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Talk Outline
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Talk Outline

1. Experimental Picture of 
QED effects in B decays

4. QED 
corrections for 

 B → D(*)τν̄τ

2. Some “simple” 
system: 
Υ(4S) → B+B−

3. QED corrections for 
 and |Vub | & |Vcb | B → Dℓν̄ℓ
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FSR & Bremsstrahlung 
A Challenge to Lepton Universality in B Meson Decays 3

Fig. 2 Belle (a) and LHCb (b) single event displays: Trajectories of charged particles are shown as colored solid lines, energy
deposits in the calorimeters are depicted by red bars. The Belle display is an end view perpendicular to the beam axis with the
silicon detector in the center (small orange circle) and the Cherenkov detectors (purple polygon). This is a ⌥ (4S) ! B

+
B

�

event, with B
� ! D

0
⌧
�
⌫̄⌧ , D0 ! K

�
⇡
+ and ⌧

� ! e
�
⌫⌧ ⌫̄e, and the B

+ decaying to five charged particles (white solid lines)
and two photons. The trajectories of undetected neutrinos are marked as dashed yellow lines. The LHCb display is a side view
with the proton beams indicated as a white horizontal line with the interaction point far to the left, followed by the dipole
magnet (white trapezoid) and the Cherenkov detector (red lines). The area close to the interaction point is enlarged above,
showing the tracks of the charged particles produced in the pp interaction, the B

0 path (dotted orange line), and its decay
B̄0 ! D

⇤+
⌧
�
⌫̄⌧ with D

⇤+ ! D
0
⇡
+ and D

0 ! K
�
⇡
+, plus the µ

� from the decay of a very short-lived ⌧
�.

All three experiments rely on layers of finely seg-
mented silicon strip detectors to locate the beam-beam
interaction point and decay vertices of long-lived parti-
cles. A combination of silicon strip detectors and mul-
tiple layers of gaseous detectors measure the trajecto-
ries of charged particles deflected in a magnetic field.
Devices which sense Cherenkov radiation distinguish
charged particles of di↵erent masses, and arrays of ce-
sium iodide crystals measure the energy of photons
and identify electrons at BABAR and Belle. Muons are
identified as particles penetrating a stack of steel ab-
sorbers interleaved with large area gaseous detectors.
Examples of reconstructed signal events recorded by the
Belle and LHCb experiments are shown in Figure 2.

BABAR and Belle exploit the BB pair production
at the ⌥ (4S) resonance and have independently devel-
oped two sets of algorithms to tag BB events by recon-
structing a hadronic or semileptonic decay of one of the
two B mesons, referred to as Btag. The hadronic tag al-
gorithms [22,23] search for the best match between one
of more than a thousand possible decay chains and a
subset of all detected particles in the event. The e�-
ciency for finding a correctly matched Btag is unfortu-
nately small, typically 0.3%. The semileptonic tag algo-
rithms relies on a few decays modes with larger branch-
ing fractions, resulting in an e�ciency of about 1%.
However, the presence of the neutrino leads to weaker

constraints on the Btag and more importantly on the
signal B decay.

Measurements of B ! D(⇤)⌧�⌫⌧ Decays

The BABAR and Belle event selection required a Btag,
plus a D or D

⇤ meson, and a charged lepton `
� = e

� or
µ

�. Charged and neutral D mesons are reconstructed
from combinations of pions and kaons with invariant
masses compatible with the D meson mass. The higher-
mass D

⇤0 and D
⇤+ mesons are identified by their D

⇤ !
D⇡ and D

⇤ ! D� decays. Non-BB̄ backgrounds and
misreconstructed events are greatly suppressed by the
Btag reconstruction. The remaining background is fur-
ther reduced by multivariate selections.

At LHCb, only decays of B̄
0 mesons producing a

D
⇤+ meson and a µ

� are selected. The D
⇤+ meson is

reconstructed exclusively in D
⇤+ ! D

0(! K
�

⇡
+)⇡+

decays. The use of a single decay chain significantly sim-
plifies this analysis and the reduced e�ciency is com-
pensated by the very large production rate of B mesons
at the LHC. The bulk of the background is rejected by
requiring that all charged particles from the B candi-
date (and no other tracks) originate from a common
vertex that is significantly separated from the pp colli-
sion point.

* About 5 charged tracks 
per B meson decay

* Electrons radiate a fair bit 
while traversing the 
detector
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FSR & Bremsstrahlung 

First layer of material a 
particle encounters is the 
beam-pipe 

γ
γ

γ

Then layer of tracking 
detectors

Then a drift chamber

Example Trajectory:

Emissions from the beam-
pipe look a lot like FSR



material thickness l density ρ mean path < l > radiation length X0 < l > /X0 plasma frequency kp

(mm) (g/cm3) (mm) (mm) (Gev)

PEP II tube Au 0.004 19.3 0.005 3.347 0.00153 8.0168 · 10−8

Be 0.830 1.85 1.064 346.416 0.00307 2.6113 · 10−8

H20 1.48 0.998 1.896 370 [17] 0.00513 2.1476 · 10−8

Be 0.530 1.85 0.679 346.416 0.00196 2.6113 · 10−8

total 0 .01169
SVT 1-3 Si 0.300 2.33 0.404 93.344 0.00433 3.1099 · 10−8

Cu 0.0089 8.96 0.0119 14.350 0.00084 5.8267 · 10−8

Kapton 0.0254 1.42 0.0342 324.948 0.00011 2.3311 · 10−8

SST Kevlar (C) - 2.27 0.0911 188.109 0.00048 3.0677 · 10−8

SVT 4 Si 0.300 2.33 0.387 93.344 0.00415 3.1099 · 10−8

Cu 0.0089 8.96 0.0115 14.350 0.00080 5.8267 · 10−8

Kapton 0.0254 1.42 0.0328 324.948 0.00010 2.3311 · 10−8

SST Kevlar (C) - 2.27 0.0911 188.109 0.00048 3.0677 · 10−8

SVT 5 Si 0.300 2.33 0.386 93.344 0.00414 3.1099 · 10−8

Cu 0.0089 8.96 0.0115 14.350 0.00080 5.8267 · 10−8

Kapton 0.0254 1.42 0.0327 324.948 0.00010 2.3311 · 10−8

SST Kevlar (C) - 2.27 0.0911 188.109 0.00048 3.0677 · 10−8

total 0 .03331
ST Kevlar (C) 0.97 2.27 1.25 249 [14] 0.005 [13] 3.0677 · 10−8

DCH Be 1.00 1.85 1.28 346.416 0.00370 2.6113 · 10−8

He : C4H10 + wires 573.0 0.000624 734.2 340000 [14] 0.00216 5.0067 · 10−10

total 0 .00586
overall total 0.05086

Table 1: All radiation lengths were calculated using Eqn. (23) and material properties found in [18], unless a reference is stated. For the SVT support
structure (SST) the estimation for the mean path is not straightforward. We therefore assume the overall estimate for the radiation length
for the SVT stated in [?] is correct, and recalculated mean path and radiation length using the known material properties. This was also done
for the not well documented support tube (ST).
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Figure 3: The effects of Bremsstrahlung on the energy spectrum of 107 electrons was simulated: gray
shows the original spectrum peaking sharp at 0.6 GeV in the frame of the Υ(4S) resonance, red shows the
corrected spectrum. This was done, a) for the nominal detector geometry , and b) for 0.14% radiation
length additional detector material. Normalizing these histograms and subtracting bin per bin yields a
histogram with correction weights. This is shown in c) for the previous case with additional detector
material, and in d) similar for the same amount less detector material. To correct an arbitrary spectrum,
this procedure has to be repeated for every binned energy with ’sufficient’ population to gain an entire
weight matrix. This and our correction method are discussed in 3.4.
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Example material Budget of a detector (here BaBar):
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Simulated energy loss:

q

pf + k

pi, si

pf , sf

k, ε

−Ze

q

pi − k

pi, si

pf , sf

k, ε

−Ze

Figure 1: Feynman diagrams describing lowest-order Bremsstrahlung processes with a static Coulomb
field −Ze. It is pf = (Ef , pf ) the 4-momentum of the final-state electron with spin helicity sf and
invariant mass m0, pi = (Ei, pi) the 4-momentum of the initial-state electron with spin helicity si,
q = pf + k − pi the 4-momentum of the exchanged virtual photon, and k = (ω, k) the 4-momentum of
the emitted real photon with polarization ε = (0, ε(k, λ)) and transversal polarization states λ = 1, 2.

with matrix element

Mµ(k) = ū(pf , sf )
h
γµ

p/f + k/ + m0

2pf · k + iε
γ0 + γ0

p/i − k/ + m0

−2pi · k + iε
γµ

i
u(pi, si) , (2)

where V is an arbitrary volume, q = pf +k−pi. The remaining kinematic quantities are introduced
in the caption of Fig. (1). The cross section of Bremsstrahlung is given by the square of the scattering
amplitude |Sfi|2 per incoming electron flux

` vi
V

´
and time T , summed over all electron and photon

initial and final states. This yields

dσ =
Z2e6

|vi|
4π
2ω

m2
0

EfEi

(4π)2

|q|4 |εµMµ(k)|22πδ(Ef + ω − Ei)
d3k

(2π)3
d3pf

(2π)3
. (3)

Integrating over dEf yields the differential cross section with respect to the solid angle of the
scattered electron Ωe and photon Ωk as follows:

dσ =
Z2e6m0

π2

|pf |
|pi |

ωdωdΩkdΩeΘ(Ei − m0 − ω)
1

|q|4 |ε
µMµ(k)|2 . (4)

The matrix element simplifies in the k → 0 soft photon limit, but we are interested in the general
case. Evaluating the matrix element yields

|εµMµ|2 =
1
2

X

λ

X

si,sf

˛̨
˛ū(pf , sf )

h
ε/

p/f + k/ + m0

(pf + k)2 − m2
0

γ0 + γ0
p/i − k/ + m0

(pi − k)2 − m2
0

ε/
i
u(pi, si)

˛̨
˛
2

, (5)

= −1
2
Tr

h“
γµ

p/f + k/ + m0

2pf · k γ0 + γ0
p/i − k/ + m0

−2pi · k
γµ

”“p/i + m0

2m0

”

×
“
γ0

p/f + k/ + m0

2pf · k γµ + γµ
p/i − k/ + m0

−2pi · k
γ0

”“p/f + m0

2m0

”i
, (6)

= − 1
4m2

0

1
(pi · k)2(pf · k)2

h
4m2

0

`
(pf · k)Ef − (pi · k)Ei

´2

+
`
(pf · k)2 + (pi · k)2

´`
2(pi · k)(pf · k) + q2m2

0

´
+ 2(pi · k)(pf · k)q2`

E2
i + E2

f − (pi · pf )
´i

.

(7)

θi

θf φ

pi

k

pf

Figure 2: The three momentum vectors pi, pf , and k and the spherical angles θi, θf , and φ.

With the spherical angles introduced in Fig. 2 and relations

pi · k = ω
`
Ei − |pi| cos θi

´
,

pf · k = ω
`
Ef − |pf | cos θf

´
,

q2 = −p2
i − p2

f − ω2 − 2ω|pf | cos θf + 2ω|pi| cos θi

+2|pi||pf |
`
cos θi cos θf + sin θf sin θi

´
,

(8)
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Track fitting

Figure 3: Transverse momentum distributions of primary charged particles as simulated
for events. A logarithmic scale is used for the x axis. The distribution of each charged
particle type is normalized to the total number of tracks from the respective type. The
vertical line at 100MeV/c indicates the transverse momentum threshold below which a
track can only be found by the SVD. Charged particles with transverse momenta below
the value 300MeV/c marked by the second vertical line can curl inside the CDC volume.

Studies of (semi)leptonic decays often require the reconstruction of the
missing neutrino by exploiting four-momentum conservation. Hence the
tracking algorithm needs to find all of the charged final state particles. This
is demanding since there are about 11 tracks per event on average. Moreover,
the momentum spectrum of the particles is quite soft, ranging from a few
tens of MeV/c to a few GeV/c (Figure 3). It is also essential to keep the rate
of fake and duplicate tracks as low as possible.

