

$R_{L}^{(*)}$	LO	QCD NNLO	$+\delta_{\text{QED}}$	$+\delta_{\mathrm{U}}(\delta_{\mathrm{U}}^{(0)})$
R_{π}	0.969 ± 0.021	$1.078^{+0.045}_{-0.042}$	$1.069\substack{+0.045\\-0.041}$	$1.074^{+0.046}_{-0.043}(1.003^{+0.042}_{-0.039})$
R_{π}^{*}	0.962 ± 0.021	$1.069\substack{+0.045\\-0.041}$	$1.059\substack{+0.045\\-0.041}$	$1.065^{+0.047}_{-0.042}(0.996^{+0.043}_{-0.039})$
$R_K\cdot 10^2$	7.47 ± 0.07	$8.28^{+0.27}_{-0.26}$	$8.21^{+0.27}_{-0.26}$	$8.44^{+0.29}_{-0.28} \left(7.88^{+0.26}_{-0.25}\right)$
$R_K^*\cdot 10^2$	6.81 ± 0.16	$7.54\substack{+0.31 \\ -0.29}$	$7.47\substack{+0.30 \\ -0.29}$	$7.68^{+0.32}_{-0.30}(7.19^{+0.29}_{-0.28})$

Table 3: Theoretical predictions for $R_L^{(*)}$ expressed in GeV² at LO, NNLO QCD and subsequently adding δ_{QED} given in (82) and the ultrasoft effects δ_U (or in brackets $\delta_U^{(0)}$). The last column presents our final results.

Summary

 QED factorization is more complicated than QCD due to charged external states. SCET applies and we now understand how to systematically include QED effects, but it requires new non-perturbative matrix elements, generalizing the familiar hadronic matrix elements.

Summary

 QED factorization is more complicated than QCD due to charged external states. SCET applies and we now understand how to systematically include QED effects, but it requires new non-perturbative matrix elements, generalizing the familiar hadronic matrix elements.

(II) For $B_s \to \mu^+ \mu^-$ there is a power-enhanced virtual electromagnetic correction.

- More long-distance QCD than f_B
- Effect of the same order as the non-parametric uncertainty, larger than previously estimated QED uncertainty
- III) For charmless hadronic decays the QCD × QED factorization formula takes a similar form as in QCD alone, but the generalized pion (etc.) and B-meson LCDA exhibit novel properties (asymmetric evolution, soft rescattering phases in the B-LCDA)

V

Structure-dependent logarithms turn out to be small

Comparison to experiment now requires precise statements how QED effects are treated in the analysis. Ideally compare theoretically well-defined and calculable *radiative* branching fractions and use Monte Carlo generators only to estimate efficiencies.

Back-up slides

Numerical size of the QED correction to $B_s \rightarrow \mu^+ \mu^-$

Include through the substitution

$$\overline{\mathcal{B}}(B_s \to \ell^+ \ell^-) = \frac{\tau_{B_q} m_{B_q}^3 f_{B_q}^2}{8\pi} |\mathcal{N}|^2 \frac{m_{\ell}^2}{m_{B_q}^2} \sqrt{1 - \frac{4m_{\ell}^2}{m_{B_q}^2}} |C_{10}|^2, \qquad C_{10} \to C_{10} + \frac{\alpha_{\rm em}}{4\pi} \mathcal{Q}_{\ell} \mathcal{Q}_q \Delta_{\rm QED}$$

where

$$\Delta_{\text{QED}} = (33\dots 119) + i (9\dots 23)$$

- Reduction of the branching fraction by 0.3–1.1 % Uncertainty entirely due to *B*-meson LCDA.
- Cancellation of a factor of three between the C₉^{eff}(um_b²) and double-log enhanced C₇^{eff} term:

 $-0.6\% = 1.1\% \left(C_9^{\text{eff}} \right) - 1.7\% \left(C_7^{\text{eff}} \right)$

- Significantly larger than previously estimated QED correction. QED uncertainty almost as large as other non-parametric uncertainties (1.2%)
- Small time-dependent rate asymmetries are generated. $[C_{\lambda} = -\eta_{\lambda} 2r \operatorname{Re}(\Delta_{\text{QED}}) \approx \eta_{\lambda} 0.6\%]$

Matching, RGE, leading-(double) log resummation - sketch

Matching, RGE, leading-(double) log resummation - sketch

• Operator mixing in SCET_{II} RGE with cusp anomalous dimension \rightarrow double logarithms $\alpha \times \alpha_{(x)}^n \ln^{2n+1}$