The reconstruction of particles with momenta below 200MeV/c is par-
ticularly challenging since the trajectories are heavily a↵ected by multiple
Coulomb scattering and by energy loss in the material. Moreover, only the
measurements of the four layers of the SVD are available to the pattern
recognition algorithms for most of the tracks in this low momentum region.
The soft momentum spectrum is also challenging for the CDC since particles
with momenta below 300MeV/c can loop several times in the CDC volume
producing hundreds of hits. The relative abundance of the long lived charged
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Figure 4: Fractions of charged particle types in generic events.

particles produced in decays is illustrated in Figure 4.
Other categories of events are also of importance to the experiment. Most

notably -pair and events improve the existing limits and measurements on
the lepton sector and on the charmed mesons. The experiment will also be
used to search for non–Standard Model particles, i.e. dark photons, axion-
like particles, or magnetic monopoles that might be produced directly in
collisions. These events are characterized by a lower track multiplicity, a
sti↵er momentum spectrum, and by a less spherical event topology.

Particles lost by beam-gas and Touschek scattering, as well as due to
non-linearities of the machine lattice, lead to additional hits in the detec-
tor. The occupancy due to this machine background is expected to be very
high as a consequence of the high beam currents, small emittances, and large
beam-beam tune shifts needed to reach the design luminosity [16]. The elec-
tromagnetic processes occurring at the interaction point, radiative Bhabha
and electron-positron pair production, whose cross sections are of the order
of several mb, are going to be the leading e↵ects for the beam particle loss
rate at nominal luminosity.

The VXD occupancy is expected to be largely dominated by soft electron-
positron pairs produced at the IP by the process !. The forward and back-
ward sections of the SVD may be hit by an electromagnetic shower originat-
ing from Bhabha electrons interacting in the support structure of the final
focusing magnets. The number of background hits exceeds the signal hits
by two orders of magnitude resulting in a PXD inner layer pixel occupancy

9

Use Kalman-Filter or global -fit

to find and fit particle tracks

χ2

See e.g. Comput.Phys.Commun. 259 (2021) 107610

or 

Bremsstrahlung leads to kinks in trajectory

At Belle II: Reconstructed track has weighted 

average of pre-and post-emission momentum

γ
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Track fitting
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vertical line at 100MeV/c indicates the transverse momentum threshold below which a
track can only be found by the SVD. Charged particles with transverse momenta below
the value 300MeV/c marked by the second vertical line can curl inside the CDC volume.
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is demanding since there are about 11 tracks per event on average. Moreover,
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Martino Borsato - University of Heidelberg

Brem reco at Belle
๏ Belle ECal threshold to reconstruct neutral 

deposit is 10 MeV 

๏ Probability to emit at least a brem 
( ! ) is about 25%

๏ Brem emission results in kinked track
• Effects considered via noise matrix in track fit
• Work ongoing to improve this using 

information on the material distribution

๏ In Belle energy loss from bremsstrahlung is 
recovered by adding back the energy of 
photons in a cone of 0.05 rad around the 
• Sensitive to beam-induced background
• Work ongoing to optimise procedure for Belle II 

Eγ > 10 MeV

e±

!8

6.2. Bremsstrahlung Recovery

Figure 6.2.: Momentum resolution of electrons within a momentum range of |p| œ

[0.5, 2.5] GeV. The figures show the same distribution. To better visualize the
tails, the plot on the right uses a logarithmic y-axis. Electrons with no radiated
photon with E“ > 10 MeV are shown in blue, electrons with at least one radiated
photon above this threshold are shown in orange. The tail to underestimated
energies arises from radiated bremsstrahlung.

Figure 6.3.: The cumulative distribution function for the hardest photon (Primary), second
hardest photon (Secondary) and both photons to carry away a certain fraction of
energy via bremsstrahlung. The distribution shows, e.g. that the probability that
the two hardest photons carry 90% of all energy lost via bremsstrahlung is ¥95%.

31

p ∈ [0.5,2.5] GeV

(with Eγ > 10 MeV)

6. Electron Reconstruction

Figure 6.4.: Origin of bremsstrahlung photons in the tracking detectors. The major part of
bremsstrahlung originates within the radii containing the beampipe, the silicon
detectors and the inner CDC border wall (left). The layer structure of the detector
is clearly visible (right).

Figure 6.5.: The cumulative distribution function for an electron to lose a certain fraction of
energy via bremsstrahlung after leaving a sub detector. The distribution indicates
that the major bremsstrahlung energy loss happens in the SVD and is not present
in the CDC.
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The major part of 
bremsstrahlung originates 
within the radii containing the 
beampipe, the silicon detectors 
and the inner CDC border wall 
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Bremrecovery

Can try to identify and recover 
Bremsstrahlung & FSR emissions  

12 3 Bremsstrahlung Effects
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Figure 3.3: Distribution of the bremsstrahlung photon vertex position (blue) from Monte
Carlo information in Y(4S)-Events. Radii of the VXD layers (red).

Figure 3.4: Distribution of the bremsstrahlung photon energy in 10,000 Y(4S)-Events.

Patrick Ecker, Bachelor Thesis 

Material layers

Requires lower energy cut ~ 10 MeV 
to identify photon in ECL
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Figure 3.3: Distribution of the bremsstrahlung photon vertex position (blue) from Monte
Carlo information in Y(4S)-Events. Radii of the VXD layers (red).
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Figure 3.4: Distribution of the bremsstrahlung photon energy in 10,000 Y(4S)-Events.

Brem photon energy 
distributions

4. New Approach on Bremsstrahlung
Finding

In connection with the update of the particle accelerator, the Belle detector to Belle II
and the associated rewriting of the software a new method for bremsstrahlung finding is
developed. After giving a short overview about the method used at the Belle experiment,
a new approach on bremsstrahlung reconstruction is described in this chapter and the
current implementation of this idea is described in detail.

4.1 The Belle Recovery Method
At Belle the bremsstrahlung photon recovery was done during the offline reconstruction.
All ECL clusters, which were not related to a track, located within a cone around the
perigee of the trajectory, were collected. The energy deposited in these ECL clusters was
then added at the reconstructed origin of the track. The momentum of the electron was
then given by

pe = ptrackinge + ⌃p�

Especially for photons radiated far from the interaction point, these approach is expected
to have a low finding efficiency. This expectation gets verified later in Section 5.3 and
therefore a more efficient method for finding bremsstrahlung photons should be developed.

4.2 Idea
The aim for Belle II is to find a more efficient way for bremsstrahlung recovery. In general
the idea is to make a two step approach:

• Collect the lost energy by bremsstrahlung with information of the ECL

• Do a refit of the track with the collected information

For each hit measurement of a given track, an extrapolation is done on a straight line
in the tracks direction at this track point. The extrapolation is only performed at this
hits, because bremsstrahlung only occurs at dense material in the inner detector layers.
The position of this dense material also presents the location of the measured hits. The
extrapolation then stops at the ECL and it is checked if the endpoint of the extrapolation
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Once identified, can correct track 
momentum with identified photons:

14 4 New Approach on Bremsstrahlung Finding

extrapolation

track points

IP

primary 
cluster

bremsstrahlung
cluster

Figure 4.1: Idea for finding bremsstrahlung in the Belle II detector.

matches the position of a secondary ECL cluster (a cluster which is not already associated
to a track). The matching is done by assigning an acceptance range to both the cluster and
the extrapolation. It is then checked if the acceptance ranges overlap or not. If there is an
overlap, the ECL cluster is assumed to be a bremsstrahlung cluster, which was generated
by a photon radiated from the original electron. The found cluster then gets associated
with the primary ECL cluster, which was produced by the electron. The idea is also shown
in Figure 4.1.
The acceptance range which is assigned to the cluster and the extrapolated position depends
on two parameters: The error on the position and an acceptance factor, which can be chosen
by the user.
One of the expected benefits of this approach is that the lost energy via bremsstrahlung
can be added more exactly at the point the radiation happened and not all at the perigee
like it was done in the method used at Belle. So a more accurate track fit can be expected.

4.3 ECL Position Resolution
For the given approach to be effective a good position resolution of the ECL is needed, so
the found energy can be added to the electron energy at the correct layer of the tracking
detector. Therefore in this section it is tested which characteristics the electron has to
possess, so photons, which were radiated at different layers, can be distinguished in the
ECL.
The problem can be simplified by looking for electrons with a trajectory in the x-y-plane.
Additionally the layers of the tracking detectors and the ECL wall are approximated as
perfect circles. In Figure 4.2 a draft of the simplified problem is given.

The distance between the hits on the ECL of two photons which were radiated at different
layers only depends on the curvature of the track. The curvature is given by

! =
q

pt · ↵

As it can be seen in this formula, the only variable parameter is the transverse momentum
of the electron. Because of that, the aim is to get a formula for the distance between the
ECL hits, depending on the transverse momentum of the electron.
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Belle method: use a search cone or wedge around the initial direction to 

define a search region in the ECL
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Figure 5.4.: Illustration of the search region for bremsstrahlung photons �Brems in a cone (a)
and a wedge-slice shaped search region (b) around the electron momentum
vector at the point of closest approach. In the case of the cone, its opening
angle ↵ can be optimized, while the wedge-slice search region has two angles
↵ and � which can be optimized.

All �Brems candidates matching these conditions are combined with the electron candidate
to build a corrected electron candidate ecorr with an updated four-momentum

pecorr = pereco +
X

i

p� i
Brems

. (5.17)

This bremsstrahlung corrected candidate ecorr competes with uncorrected electrons to be
used for the recombination of intermediate particles of higher masses. Thus, if any of the
photon candidates used for the correction, or the original uncorrected electron itself is used
for a more successful interpretation of the event, the bremsstrahlung corrected candidate
is also rejected by design.
The impact of the bremsstrahlung correction can be evaluated for fully reconstructed ⌥(4S)
events and in particular regarding its effect on the squared missing mass M2

miss defined
in Equation (1.2). Of all events reconstructed in the channels relevant to and chosen
by the event selection for the R(D(⇤)) measurement described in Section 6.3, 4.35% are
bremsstrahlung corrected. The change in the M2

miss distribution due to the bremsstrahlung
correction is shown in Figure 5.5. The resolution of the peak in the squared missing mass at
0GeV is improved by the application of the bremsstrahlung correction. The correction also
affects the fit observable p⇤` , as the momentum of the signal side light lepton is increased,
if a bremsstrahlung photon is found.
As the momentum direction of the electrons at the POCA is used as the center of the cone in
which bremsstrahlung photons are searched for, the approach might not be optimal for low
momentum electrons with a high curvature. Other definitions of the search region have been
tested. Different orientations of the cone with respect to the electron momentum vector at
the POCA were explored. Instead of a cone, a wedge-slice shaped search region Figure 5.4b
given by two angles defined with respect to the momentum vector, one spanning an arc in
the plane given by the curved track and one perpendicular to this plane, was also tested.
For all approaches, the parameters are optimized according to the same criteria as explained
above. The best results are obtained with the centered cone method.
For future analyses of Belle II data, a more sophisticated method [63] is available. This new
method can make use of the full tracking detector information accessible during the track
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for a more successful interpretation of the event, the bremsstrahlung corrected candidate
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The impact of the bremsstrahlung correction can be evaluated for fully reconstructed ⌥(4S)
events and in particular regarding its effect on the squared missing mass M2

miss defined
in Equation (1.2). Of all events reconstructed in the channels relevant to and chosen
by the event selection for the R(D(⇤)) measurement described in Section 6.3, 4.35% are
bremsstrahlung corrected. The change in the M2

miss distribution due to the bremsstrahlung
correction is shown in Figure 5.5. The resolution of the peak in the squared missing mass at
0GeV is improved by the application of the bremsstrahlung correction. The correction also
affects the fit observable p⇤` , as the momentum of the signal side light lepton is increased,
if a bremsstrahlung photon is found.
As the momentum direction of the electrons at the POCA is used as the center of the cone in
which bremsstrahlung photons are searched for, the approach might not be optimal for low
momentum electrons with a high curvature. Other definitions of the search region have been
tested. Different orientations of the cone with respect to the electron momentum vector at
the POCA were explored. Instead of a cone, a wedge-slice shaped search region Figure 5.4b
given by two angles defined with respect to the momentum vector, one spanning an arc in
the plane given by the curved track and one perpendicular to this plane, was also tested.
For all approaches, the parameters are optimized according to the same criteria as explained
above. The best results are obtained with the centered cone method.
For future analyses of Belle II data, a more sophisticated method [63] is available. This new
method can make use of the full tracking detector information accessible during the track
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(a) (b)

Figure 5.5.: Visualization of the effect of the bremsstrahlung correction on the distribution
of the squared missing mass M2

miss on the left (a) and the lepton momentum
in the Bsig rest frame p⇤` on the right (b) in the selection for the R(D(⇤))
measurement. Only events involving a bremsstrahlung corrected electron are
considered.

reconstruction, while the method described above only utilizes the fitted helix parameter
of the track and the ECL clusters.

5.1.3. D
(⇤)

Meson Reconstruction

The first part of the signal Bsig meson decay tree is now already reconstructed in the form
of the electron and muon final state particles. The second reconstructable decay product
of the signal Bsig meson decay is an unexcited or excited D(⇤) meson (see Decays (5.1)
to (5.4)). As excited D⇤ mesons always decay into unexcited ones, the unexcited D meson
has to be reconstructed for every event.

The D meson can decay via a multitude of different decay channels, which also depend
on whether the D meson is charged or neutral. To achieve a high reconstruction efficiency
on the signal side, the D mesons are recombined in the eight decay channels with the
highest branching fractions for the charged and neutral case, each. The 16 D reconstruction
channels and the branching fraction they cover are listed in Table 5.2.
Candidates for D mesons are built from combinations of the final state particles described
above. The selection criteria imposed on D meson candidates are reconstruction channel
dependent and are included in Table 5.2. To reject obvious background from continuum
events, all D meson candidates are required to have a momentum below

pCMS

D < 3.0GeV (5.18)

in the center-of-mass reference frame. The invariant mass of a D meson candidate provides
separation power to reduce combinatorial background. Again, the difference �M of the
reconstructed to the nominal mass, as well as the significance of it, are utilized. For

Felix M
etzner, PhD Thesis

M2
miss = (pB − pD(*) − pℓ)2 ∼ 0 GeV2 pℓ

Require


Eγ < 400 MeV

Eγ < 0.4 × | ⃗p e |



28 5 Evaluation

Figure 5.7: Comparison of the bremsstrahlung finding efficiency and fake rate, depending
on the energy of the primary electron, between the new approach for Belle II
and the Belle method. Left side: Belle method with a cone angle of 5 �. Right
side: Belle II approach with an acceptance factor of 3.0.
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Figure 5.8: Comparison of the bremsstrahlung finding efficiency, depending on the
bremsstrahlung photon vertices, between the new approach for Belle II and
the Belle method. Left side: Belle method with a cone angle of 5 �. Right side:
Belle II approach with an acceptance factor of 3.0.

One of the problems with the Belle method was, that in particular for low energetic tracks
it was not possible to find bremsstrahlung photons, which were radiated at outer layers in
the VXD. This problem is shown in Figure 5.8. Drawn from the comparison between the
old and the new method the conclusion can be made that this problem is solved with the
implementation, developed in this thesis.

Belle II method: Extrapolate from all major 
material layers plus the 
transition region 

Finding Efficiency for Brem photons

Belle Method Belle II Method

Patrick Ecker, Bachelor Thesis 

Optimize Acceptance 
region to maximize finding 
efficiency & minimize fake 
rate

5.2 Photon Vertex Reconstruction 25

VXD 

ECL

Acceptance
Region

Acceptance
Region

CDC

Figure 5.3: Acceptance region of the bremsstrahlung finding module depending on the cur-
vature of the track.
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Brems emitted at LHCb

๏ Most brem emission 
due to material 
interaction

๏ If emitted before the 
magnet can affect 
momentum 
measurement

๏ Try to find brem 
photon and add its 
energy back

!10

Daniel Berninghoff Bremsstrahlungskorrektur 29.02.2016 / 136

Studien anhand von  
simulierten                          Zerfällen

250mra
d

100mrad

M1RICH2

T1T2
T3

5m 10m 15m

TTtex
Locator

RICH1

5m

Man beachte:
• Nur wenige Photonen werden 

im Magneten emittiert 
    weiche Photonen 

• Keine rekonstruierten 
Photonen von Tracking 
Stationen (T1-3) 
     teilen sich Kalorimeter  
     Zellen mit Elektron  

B+ ! K+e+µ�

Nur Material-WW vor dem Magneten relevant!

LHCb faces similar challenges:

If emission happens before the 
magnet impacts momentum 
measurement

Martino Borsato - USC

Brem recovery at LHCb

!11

ECAL

VELO

UT

Recover photons   
in this region

e ± track

๏ LHCb brem recovery algorithm:
• Extrapolate upstream !  track to the ECAL
• Take all reconstructed neutral clusters  

with !
• Add them back to electron momentum

๏ Main shortcomings
• ECAL energy resolution worse  

 than tracking resolution
• Brem can be out of ECAL or too soft

๏ Electrons with brem recovered:
• Better momentum resolution (more symmetric)
• Better particle identification ( !  don’t emit brem)

๏ What if no brem is found?  
→ most of the time it was missed

e±

ET > 75 MeV

π±

Identify Brem photon and correct 
track momentum

Done by extrapolating the 
upstream  to ECALe±

Demand minimal ; 


Also helps to identify electrons 

(as e.g. pions don’t radiate much Brem)

ET > 75 MeV

Martino Borsato - University of Heidelberg
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Figure S2: Distributions of various reconstructed properties for simulated decays. The first row
shows the angle between the two leptons, or one lepton and the kaon. The second row shows
the rapidity distributions, and the third row the transverse momentum distributions of all the
final-state particles. The bottom left plot shows the distribution for the quality of the B+ vertex
fit and the bottom right plot shows the �2

IP(B
+) variable, which quantifies the significance of

the B+ impact parameter.

Such decays are suppressed by placing an additional veto on the K+
e
� mass reconstructed

without the bremsstrahlung correction, i.e. based on the measured track momentum alone.
This veto removes background around the known D

0 mass, as shown in Fig. S3. After
the application of both these vetoes, the cascade backgrounds are reduced to a negligible
level while retaining 97% of B+

! K
+
µ
+
µ
� and 95% of B+

! K
+
e
+
e
� decays passing

the remainder of the selection requirements.
The fits to the nonresonant (resonant) decay modes divided into di↵erent data-taking

periods and trigger categories are shown in Fig. S4 (Fig. S5). For the resonant modes
these projections come from independent fits to each period/category. The nonresonant
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Brems emitted at LHCb

๏ How many brem/electron are typically emitted?
• !  complete screening approximation
• Material budget before magnet: !
• !
• Average number of brem emitted with at least 2.5% 

of the !  energy  

!

• At LHCb most electrons emit one energetic brem 
before the magnet

E(e±) > 10 GeV
d ≃ 38 % X0

pT(e±) ∼ 3 GeV ⇒ min(ET(γ)) = 75 MeV = 2.5 %

e±

< Nγ > = d
X0 [ 4

3 ln ( kmax
kmin ) −

4 (kmax − kmin)
3E

+ k2
max − k2

min
2E2 ] ≃ 1

!12
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Figure S2: Distributions of various reconstructed properties for simulated decays. The first row
shows the angle between the two leptons, or one lepton and the kaon. The second row shows
the rapidity distributions, and the third row the transverse momentum distributions of all the
final-state particles. The bottom left plot shows the distribution for the quality of the B+ vertex
fit and the bottom right plot shows the �2

IP(B
+) variable, which quantifies the significance of

the B+ impact parameter.

Such decays are suppressed by placing an additional veto on the K+
e
� mass reconstructed

without the bremsstrahlung correction, i.e. based on the measured track momentum alone.
This veto removes background around the known D

0 mass, as shown in Fig. S3. After
the application of both these vetoes, the cascade backgrounds are reduced to a negligible
level while retaining 97% of B+

! K
+
µ
+
µ
� and 95% of B+

! K
+
e
+
e
� decays passing

the remainder of the selection requirements.
The fits to the nonresonant (resonant) decay modes divided into di↵erent data-taking

periods and trigger categories are shown in Fig. S4 (Fig. S5). For the resonant modes
these projections come from independent fits to each period/category. The nonresonant

2

) [rad]−l, +l(α
0 0.1 0.2 0.3 0.4 0.5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

) [rad]−l, +K(α
0 0.1 0.2 0.3 0.4 0.5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

) [rad]+l, +K(α
0 0.1 0.2 0.3 0.4 0.5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

)+K(η
2 3 4 5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

))−l(η), +l(ηmax(
2 3 4 5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

))−l(η), +l(ηmin(
2 3 4 5

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

]c) [MeV/+K(
T
p

2000 4000 6000 8000

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

]c)) [MeV/−l(
T
p), +l(

T
pmax(

2000 4000 6000 8000 10000

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

]c)) [MeV/−l(
T
p), +l(

T
pmin(

1000 2000 3000 4000 5000

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

))+B(
Vtx
2χ(

10
log

2− 0 2

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation

))+B(
IP
2χ(

10
log

4− 2− 0 2

C
an

di
da

te
s /

 (a
. u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LHCb simulation −e+e+ K→+B
−µ+µ+ K→+B

+)K−e+(eψ J/→+B
+)K−µ+µ(ψ J/→+B

Figure S2: Distributions of various reconstructed properties for simulated decays. The first row
shows the angle between the two leptons, or one lepton and the kaon. The second row shows
the rapidity distributions, and the third row the transverse momentum distributions of all the
final-state particles. The bottom left plot shows the distribution for the quality of the B+ vertex
fit and the bottom right plot shows the �2

IP(B
+) variable, which quantifies the significance of

the B+ impact parameter.

Such decays are suppressed by placing an additional veto on the K+
e
� mass reconstructed

without the bremsstrahlung correction, i.e. based on the measured track momentum alone.
This veto removes background around the known D

0 mass, as shown in Fig. S3. After
the application of both these vetoes, the cascade backgrounds are reduced to a negligible
level while retaining 97% of B+

! K
+
µ
+
µ
� and 95% of B+

! K
+
e
+
e
� decays passing

the remainder of the selection requirements.
The fits to the nonresonant (resonant) decay modes divided into di↵erent data-taking

periods and trigger categories are shown in Fig. S4 (Fig. S5). For the resonant modes
these projections come from independent fits to each period/category. The nonresonant
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On average one Brem photon per electron:



# 13

Reversing Bremsstrahlung Effects
Can use detailed MC simulations to separate Brem & FSR effects from each 
other on a statistical basis

Use detailed Geant4 simulation of material effects of detector

Treat Brem effects as migration problem: 
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# 14

Reversing Brem + FSR Effects
To compare with theory, often also FSR effects need to be removed

Method very similar: use PHOTOS and MC simulations to assess migrations 
between “bare” and “dressed” leptons

Figure 4.1: Migration matrices for the B
0

! D
⇤
e⌫e mode.

4.1 Migration Matrices 400

We determine the migration matrices using the generator level information corresponding 401

to the reconstructed signal MC by checking the true underlying wMC for each reconstruced 402

wReco. The migration matrices for the three modes are shown in Figure 4.1, Figure 4.2, 403

Figure 4.3, and Figure 4.4. 404

4.2 Acceptance Correction 405

We determine the acceptance correction function by utlizing a dedicated MC truth 406

sample which does not include effects from PHOTOS. This allows to perform consistent 407

|Vcb| fits to the unfolded differential distribution. We determine the uncertainty on the 408

acceptance by using the normal approximation intervals. The acceptance functions are 409

shown in Figure 4.5. 410

4.3 Unfolding Result with Matrix Inversion 411

Here we present the step-by-step results of the unfolding procedure. 412

• Matrix Inversion Result: Figure 4.6 413

• Bin-by-bin Result: Figure 4.7 414
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Figure 8.2: Illustration of the helicity angles in the decay B ! D
⇤
`⌫`

8.2 Form Factor Fits 560

As a reminder, we give the full differential decay with for the B ! D
⇤
`⌫` decay: 561
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⇤(! . . . )`⌫`
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(8.1)
with r = mD

⇤/mB, and w = (m2
B + m

2
D

⇤ � q
2)/(2mBmD

⇤). The definition of the angles 562

is illustrated in Figure 8.2. 563

Based on the average we fit the BGL and CLN form factor parametrizations. For the 564

BGL form factor fit, we truncate the series based on the result of a nested hypothesis 565

test [13] with the additional constriant that newly added coefficients are not allowed to 566

have correlation coefficient larger than r = 0.95. This leads to the choice of the BGL121, 567

where we fit one coefficient for a (a0), two coefficients for b (b0, b1) and two coefficients 568

for c (c1, c2). The fitted spectrum is shown in Figure 8.3 and the coefficients with their 569

correlations are shown in Table 8.4. The fit p value is shown in Figure 8.3. 570

The input for the lattice is the published result given in [14], which gives a single data 571

point hA1
(1) = 0.906± 0.0126 at zero-recoil which constraints the overall normalization of 572

the form factors. For further comparisons we use the preprint lattice QCD values beyond 573

zero recoil in the form of the BGL322 parametrization (without experimental input) given 574

in [12]. If lattice bands are shown in green in the plots, then this lattice calculation is 575

implied. 576

For the CLN type parametrizations we fit ⇢2, R1(1), R2(1), hA1
(1). The fitted 577

spectrum is shown in Figure 8.4 and the coefficients with their correlation are shown in 578

Table 8.5. The fit p value is shown in Figure 8.4. 579

For easier comparison we plot both fitted spectra into a single figure, shown in 580

Figure 8.5. We also show comparisons of the form factors in Figure 8.6 581

We also show comparisons of our fit results to other available results in Figure 8.7. 582

72

Typically correct for resolution, Bremsstrahlung, FSR effects in one go:

Example decay angles:
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Uncertainties of FSR Effects in measurements

No consensus amongst experimentalists how such should be evaluated

Approaches: 


* Ignore 

* Produce samples w/o FSR (PHOTOS), assign X% difference to nominal 
result as error (X = 20-30%) 

* Compare to Ginsberg calculation; derive uncertainty from difference
Volume 303, number I,2 PHYSICS LETTERS B 8 April 1993 
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Fig. 1. (a) Radiative correction to the decay distribution (dI’/ 
d_x- dI’O/dx) for B * -+D0e’8( y) in the 3 k rest frame. Open cir- 
cles are from the exact analytical formula [ 21, filled circles from 
the approximate formula [4] expanded to O(a), Points denote 
results from the approximate, exponentiated formula [4]. 
The results are given in units of (G:mi/32n3)N,,I Vcbl*jf”, 1’ 
where Nn=$JA [.x2( 1 -x)~/ (1 -t]x) ]d_x. The value of the 
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Jh[x*( 1 -qx)/( 1 -x)] dx and q= 1 -m$/mi. (b) Radiative 
correction to the decay distribution (dI’/dx-dT’“fdx) for 
r * + e * uT( y ) in the r * rest frame. Open circles are from the ex- 
act analytical formula [ 31, filled circles from the approximate 
formula [4] expanded to O(a). Points denote results from the 
approximate exponentiated formula [ 41. The results are given in 
units ofCgm:/192n3, with c=$. 
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Fig. 2. (a) Radiative correction to the decay rate (U/dx-drol 
dx) for B’ -Doe%(y) in the B’ rest frame. Open circles are 
from the exact analytical formula [ 21, points with the marked 
statistical errors from PHOTOS applied to JETSET 7.3. A total 
of lo7 events have been generated. The results are given in units 
of (Gzmi/32n3)N ]V,b]2]fT I*, where N,,=q5J~[~2(1-~)2/ 
( 1 - qx) ] dx and q=“l - mb/m$. (b) Radiative correction to the 
decay distribution (fl/dx-d.f’/d_x) for r’+e’urr(y) in the T* 
rest frame. Open circles are from the exact analytical formula [ 31, 
points with the marked statistical error from PHOTOS applied 
to JETSET 7.3. A total of 5 x IO6 events have been generated. 
The results are given in units of Gzm:/192n’. 
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Talk Outline

1. Experimental Picture of 
QED eff

4. QED 
corrections for 

 B → D(*)τν̄τ

2. Some simple 
system: 
Υ(4S) → B+B−

3. QED corrections for 
 and |Vub | & |Vcb | B → Dℓν̄ℓ
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A “simple” QED problem
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A new approach to determine the ratio of ⌥(4S) ! B+B� and B0B0 rates

Florian Bernlochner,1 Martin Jung,2 Greg Landsberg,3 and Zoltan Ligeti4

1Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2Dipartimento di Fisica, Università di Torino & INFN, Sezione di Torino, I-10125 Torino, Italy

3Brown University, Dept. of Physics, Providence, RI 02912, USA
4Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

We propose a new method to determine [add: or constrain?] the ratio of ⌥(4S) ! B+B� and
⌥(4S) ! B0B0 decay rates. This quantity has been one of the limiting uncertainties in absolute
branching ratio measurements at e+e� B factories, and also a limiting uncertainty for a variety of
applications of isospin symmetry [or say flavor symmetry?] relations which require knowledge of
charged and neutral B decay rates.

. PROPOSAL STRUCTURE

Introduction

• R
±0 important

• Potentially large isospin violation, no reliable the-
oretical estimate ! must be measured

• Measurement complicated by the fact that the BRs
for the ⌥(4S) decay and the B decay always appear
together. Traditionally 2 solutions: either assump-
tion about the isospin breaking in the B decay or
use of double-tag technique. The former can only
be applied in special cases, like inclusive decays,
since otherwise we are assuming isospin conserva-
tion to measure isospin violation, for instance in
B ! J/ K (as recently done again in [1]). The
latter option is “clean”, but su↵ers from very low
e�ciencies.

• We propose a new technique, based on the fact that
the enhancement of isospin violation should be ab-
sent/smaller in ⌥(5S) decays. Specifically, the dou-
ble ratio () allows to choose the B decay modes in
order to minimize systematic uncertainties.

Status R±0

• Starting point: HFLAV/PDG

• Two possibilities: (i) assume B ! J/ K (and re-
lated modes) to be isospin symmetric. Then this
value can actually be improved with the latest mea-
surements by Belle. (ii) Since this is problematic,
we should give a reference value without the isospin
assumption, similar to MJ’s paper (that includes a
mistake for one of the relevant modes).

• The resulting value has a larger uncertainty, mak-
ing additional measurements (at the 4S and 5S)
mandatory.

B meson production at the 5S
Proposals for decay modes

I. INTRODUCTION

Precise knowledge of the ratio

R
±0 =

�(⌥(4S) ! B
+
B

�)

�(⌥(4S) ! B0B0)
, (1)

is important for a large number of significant observables
in the study of CP violation, (R cancels in CP asymme-
tries, remove?) [meant that many flavor symmetry based
relations are relevant for CP violating observables, and
there branching ratios enter. maybe it was too cryptic
and we should spell it out, but i think it’s important that
this stu↵ impacts many things in flavor physics] branch-
ing ratio measurements, and exploring flavor symmetry
relations. Thus, it impacts the sensitivity to new physics
of the entire flavor physics program.
Although the mass di↵erence mB0 � mB+ = (0.32 ±

0.05)MeV [2] is small, the restricted phase space in
⌥(4S) ! BB decay, and the resulting small velocity of
the B mesons gives rise to enhanced electromagnetic ef-
fects and isospin violation [3]. I think the following para-
graph should be partly moved out of the introduction to
keep it simple, see my proposed structure. Together with
the corresponding phase-space ratio the naive Coulomb
enhancement of the charged mode assuming point-like
mesons is given by

R
±0
0 =

p
3
±
p
3
0

2⇡�(1 + �
2)

1� exp(�2⇡�)
, (2)

where � = ↵/(2v±) denotes the Coulomb parameter (and
v± = (1�4m2

B+/m
2
⌥)

1/2, as appropriate for the B or B⇤

states in the 4S or 5S decays), which yields the naive es-
timates in Table. I. Treating the electromagnetic e↵ects
in a more sophisticated manner, the range of theoretical
predictions is substantial [3–7], hence precise experimen-
tal determinations are necessary. The world average ob-
tained by HFLAV is R+0 = 1.058± 0.024 [8], indicating
a much smaller e↵ect than the naive estimate, but still
significantly larger than expected for isospin-symmetry
breaking without any enhancement. Reducing this un-
certainty to the sub-percent level would be very signifi-
cant.
We assume CP symmetry throughout our discussion

except where explicitly mentioned.

Important observable to measure 

branching fractions:

Long-standing problem…

D. Atwood and W. J. Marciano, Phys. Rev. D41, 1736 (1990).

G. P. Lepage, Phys. Rev. D42, 3251 (1990).

N. Byers and E. Eichten, Phys. Rev. D 42, 3885 (1990).

R. Kaiser, A. V. Manohar, and T. Mehen, Phys. Rev. Lett. 90, 142001 (2003), arXiv:hep-ph/0208194.

M. B. Voloshin, Phys. Atom. Nucl. 68, 771 (2005), arXiv:hep-ph/0402171
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branching ratio measurements at e+e� B factories, and also a limiting uncertainty for a variety of
applications of isospin symmetry [or say flavor symmetry?] relations which require knowledge of
charged and neutral B decay rates.
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Introduction

• R
±0 important

• Potentially large isospin violation, no reliable the-
oretical estimate ! must be measured

• Measurement complicated by the fact that the BRs
for the ⌥(4S) decay and the B decay always appear
together. Traditionally 2 solutions: either assump-
tion about the isospin breaking in the B decay or
use of double-tag technique. The former can only
be applied in special cases, like inclusive decays,
since otherwise we are assuming isospin conserva-
tion to measure isospin violation, for instance in
B ! J/ K (as recently done again in [1]). The
latter option is “clean”, but su↵ers from very low
e�ciencies.

• We propose a new technique, based on the fact that
the enhancement of isospin violation should be ab-
sent/smaller in ⌥(5S) decays. Specifically, the dou-
ble ratio () allows to choose the B decay modes in
order to minimize systematic uncertainties.

Status R±0

• Starting point: HFLAV/PDG

• Two possibilities: (i) assume B ! J/ K (and re-
lated modes) to be isospin symmetric. Then this
value can actually be improved with the latest mea-
surements by Belle. (ii) Since this is problematic,
we should give a reference value without the isospin
assumption, similar to MJ’s paper (that includes a
mistake for one of the relevant modes).

• The resulting value has a larger uncertainty, mak-
ing additional measurements (at the 4S and 5S)
mandatory.

B meson production at the 5S
Proposals for decay modes

I. INTRODUCTION

Precise knowledge of the ratio

R
±0 =

�(⌥(4S) ! B
+
B
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�(⌥(4S) ! B0B0)
, (1)

is important for a large number of significant observables
in the study of CP violation, (R cancels in CP asymme-
tries, remove?) [meant that many flavor symmetry based
relations are relevant for CP violating observables, and
there branching ratios enter. maybe it was too cryptic
and we should spell it out, but i think it’s important that
this stu↵ impacts many things in flavor physics] branch-
ing ratio measurements, and exploring flavor symmetry
relations. Thus, it impacts the sensitivity to new physics
of the entire flavor physics program.
Although the mass di↵erence mB0 � mB+ = (0.32 ±

0.05)MeV [2] is small, the restricted phase space in
⌥(4S) ! BB decay, and the resulting small velocity of
the B mesons gives rise to enhanced electromagnetic ef-
fects and isospin violation [3]. I think the following para-
graph should be partly moved out of the introduction to
keep it simple, see my proposed structure. Together with
the corresponding phase-space ratio the naive Coulomb
enhancement of the charged mode assuming point-like
mesons is given by

R
±0
0 =

p
3
±
p
3
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2⇡�(1 + �
2)

1� exp(�2⇡�)
, (2)

where � = ↵/(2v±) denotes the Coulomb parameter (and
v± = (1�4m2

B+/m
2
⌥)

1/2, as appropriate for the B or B⇤

states in the 4S or 5S decays), which yields the naive es-
timates in Table. I. Treating the electromagnetic e↵ects
in a more sophisticated manner, the range of theoretical
predictions is substantial [3–7], hence precise experimen-
tal determinations are necessary. The world average ob-
tained by HFLAV is R+0 = 1.058± 0.024 [8], indicating
a much smaller e↵ect than the naive estimate, but still
significantly larger than expected for isospin-symmetry
breaking without any enhancement. Reducing this un-
certainty to the sub-percent level would be very signifi-
cant.
We assume CP symmetry throughout our discussion

except where explicitly mentioned.
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• Potentially large isospin violation, no reliable the-
oretical estimate ! must be measured

• Measurement complicated by the fact that the BRs
for the ⌥(4S) decay and the B decay always appear
together. Traditionally 2 solutions: either assump-
tion about the isospin breaking in the B decay or
use of double-tag technique. The former can only
be applied in special cases, like inclusive decays,
since otherwise we are assuming isospin conserva-
tion to measure isospin violation, for instance in
B ! J/ K (as recently done again in [1]). The
latter option is “clean”, but su↵ers from very low
e�ciencies.

• We propose a new technique, based on the fact that
the enhancement of isospin violation should be ab-
sent/smaller in ⌥(5S) decays. Specifically, the dou-
ble ratio () allows to choose the B decay modes in
order to minimize systematic uncertainties.

Status R±0

• Starting point: HFLAV/PDG

• Two possibilities: (i) assume B ! J/ K (and re-
lated modes) to be isospin symmetric. Then this
value can actually be improved with the latest mea-
surements by Belle. (ii) Since this is problematic,
we should give a reference value without the isospin
assumption, similar to MJ’s paper (that includes a
mistake for one of the relevant modes).

• The resulting value has a larger uncertainty, mak-
ing additional measurements (at the 4S and 5S)
mandatory.
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Precise knowledge of the ratio
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±0 =

�(⌥(4S) ! B
+
B

�)
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, (1)

is important for a large number of significant observables
in the study of CP violation, (R cancels in CP asymme-
tries, remove?) [meant that many flavor symmetry based
relations are relevant for CP violating observables, and
there branching ratios enter. maybe it was too cryptic
and we should spell it out, but i think it’s important that
this stu↵ impacts many things in flavor physics] branch-
ing ratio measurements, and exploring flavor symmetry
relations. Thus, it impacts the sensitivity to new physics
of the entire flavor physics program.
Although the mass di↵erence mB0 � mB+ = (0.32 ±

0.05)MeV [2] is small, the restricted phase space in
⌥(4S) ! BB decay, and the resulting small velocity of
the B mesons gives rise to enhanced electromagnetic ef-
fects and isospin violation [3]. I think the following para-
graph should be partly moved out of the introduction to
keep it simple, see my proposed structure. Together with
the corresponding phase-space ratio the naive Coulomb
enhancement of the charged mode assuming point-like
mesons is given by
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in a more sophisticated manner, the range of theoretical
predictions is substantial [3–7], hence precise experimen-
tal determinations are necessary. The world average ob-
tained by HFLAV is R+0 = 1.058± 0.024 [8], indicating
a much smaller e↵ect than the naive estimate, but still
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breaking without any enhancement. Reducing this un-
certainty to the sub-percent level would be very signifi-
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Expect a phase-space &  

naive Coulomb enhancement of

Important observable to measure 

branching fractions:

2

* Measure the double ratio in several modes,

r(f) =


�(B+ ! f)

�(B0 ! f)

�

⌥(4S)

�
�(B+ ! f)

�(B0 ! f)

�

⌥(5S)

, (3)

* Study possible sources of production asymmetry on
the ⌥(5S) and how to constrain them

* Study promising decay modes.
* Explore what may be the best as a function of avail-

able ⌥(5S) integrated luminosity. For example, if the less
clean environment of the ⌥(5S) relative to the ⌥(4S)
contributes to the final uncertainties with the existing
Belle data (e.g., combinatorial backgrounds?), then with
several ab�1 Belle II data on the ⌥(5S), one could per-
form studies in which both B mesons are fully recon-
structed.

Belle paper on ⌥(5S) ! B
0 and B

+ mesons [9].
Note that mB0 > mB+ , so in the case of

⌥(nS) ! BB, the phase space di↵erence and the
Coulomb enhancement of the charged mode both
go in the same direction. (The same is true for
⌥(5S) ! B⇤B⇤ discussed below, however, in that
case the phase space di↵erence is very small.)

II. PRESENT STATUS OF R±0

* If we are willing to assume equal rates for B ! J/ K

decays, we obtain from the latest Belle measurement [1]

R
±0 = 1.062± 0.021 , (4)

which is 2.9� away from unity and is more precise than
the present combination for this quantity by the PDG,
using the same assumption.

III. B PRODUCTION FROM ⌥(5S) AND
CONSTRAINING POSSIBLE ASYMMETRIES

An e
+
e
� collider running near the ⌥(5S) resonance

produces many di↵erent final states, due to the substan-
tial mass di↵erence, m⌥(5S) � 2mB ' 326MeV, to be
compared with m⌥(4S) � 2mB ' 20MeV.

�(⌥(5S) ! BBX) = (76.2+2.7
�4.0)% [2], of which only

about 5.5% is direct BB̄ production, complemented by
BB

⇤, B⇤
B

⇤, B(⇤)
B

(⇤)
⇡, and BB⇡⇡.

The mass di↵erence of the B
⇤± and B

⇤0 mesons has
been measured by CMS (and so far missed in the PDG),
mB⇤0 � mB⇤+ = (0.91 ± 0.26)MeV [10]. (Interestingly,
this value is approximately �mc/mb ' � 1

3 times mD⇤0 �
mD⇤+ ' �3.4MeV [2], as expected from heavy quark
symmetry. For the isospin splittings of the ground-state
B and D mesons, this scaling is altered presumably by
electromagnetic e↵ects.)

Decay Mode
p3±
p30

2⇡�(1 + �2)
1� exp(�2⇡�)

R±0
0

⌥(4S) ! BB 1.048 1.20 1.26

⌥(5S) ! BB 1.003 1.05 1.05

⌥(5S) ! B⇤B⇤ 1.004 1.06 1.06

TABLE I. Relative phase space factors for ⌥(4S) and ⌥(5S)
decays, together with the naive Coulomb correction for point-
like particles and their combination, see Eq. (2).

IV. SOME INTERESTING DECAY MODES

Focus on self-tagging mode, so that B
0
B

0 oscillation
is not an issue, or is this not a significant issue?
Explore some modes, with di↵erent parton-level tran-

sitions.
Can we suggest a possible paths to sub-1% uncertainty

on R
±0? It would also be very interesting if it is not a

well-defined program from the outset, but depends on
the outcomes of some future measurements...

A. D(⇤)⇡

D
⇤
⇡ probably better than D⇡ due to fewer experimen-

tal backgrounds.

B. J/ K(⇤), DDs

Charged vs. neutral kaons in the J/ K case, so maybe
DDs is better?
J/ K

⇤ experimentally better than J/ K?

C. Semileptonic?

D. Other channels to discuss?

V. USING HADRON COLLIDER DATA TO
MEASURE ISOSPIN VIOLATION IN DECAYS

An intrinsic challenge of precise rate measurements at
e
+
e
�
B factories is the di�culty of decoupling the isospin

violation in production of B mesons from that in their
decays. Here is where hadron colliders, such as the LHC,
could come to rescue. While the e+e� colliders only pro-
duce final states with total charge zero, this is no longer
the case for proton-proton collisions. Indeed, if one fo-
cuses on the dominant bb̄ production mechanisms at the
LHC – flavor creation and gluon splitting, they both are
isospin invariant. The fragmentation and hadronization
of the produced bb̄ pair can now result in both electrically
neutral and charged b-hadron states, in an uncorrelated
manner. In particular, if one considers the production
of just B mesons, all three combinations: B+

B
�, B0

B̄
0,

λ = α/(2v±)
v± = (1 − 4m2

B±/mΥ)2Velocity 

Restricted phase-space results in small

velocities, enhancing EM effects

Long-standing problem…
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A “simple” QED problem
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A new approach to determine the ratio of ⌥(4S) ! B+B� and B0B0 rates
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We propose a new method to determine [add: or constrain?] the ratio of ⌥(4S) ! B+B� and
⌥(4S) ! B0B0 decay rates. This quantity has been one of the limiting uncertainties in absolute
branching ratio measurements at e+e� B factories, and also a limiting uncertainty for a variety of
applications of isospin symmetry [or say flavor symmetry?] relations which require knowledge of
charged and neutral B decay rates.

. PROPOSAL STRUCTURE

Introduction

• R
±0 important

• Potentially large isospin violation, no reliable the-
oretical estimate ! must be measured

• Measurement complicated by the fact that the BRs
for the ⌥(4S) decay and the B decay always appear
together. Traditionally 2 solutions: either assump-
tion about the isospin breaking in the B decay or
use of double-tag technique. The former can only
be applied in special cases, like inclusive decays,
since otherwise we are assuming isospin conserva-
tion to measure isospin violation, for instance in
B ! J/ K (as recently done again in [1]). The
latter option is “clean”, but su↵ers from very low
e�ciencies.

• We propose a new technique, based on the fact that
the enhancement of isospin violation should be ab-
sent/smaller in ⌥(5S) decays. Specifically, the dou-
ble ratio () allows to choose the B decay modes in
order to minimize systematic uncertainties.

Status R±0

• Starting point: HFLAV/PDG

• Two possibilities: (i) assume B ! J/ K (and re-
lated modes) to be isospin symmetric. Then this
value can actually be improved with the latest mea-
surements by Belle. (ii) Since this is problematic,
we should give a reference value without the isospin
assumption, similar to MJ’s paper (that includes a
mistake for one of the relevant modes).

• The resulting value has a larger uncertainty, mak-
ing additional measurements (at the 4S and 5S)
mandatory.

B meson production at the 5S
Proposals for decay modes

I. INTRODUCTION

Precise knowledge of the ratio

R
±0 =

�(⌥(4S) ! B
+
B

�)

�(⌥(4S) ! B0B0)
, (1)

is important for a large number of significant observables
in the study of CP violation, (R cancels in CP asymme-
tries, remove?) [meant that many flavor symmetry based
relations are relevant for CP violating observables, and
there branching ratios enter. maybe it was too cryptic
and we should spell it out, but i think it’s important that
this stu↵ impacts many things in flavor physics] branch-
ing ratio measurements, and exploring flavor symmetry
relations. Thus, it impacts the sensitivity to new physics
of the entire flavor physics program.
Although the mass di↵erence mB0 � mB+ = (0.32 ±

0.05)MeV [2] is small, the restricted phase space in
⌥(4S) ! BB decay, and the resulting small velocity of
the B mesons gives rise to enhanced electromagnetic ef-
fects and isospin violation [3]. I think the following para-
graph should be partly moved out of the introduction to
keep it simple, see my proposed structure. Together with
the corresponding phase-space ratio the naive Coulomb
enhancement of the charged mode assuming point-like
mesons is given by

R
±0
0 =

p
3
±
p
3
0

2⇡�(1 + �
2)

1� exp(�2⇡�)
, (2)

where � = ↵/(2v±) denotes the Coulomb parameter (and
v± = (1�4m2

B+/m
2
⌥)

1/2, as appropriate for the B or B⇤

states in the 4S or 5S decays), which yields the naive es-
timates in Table. I. Treating the electromagnetic e↵ects
in a more sophisticated manner, the range of theoretical
predictions is substantial [3–7], hence precise experimen-
tal determinations are necessary. The world average ob-
tained by HFLAV is R+0 = 1.058± 0.024 [8], indicating
a much smaller e↵ect than the naive estimate, but still
significantly larger than expected for isospin-symmetry
breaking without any enhancement. Reducing this un-
certainty to the sub-percent level would be very signifi-
cant.
We assume CP symmetry throughout our discussion

except where explicitly mentioned.
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Expect a phase-space &  

naive Coulomb enhancement of

Important observable to measure 

branching fractions:

2

* Measure the double ratio in several modes,

r(f) =


�(B+ ! f)

�(B0 ! f)

�

⌥(4S)

�
�(B+ ! f)

�(B0 ! f)

�

⌥(5S)

, (3)

* Study possible sources of production asymmetry on
the ⌥(5S) and how to constrain them

* Study promising decay modes.
* Explore what may be the best as a function of avail-

able ⌥(5S) integrated luminosity. For example, if the less
clean environment of the ⌥(5S) relative to the ⌥(4S)
contributes to the final uncertainties with the existing
Belle data (e.g., combinatorial backgrounds?), then with
several ab�1 Belle II data on the ⌥(5S), one could per-
form studies in which both B mesons are fully recon-
structed.

Belle paper on ⌥(5S) ! B
0 and B

+ mesons [9].
Note that mB0 > mB+ , so in the case of

⌥(nS) ! BB, the phase space di↵erence and the
Coulomb enhancement of the charged mode both
go in the same direction. (The same is true for
⌥(5S) ! B⇤B⇤ discussed below, however, in that
case the phase space di↵erence is very small.)

II. PRESENT STATUS OF R±0

* If we are willing to assume equal rates for B ! J/ K

decays, we obtain from the latest Belle measurement [1]

R
±0 = 1.062± 0.021 , (4)

which is 2.9� away from unity and is more precise than
the present combination for this quantity by the PDG,
using the same assumption.

III. B PRODUCTION FROM ⌥(5S) AND
CONSTRAINING POSSIBLE ASYMMETRIES

An e
+
e
� collider running near the ⌥(5S) resonance

produces many di↵erent final states, due to the substan-
tial mass di↵erence, m⌥(5S) � 2mB ' 326MeV, to be
compared with m⌥(4S) � 2mB ' 20MeV.

�(⌥(5S) ! BBX) = (76.2+2.7
�4.0)% [2], of which only

about 5.5% is direct BB̄ production, complemented by
BB

⇤, B⇤
B

⇤, B(⇤)
B

(⇤)
⇡, and BB⇡⇡.

The mass di↵erence of the B
⇤± and B

⇤0 mesons has
been measured by CMS (and so far missed in the PDG),
mB⇤0 � mB⇤+ = (0.91 ± 0.26)MeV [10]. (Interestingly,
this value is approximately �mc/mb ' � 1

3 times mD⇤0 �
mD⇤+ ' �3.4MeV [2], as expected from heavy quark
symmetry. For the isospin splittings of the ground-state
B and D mesons, this scaling is altered presumably by
electromagnetic e↵ects.)

Decay Mode
p3±
p30

2⇡�(1 + �2)
1� exp(�2⇡�)

R±0
0

⌥(4S) ! BB 1.048 1.20 1.26

⌥(5S) ! BB 1.003 1.05 1.05

⌥(5S) ! B⇤B⇤ 1.004 1.06 1.06

TABLE I. Relative phase space factors for ⌥(4S) and ⌥(5S)
decays, together with the naive Coulomb correction for point-
like particles and their combination, see Eq. (2).

IV. SOME INTERESTING DECAY MODES

Focus on self-tagging mode, so that B
0
B

0 oscillation
is not an issue, or is this not a significant issue?
Explore some modes, with di↵erent parton-level tran-

sitions.
Can we suggest a possible paths to sub-1% uncertainty

on R
±0? It would also be very interesting if it is not a

well-defined program from the outset, but depends on
the outcomes of some future measurements...

A. D(⇤)⇡

D
⇤
⇡ probably better than D⇡ due to fewer experimen-

tal backgrounds.

B. J/ K(⇤), DDs

Charged vs. neutral kaons in the J/ K case, so maybe
DDs is better?
J/ K

⇤ experimentally better than J/ K?

C. Semileptonic?

D. Other channels to discuss?

V. USING HADRON COLLIDER DATA TO
MEASURE ISOSPIN VIOLATION IN DECAYS

An intrinsic challenge of precise rate measurements at
e
+
e
�
B factories is the di�culty of decoupling the isospin

violation in production of B mesons from that in their
decays. Here is where hadron colliders, such as the LHC,
could come to rescue. While the e+e� colliders only pro-
duce final states with total charge zero, this is no longer
the case for proton-proton collisions. Indeed, if one fo-
cuses on the dominant bb̄ production mechanisms at the
LHC – flavor creation and gluon splitting, they both are
isospin invariant. The fragmentation and hadronization
of the produced bb̄ pair can now result in both electrically
neutral and charged b-hadron states, in an uncorrelated
manner. In particular, if one considers the production
of just B mesons, all three combinations: B+

B
�, B0

B̄
0,

λ = α/(2v±)
v± = (1 − 4m2

B±/mΥ)2Velocity 

Restricted phase-space results in small

velocities, enhancing EM effects
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is not an issue, or is this not a significant issue?
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sitions.
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the outcomes of some future measurements...
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⇤
⇡ probably better than D⇡ due to fewer experimen-

tal backgrounds.

B. J/ K(⇤), DDs

Charged vs. neutral kaons in the J/ K case, so maybe
DDs is better?
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⇤ experimentally better than J/ K?

C. Semileptonic?

D. Other channels to discuss?

V. USING HADRON COLLIDER DATA TO
MEASURE ISOSPIN VIOLATION IN DECAYS

An intrinsic challenge of precise rate measurements at
e
+
e
�
B factories is the di�culty of decoupling the isospin

violation in production of B mesons from that in their
decays. Here is where hadron colliders, such as the LHC,
could come to rescue. While the e+e� colliders only pro-
duce final states with total charge zero, this is no longer
the case for proton-proton collisions. Indeed, if one fo-
cuses on the dominant bb̄ production mechanisms at the
LHC – flavor creation and gluon splitting, they both are
isospin invariant. The fragmentation and hadronization
of the produced bb̄ pair can now result in both electrically
neutral and charged b-hadron states, in an uncorrelated
manner. In particular, if one considers the production
of just B mesons, all three combinations: B+

B
�, B0

B̄
0,

Experimentally: QED effects suppressed?

Long-standing problem…
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4. QED 
corrections for 

 B → D(*)τν̄τ

2. Some simple 
system: 
Υ(4S) → B+B−
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Corrections on |Vub | & |Vcb |
Measuring |Vub| and |Vcb|

* Decays don’t happen at quark level, non-perturbative physics make things
complicated

Vqb

W
�

�

⌫̄

b

q

Vqb

W
�

�

⌫̄

b

q
u

u

* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
2
B , p

2
X , pB · pX

! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor

|Vqb|2 ⇥ �(B ! X ` ⌫̄`) = |Vqb|2 ⇥ G
2
F �0

h
f (q2)

i2

12 / 31

b

q

q

Measured
Branching Fraction

Prediction from

Theory but often also constrained 


from measured differential distributions

|Vqb| =

s
B(B̄ ! Xq ` ⌫̄`)

⌧ �(B̄ ! Xq ` ⌫̄`)

W

Z, �, h

W

c̄ ⌫` `+

b̄

W

Z, �, h

c̄ ⌫` `+
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W

Z
c̄ ⌫`
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W W
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Fig. 3.2 Representative Feynman diagrams of the Standard Model partonic decay b̄ æ
c̄ l+ ‹l are shown. The white circles indicate hadronic contributions that are ne-
glected in the short-distance expansion. The illustration was taken from Ref. [31].

theory of

M1
0,sd = –em GF

4fi

C

3 ln mW

� + 6Q̄ ln mW

� ≠ 3
2

1
1 + 2Q̄

2
ln m2

W

m2
Z

+ . . .

D

M̃0
0 ,

= 3–em
4fi

1
1 + 2Q̄

2
ln mZ

� M0
0 + . . . , (3.37)

where GF was absorbed into the leading order matrix element M0
0 in the last line. For semilep-

tonic B-meson decays, the average charge of the decaying quark line is given by Q̄ = 1
2 |Q

b̄
+Qc̄| =

1
6 which leads to

M1
0,sd = –em

fi
ln mZ

� M0
0 + . . . . (3.38)

The logarithm in Eq. (3.38) then represents the leading logarithmic corrections at O(–em GF)
due to the virtual particle exchange with photon energies above �.

3.2. Long distance next-to-leading order calculation at O(k0)
Using the e�ective Lagrangian Eq. (3.31), the next-to-leading order calculation at O(k0 –em GF)
for the long-distance contributions can be carried out. Figures 3.3 and 3.4 depict the Feynman
diagrams of the long-distance corrections that need to be calculated: diagrams a) and b) depict
the emission of a real photon from the lepton and the charged meson. Diagram c) depicts the
arising seagull graph that needs to be included to obtain a gauge invariant amplitude. Diagrams
d) and e) depict the self-energy corrections of the charged lepton and meson. Diagram f) shows
the dominant virtual vertex diagram. Diagrams g) and h) depict the coupling of the seagull
diagram to the charged lepton and meson.
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η2
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Correct for short-distance 

EW effects (Sirlin)
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Corrections on |Vub | & |Vcb |
Measuring |Vub| and |Vcb|

* Decays don’t happen at quark level, non-perturbative physics make things
complicated
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* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
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X , pB · pX

! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor
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Measurement used to constrain theory 

corrected for QED effects

Also don’t correct for Coulomb enhancement 
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Fig. 3.2 Representative Feynman diagrams of the Standard Model partonic decay b̄ æ
c̄ l+ ‹l are shown. The white circles indicate hadronic contributions that are ne-
glected in the short-distance expansion. The illustration was taken from Ref. [31].
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where GF was absorbed into the leading order matrix element M0
0 in the last line. For semilep-

tonic B-meson decays, the average charge of the decaying quark line is given by Q̄ = 1
2 |Q

b̄
+Qc̄| =

1
6 which leads to

M1
0,sd = –em

fi
ln mZ

� M0
0 + . . . . (3.38)

The logarithm in Eq. (3.38) then represents the leading logarithmic corrections at O(–em GF)
due to the virtual particle exchange with photon energies above �.

3.2. Long distance next-to-leading order calculation at O(k0)
Using the e�ective Lagrangian Eq. (3.31), the next-to-leading order calculation at O(k0 –em GF)
for the long-distance contributions can be carried out. Figures 3.3 and 3.4 depict the Feynman
diagrams of the long-distance corrections that need to be calculated: diagrams a) and b) depict
the emission of a real photon from the lepton and the charged meson. Diagram c) depicts the
arising seagull graph that needs to be included to obtain a gauge invariant amplitude. Diagrams
d) and e) depict the self-energy corrections of the charged lepton and meson. Diagram f) shows
the dominant virtual vertex diagram. Diagrams g) and h) depict the coupling of the seagull
diagram to the charged lepton and meson.
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A prescription for approximating electroweak radiative corrections to weak decays is given.
The method is illustrated for r evv and a simplified (structureless) model of 8 Mev, M D
or x, where the complete O(a) corrections are known. Our procedure is shown to provide a prop-
er description of radiation damping near the electron's end-point energy and a reasonable estimate
of radiative corrections for much of the spectrum as well as the integrated rate. As a practical
application, it is appHed to the semileptonie decays 8 Xev, where an exact O(a) treatment of
radiative corrections is very difficult, but an estimate of their e6'ect is important for the extraction
of V„b and leptonic branching ratios. We also discuss an 18% enhancement of Y(4S) 8+8
relative to 8 8 due to large Coulomb corrections near threshold.

As weak-decay measurements reach high precision, it
becomes important to include electroweak radiative
corrections in the comparison of theory and experiment.
For purely leptonic' and a few very special semileptonic
decays (such as superallowed nuclear P decays ), a full
analysis of the one-loop electroweak corrections in the
standard model and QED bremsstrahlung is straightfor-
ward, but nontrivial. However, for most semileptonic
weak decays, hadronic structure and other strong-in-
teraction complications make a reliable lowest-order
decay-rate analysis dificult and a complete 0(a) calcula-
tion of electroweak corrections virtually impossible.
Given that situation, we have devised a simple prescrip-
tion for approximating some of the most important as-
pects of electroweak radiative corrections for the generic
weak decay Y Xev. Here, we describe that technique,
illustrate it by examples, and apply our prescription to
semileptonic 8 decays. We also take this opportunity to
discuss 8+8 vs BeB production at the Y(4S) and show
that the former is enhanced by about 18% due to large
Coulomb-threshold corrections.
Before giving our prescription, we outline some of its

virtues and shortcomings. (i) It incorporates leading-log
short-distance loop corrections via a simple enhancement
factor. (ii) Soft virtual- and real-photon corrections are
summed to all orders following the well-known exponen-
tiation formalism of Yennie, Frautschi, and Suura. In
that way, radiation damping near the electron spectrum
end point as well as some QED modifications of the spec-
trum shape are properly described. (iii) An infrared ex-
ponentiation factor is introduced which helps normalize
QED corrections to the high-energy electron spectrum
and total decay rate. What our prescription does not do is
attempt to incorporate hard-photon bremsstrahlung which
mainly modifies the low-energy electron spectrum. That
contribution is, in any case, very uncertain for semilepton-
ic 8 decays due to hadronic structure effects. Also, we do
not consider strong-interaction uncertainties at all, even
though they are clearly important. Instead, we assume
that a lowest-order decay rate which incorporates strong
interactions via form factors or perturbative QCD is
given, and our task is to include electroweak radiative

1+ (I+2Q)ln
2K my

where Q is the average quark or lepton doublet electric
charge (of the fundamental decay isodoublet pair) and
mz 91 GeV. For standard quark doublets Q & ( &——,

' ) —,', while for leptons Q ——,'. One can go
beyond the aln(mz) correction in (2) by summing up all
leadin logs of the form a"In"mz via the renormalization
group and even include perturbative QCD corrections to
that factor. However, those additional modifications are
not significant at the level of our considerations, so we do
not include them. The first step in our prescription is,
therefore, to reexpress all lowest-order weak-decay rates
in terms of G„and for semileptonic processes to include an
enhancement factor

1+ 2a ln
~z

X N1y
(3)

For purely leptonic decays such as ~ evv, which we sub-
sequently consider, Q ——,

' in (2), so there is no
enhancement factor.

corrections.
We begin our discussion by considering the short-

distance leading-log electroweak corrections to the generic
decay Y Xev, where Yand Xmay be hadrons or leptons
and X may be a single- or multiparticle state. By short
distance, we mean virtual loop effects coming from high
frequencies &mi . In the standard SU(2)L xU(1) model,
such corrections are finite and calculable. Employing a
current-algebra approach, Sirlin has carried out a gen-
eral analysis. He showed that when weak decay rates are
expressed in terms of the muon decay constant G„defined
by the muon lifetimes s

Gp wp wg 6( rip) 251— l+ x
192ir m 2& 4

(la)
G„(1.16637+ 0.00002) x10 5 GeV

they are enhanced by a short-distance correction factor
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Despite the difference in appearance, the spectra in
(11)and (12) are actually quite similar. That is illustrat-
ed in Fig. 1, where both are compared with the lowest-
order result. Our approximation in (11) actually gives a
better representation of the corrections near x 1 since it
contains an all-orders summation. Of course, one can
overcome the shortcomings of (12) near x 1 (it diverIIes)
by exponentiating the singular part of the correction. ' '6, , 14

As a further illustration of the good agreement between
(11) and (12), we give in Fig. 2 a plot of their ratio as a
function of x. Our method fails at small x because it
misses hard-photon contributions that populate the low-
energy spectrum; otherwise, the agreement is very good.
In the case of r pvv, radiative corrections are not as

important. To illustrate that point, we compare in Fig. 3
the lowest-order decay rate in (10) with the corrected
spectrum in (12) as well as the corrected spectrum for

pvv obtained by replacing m, with m„. It is clear
that care must be taken in comparing electron and muon
spectra, since the latter is not as sensitive to radiative
corrections.
As our next example, we consider the decays 8 Mev,

where M is either a ir or D meson. Since this exercise is
meant only to test our prescription, we study a somewhat

simplified model in which the initial- and final-state
mesons are considered pointlike. That neglect of hadronic
structure is not a bad approximation near the electron end
point, but it clearly misrepresents the low-energy spec-
trum.
Adopting that approximation, the lowest-order differ-

ential decay rate for 8 Mev is given by (neglecting
electron mass effects) '5

dI (8 Mev) GFrria 2 5x (1 x) I f+ I

I vb I'q'dx 32m' l —gx
(13)

where x E,/E „, E „(mg—m~)/2m', g—mk/m$, Vb is the Cabibbo-Kobayashi-Maskawa ma-
trix element (V„b for M x, V,b for M D), and f~+ is a
form factor which should have x dependence, but we take
it to be constant (structureless). Our notation and nor-
malization are borrowed from K,3 decays where
f+(0) 0.98. Estimates of fy for 8 xev give a smaller
value' =0.27.
Our prescription for approximating radiative correc-

tions is to multiply (13) by the correction factors in (3)
(with mi ma) and (5). In addition, for i)=1 our condi-
tion on c gives c-—23, so we have i 7

IIdf'(8 Mep) G&mii, , 2 ' M '2 5 x (I x) 2a mz 1 —x
dx 32m 3 1 —rlx x mg 2x/3

' (2a/X) [1n(m8X/m, )—1)
(14)

for charged 8 decays, while for neutral 8 decays, an addi-
tional I+ma correction factor should be appended. " For
comparison, we can use a complete 0(a) calculation of
radiative corrections for this simple model by Ginsberg. "
Such a comparison is illustrated in Fig. 4 where
Ginsberg's result has been (arbitrarily) normalized to
agree with (14) at x 0.6. One formula does quite well in
correctly describing the high-energy electron spectrum
shape. Because of strong-interaction uncertainties we do

I

not worry about the low-x regime.
Having used two examples to illustrate and test our

scheme, we now tackle a practical problem, radiative
corrections to inclusive semileptonic decays 8 X,ev and8 X„ev, where Xz represents an inclusive hadron state
containing q. A precise knowledge of the electron spec-
trum shape, particularly near the end point, is important
for extracting V„b/V, b and measuring semileptonic
branching ratios. In our approach, the radiative correc-
tions are approximated by the same correction factors as

00 I I I I I 1 1 I I

0.0 01 0.2 0.3 04 05 08 07 0.8 09 10
X

FIG. l. dI /dx is shown for Eq. (10) (solid curve), Eq. (11)
(long dashes), and Eq. (12) (short dashes). The results are
given in units of G„2m,'/192n3.

00 I I 1 I t I I 1 I00 0,1 0.2 03 04 0.5 0.6 07 08 09 10

FIG. 2. The ratio between Eqs. (11) and (12) is shown as a
function of x.

(1 +
2α
π

ln[
mZ

mb
]) (1 + απ) = 1.0375 → Would lead to a reduction of  of ~1.1% from  decays,


but does not correspond to a fully consistent treatment at 
|Vcb | B0

𝒪(α)
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Corrections on |Vub | & |Vcb |
Measuring |Vub| and |Vcb|

* Decays don’t happen at quark level, non-perturbative physics make things
complicated
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* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
2
B , p

2
X , pB · pX

! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor

|Vqb|2 ⇥ �(B ! X ` ⌫̄`) = |Vqb|2 ⇥ G
2
F �0

h
f (q2)
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Branching Fraction

Prediction from

Theory but often also constrained 


from measured differential distributions

|Vqb| =

s
B(B̄ ! Xq ` ⌫̄`)

⌧ �(B̄ ! Xq ` ⌫̄`)

Measurement used to constrain theory 

corrected for QED effects

Also don’t correct for Coulomb enhancement 

So bit of a “mess”, although at least we are throughout consistent of course


 - Theory usually assumes QED does not exist

 - Measurements correct for FSR using PHOTOS; unfold into observables w/o QED effects


 With current precision a priori ok; but unclear if with future datasets of O(50/ab) this is still a good choice
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Fig. 3 The Feynman diagrams for the next-to-leading order corrections to B+ → X̄0 !+ ν decays are
shown.

2.2.3. Long-distance next-to-leading order corrections

The Qed long-distance corrections to the phenomenological hadron decay can be calculated in
an effective model that arises by requiring the phenomenological Lagrangian of the leading order
decay to be invariant under local U(1)em gauge transformations. Assigning the usual charges
the following interaction terms in the Lagrangian arise in addition to eq. (2.1)

Lint,QED = − eQ"̄ ψ"γ
µψ"Aµ − ieQφAµ(φ

+∂µφ− − φ−∂µφ+) + e2Q2
φAµA

µφ+φ−

+ ie
√
2GFVxyf±(QB ±QX)φBφXAµ ψ̄νPRγ

µψ" + h.c. , (2.13)

wherein the summation over φ ∈ {φB ,φX} is implied. In addition to the point-like lepton-
photon and meson-photon interactions, a vertex emission term arises. This term is connected
to the bound-state nature of the meson. It is infrared finite and needed for gauge invariance.
Further, in eq. (2.13) it is assumed that the meson-photon interaction is sufficiently described
by scalar Qed. Additional terms arise when moving away from this assumption, including
intermediate lines of excited hadrons necessitating X∗ → Xγ vertices as well as contributions
due to off-shell currents. These terms are discussed on general grounds in Sec. 2.3 and will
be largely neglected in this study. This, in most cases, roots in their unavailability or, where
known, in their smallness.
Figs. 3 and 4 depict the relevant real and virtual diagrams for B+ → X̄0 !+ ν and B0 → X− !+ ν
decays at O(αGF). The real corrections diagrams a, b and c correspond to the emission of a real
photon from either the charged legs of the decay, or the charged vertex itself. The virtual correc-
tions group into three categories: diagrams d and e concern the wave-function renormalisation
of the charged legs while diagram f is the dominant inter-particle photon exchange. Diagrams
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Studies with scalar QED FB, M. Schönherr
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Fig. 3 The Feynman diagrams for the next-to-leading order corrections to B+ → X̄0 !+ ν decays are
shown.

2.2.3. Long-distance next-to-leading order corrections

The Qed long-distance corrections to the phenomenological hadron decay can be calculated in
an effective model that arises by requiring the phenomenological Lagrangian of the leading order
decay to be invariant under local U(1)em gauge transformations. Assigning the usual charges
the following interaction terms in the Lagrangian arise in addition to eq. (2.1)

Lint,QED = − eQ"̄ ψ"γ
µψ"Aµ − ieQφAµ(φ

+∂µφ− − φ−∂µφ+) + e2Q2
φAµA

µφ+φ−

+ ie
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µψ" + h.c. , (2.13)

wherein the summation over φ ∈ {φB ,φX} is implied. In addition to the point-like lepton-
photon and meson-photon interactions, a vertex emission term arises. This term is connected
to the bound-state nature of the meson. It is infrared finite and needed for gauge invariance.
Further, in eq. (2.13) it is assumed that the meson-photon interaction is sufficiently described
by scalar Qed. Additional terms arise when moving away from this assumption, including
intermediate lines of excited hadrons necessitating X∗ → Xγ vertices as well as contributions
due to off-shell currents. These terms are discussed on general grounds in Sec. 2.3 and will
be largely neglected in this study. This, in most cases, roots in their unavailability or, where
known, in their smallness.
Figs. 3 and 4 depict the relevant real and virtual diagrams for B+ → X̄0 !+ ν and B0 → X− !+ ν
decays at O(αGF). The real corrections diagrams a, b and c correspond to the emission of a real
photon from either the charged legs of the decay, or the charged vertex itself. The virtual correc-
tions group into three categories: diagrams d and e concern the wave-function renormalisation
of the charged legs while diagram f is the dominant inter-particle photon exchange. Diagrams

8

Used scalar QED to study semileptonic  decaysB → Pℓν̄ℓ

* Several ad-hoc assumptions, e.g. 
incorporate FF dynamics ad-hoc for off-
shell states


* Compare to PHOTOS and PHOTONS++ 
YFS resummation improved prediction 
from Sherpa


We were young and did not know better…
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The “backdrop”
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The “backdrop”
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The “backdrop”
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Fig. 5.25 The two-dimensional projections of pl and pD for the signal and background chan-
nels of the electron sample with D0 final state are shown: The size of the boxes
in the two-dimensional projections is proportional to the amount of events in the
corresponding bin and the measured spectrum is o�-resonance subtracted.
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B → DXℓνℓ3D Fit of 

in lepton momentum, 

D momentum, 

cosBY

QED effects change shape of

all of these variables

the electron sample of the D0 final state are depicted in Fig. 5.25. The background contributions
from cascades and misidentified leptons contribute predominantly in the region with either low
lepton or D meson three-momentum. In order to reduce these background two cuts are imposed:

pl > 1.2 GeV/c , (5.161)
pD > 0.8 GeV/c . (5.162)

The parameter cos ◊BY o�ers a good sensibility to the number of pions created in the strong
fragmentation of the charmed resonance or the non-resonant semileptonic B meson decay: For
B æ D l ‹l decays it is expect to range between ≠1 < cos ◊BY < 1, where reconstruction
e�ects soften the upper bound and QED final state radiation produces a tail into the negative
cos ◊BY values below ≠1, cf. Fig. (5.24). For B æ Dú l ‹l and B æ D fi l ‹l decays an additional
pion is present and cos ◊BY is shifted according to

cos ◊BY = 2EB EDl ≠ m2
B

≠ m2
Dl

2 |p̨B| |p̨Dl|
+

!
p‹l + pfi

"2

2 |p̨B| |p̨Dl|
, (5.163)

where p‹l and pfi denote the four-momentum of the neutrino and pion. Squaring the sum of the
latter four-momenta results in

(p‹l + pfi)2 = 0 + m2
fi + 2p‹l · pfi > 2 |p̨‹l | |p̨fi| (1 ≠ cos ◊‹lfi) , (5.164)

where cos ◊‹lfi denotes the cosine of the angle between the three-momenta of the neutrino
and pion, and |p̨‹l | and |p̨fi| the magnitude of the neutrino and pion three-momentum. The
contribution from Eq. (5.164) is positive and shifts the reconstructed value of cos ◊BY by
≠

!
p‹l + pfi

"2
/(2 |p̨B| |p̨Dl|). For n pions in the final state the shift is proportional to

(p‹l + pfi1
+ · · · + pfin)2 = nm2

fi + 2
ÿ

i

p‹l · pfii + 2
ÿ

i”=j

pfii · pfij ,

> 2
ÿ

i

|p̨‹l | |p̨fii | (1 ≠ cos ◊‹lfii) + 2
ÿ

i”=j

|p̨fii |
---p̨fij

---
1
1 ≠ cos ◊fiifij

2
,

(5.165)

where cos ◊‹lfii and cos ◊fiifij denote the cosine of the angle between the three-momenta of the
neutrino and the ith pion or the ith and jth pion, respectively, and |p̨fii | denotes the magnitude
of the three-momentum of the ith pion. Fig. 5.26 depicts the two-dimensional projections of
cos ◊BY versus pl and cos ◊BY versus pD of B æ D(ú) fi l ‹l and the B æ D(ú) fi fi l ‹l contribu-
tions of the D0 final state, cf. Secs. 5.8.1 and 5.8.2. In order to suppress background from
resonant B æ D(ú) fi fi l ‹l contributions a cut of

cos ◊BY > ≠2.0 , (5.166)

is imposed. In addition to these cuts, only the kinematic range of the signal decays is evaluated
and it is required

pl < 2.35 , (5.167)
pD < 2.45 , (5.168)

cos ◊BY < 1.1 , (5.169)
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Fig. 5.24 Projections on cos ◊BY of the electron and muon samples are shown: the left-hand
side shows the projection of cos ◊BY for the electron final state, and the right-hand
side shows the projection of cos ◊BY for the muon final state. The top row depicts
the D0 meson final state, and the bottom row the D+ meson final state.
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TABLE X: Systematic uncertainties on fitted parameters, given in %. Numbers are negative when the fitted value decreases
as input parameter increases.

Electron sample Muon sample
item ρ2D ρ2D∗ B(D"ν) B(D∗"ν) G(1)|Vcb| F(1)|Vcb| ρ2D ρ2D∗ B(D"ν) B(D∗"ν) G(1)|Vcb| F(1)|Vcb|
R′

1 0.44 2.74 0.71 −0.38 0.60 0.71 0.50 2.67 0.74 −0.40 0.63 0.70
R′

2 −0.40 1.02 −0.18 0.30 −0.32 0.49 −0.45 0.96 −0.19 0.30 −0.33 0.48
D∗∗ slope −1.42 −2.52 −0.07 −0.09 −0.82 −0.87 −1.42 −2.58 −0.10 −0.10 −0.77 −0.92
D∗∗ FF approximation −0.87 0.33 −0.12 0.19 −0.54 0.20 −0.99 0.59 −0.12 0.21 −0.59 0.30
B(B− → D(∗)π"ν) 0.28 −0.27 −0.22 −0.80 0.04 −0.49 0.59 −0.32 −0.13 −0.86 0.24 −0.54
fD∗

2
/D1

−0.39 0.16 −0.38 0.16 −0.41 0.13 −0.50 0.17 −0.41 0.18 −0.47 0.15
fD∗

0
Dπ/D1D

∗

2
−2.30 1.12 −1.53 0.97 −2.07 0.85 −3.13 1.23 −1.53 1.02 −2.41 0.93

fD′

1
D∗π/D1D

∗

2
1.82 −1.14 1.30 −0.65 1.65 −0.70 2.44 −1.15 1.35 −0.72 1.91 −0.75

fDπ/D∗

0
−0.88 −1.28 0.36 0.17 −0.31 −0.34 −0.83 −1.23 0.31 0.18 −0.27 −0.33

fD∗π/D′

1
−0.21 −0.05 −0.13 0.21 −0.18 0.09 −0.30 −0.04 −0.15 0.23 −0.23 0.10

NR D∗/D ratio 0.58 −0.16 0.11 −0.09 0.38 −0.04 0.66 −0.16 0.11 −0.09 0.40 −0.03
B(B− → D(∗)ππ"ν) 1.19 −1.97 0.25 −1.28 0.78 −1.28 1.98 −1.71 0.40 −1.20 1.20 −1.18
X∗/X and Y ∗/Y ratio 0.61 −1.15 0.09 −0.27 0.39 −0.52 0.74 −1.02 0.08 −0.24 0.42 −0.47
X/Y and X∗/Y ∗ ratio 0.76 −0.83 0.21 −0.65 0.52 −0.60 1.09 −0.76 0.25 −0.63 0.68 −0.57
D1 → Dππ 2.22 −1.54 0.74 −1.08 1.63 −1.05 2.74 −1.48 0.76 −1.06 1.81 −1.03
fD∗

2
−0.14 −0.01 −0.10 0.07 −0.12 0.03 −0.16 −0.01 −0.10 0.07 −0.13 0.03

B(D∗+ → D0π+) 0.73 −0.01 0.43 −0.34 0.62 −0.17 0.80 −0.00 0.41 −0.33 0.61 −0.17
B(D0 → K−π+) 0.69 0.02 −0.21 −1.63 0.29 −0.80 0.92 0.12 −0.27 −1.68 0.35 −0.80
B(D+ → K−π+π+) −1.46 −0.42 −2.17 0.30 −1.89 0.01 −1.43 −0.42 −2.10 0.28 −1.77 −0.01
τB−/τB0 0.26 0.16 0.63 0.27 0.46 0.19 0.22 0.16 0.58 0.28 0.41 0.19
f+−/f00 0.88 0.43 0.66 −0.53 0.82 −0.12 0.91 0.48 0.57 −0.52 0.75 −0.10
Number of BB events 0.00 −0.00 −1.11 −1.11 −0.55 −0.55 0.00 −0.00 −1.11 −1.11 −0.55 −0.55
Off-peak Luminosity 0.05 0.01 −0.02 −0.00 0.02 0.00 0.07 0.00 −0.02 −0.00 0.02 −0.00
B momentum distrib. −0.96 0.63 1.29 −0.54 −1.15 0.48 1.30 −0.10 1.27 −0.64 1.31 −0.35
Lepton PID eff 0.52 0.16 1.21 0.82 0.90 0.46 3.30 0.06 5.11 5.83 1.99 2.90
Lepton mis-ID 0.03 0.01 −0.01 −0.01 0.01 −0.00 2.65 0.70 −0.59 −0.50 1.06 −0.01
Kaon PID 0.07 0.80 0.28 0.23 0.18 0.38 1.02 0.71 0.35 0.29 0.70 0.39
Tracking eff −1.02 −0.43 −3.35 −2.00 −2.25 −1.15 −0.63 −0.28 −3.37 −2.09 −2.02 −1.14
Radiative corrections −3.13 −1.04 −2.87 −0.74 −3.02 −0.71 −0.76 −0.61 −0.82 −0.25 −0.79 −0.33
Bremsstrahlung 0.07 0.00 −0.13 −0.28 −0.04 −0.14 0.00 0.00 0.00 0.00 0.00 0.00
Vertexing 0.83 −0.64 0.63 0.60 0.78 0.09 1.79 −0.76 0.97 0.54 1.41 0.01
Background total 1.39 1.12 0.64 0.34 1.07 0.51 1.58 1.09 0.67 0.38 1.16 0.49
Total 6.25 5.66 6.01 4.03 5.99 3.20 8.12 5.47 7.35 7.07 6.06 4.23

B → D0X!ν and B → D+X!ν combinations, is com-
plementary to previous measurements. In particular, it
does not rely on the reconstruction of the soft transition
pion from the D∗ → Dπ decay.

The results obtained here, which are given in Ta-
ble IV, can be combined with the existing BABAR mea-
surements listed in Table XI. For B → D∗!ν, we com-
bine the present results with two BABAR measurements
of ρ2D∗ and F(1)|Vcb| [9, 10] and four measurements of
B(B → D∗!ν)[6, 9, 10]. We neglect the tiny statistical
correlations among the measurements and treat the sys-
tematic uncertainties as fully correlated within a given
category (background, detector modeling, etc.). We as-
sume the semileptonic decay widths of B+ and B0 to
be equal and adjust all measurements to the values of
the Υ (4S) and D decay branching fractions used in this

article to obtain

B(B− → D∗0!ν) = (5.49± 0.19)% (31)

ρ2D∗ = 1.20± 0.04 (32)

F(1)|Vcb| = (34.8± 0.8)× 10−3. (33)

The associated χ2 probabilities of the averages are
0.39, 0.86 and 0.27, respectively. The average of the
B(B → D!ν) result with the two existing BABAR mea-
surements [6] is

B(B− → D0!ν) = (2.32± 0.09)% (34)

with a χ2 probability of 0.88.
The simultaneous measurements of G(1)|Vcb| and

F(1)|Vcb| allow a determination of the ratio G(1)/F(1)
which can be compared directly with theory. We find

Measured : G(1)/F(1) = 1.20± 0.09 (35)

Theory : G(1)/F(1) = 1.17± 0.04, (36)

BaBar Global Fit 

[arXiv:0809.0828]

Phys.Rev.D79:012002,2009
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Memory lane:
• I was a bit annoyed, that a QED effect should be one of the largest systematics.


• “Can’t we just calculate this somehow? Why 20%? Why not 10% or 30%?” 


• Teamed up with Marek Schönherr to develop a “NLO” model & benchmark against PHOTOS


• Heavily influenced what was done for Kaons by Troy Andre 
• arXiv:hep-ph/0406006, AnnalsPhys.322:2518-2544,2007


• It builds on several assumptions: (some of them likely not entirely great or even justified for B mesons nor 
fully rigorous!)

• First, we assumed we can split long-distance and short-distance physics

be regularized in some way. The expansion in k defines an e�ective theory whose ultraviolet
behaviour deviates from the ultraviolet physics described by the Standard Model, and the
Lagrangian cannot be renormalized by a simple redefinition of its couplings. In order to have
any physical meaning, the e�ective theory has to be matched to the Standard Model.

Consider a general logarithmically divergent N -point tensor integral of rank p with a single
massless photon propagator, i.e.

T µ1...µp(p1, . . . , pN≠1) Ã
⁄

d4k
kµ1 · · · kµp

k2 d1 · · · dN≠1
, (3.32)

with denominators di =
!
pi ≠ k

"2 ≠ m2
i
. This integral can be split according to

T µ1...µp(p1, . . . , pN≠1) Ã
⁄

d4k
5

kµ1 · · · kµp

k2 d1 · · · dN≠1
≠ kµ1 · · · kµp

[k2 ≠ �2] d1 · · · dN≠1

6

+
⁄

d4k
kµ1 · · · kµp

[k2 ≠ �2] d1 · · · dN≠1
, (3.33)

which results in regulating the ultraviolet behaviour of the first term by introducing an un-
physical photon-like vector field with mass � and opposite norm, as proposed by Pauli and
Villars in Ref. [110]. The infrared behaviour of the first integral is left unchanged, in particular,
the infrared divergences are unchanged and cancel with their counterparts from the real emis-
sion diagrams, cf. Ref. [86]. The second term becomes infrared finite, but exhibits the same
ultraviolet behaviour as the integral of Eq. (3.32).

Transferring this observation to the decay at hand, where both in the e�ective theory, and in
the Standard Model, there is at most one massless photon propagator present in any one-loop
diagram, the virtual emission matrix element can be decomposed as

M1
0 = M1

0,ld(�) + M1
0,sd(�) . (3.34)

The term M1
0,ld(�) describes now the Pauli-Villars regularized exchange of a massless photon.

The present ultraviolet regulator e�ectively restricts the mass of the virtual photon to be smaller
than �, and thus the matrix element describes long-distance (ld) interactions. The short-
distance (sd) term M1

0,sd(�) on the other hand, possesses the full ultraviolet behaviour of M1
0

and can be used to renormalize all parameters of the e�ective theory. Consequently, because
the splitting in Eq. (3.33) is exact, all parameters in M1

0,ld(�) are renormalized automatically.
Through the photon mass, the virtual propagator momentum of M1

0,sd(�) is e�ectively restricted
to be larger than �.

The matching of both matrix elements is exact, as long as the same Lagrangian is used
to describe the short-distance and long-distance contributions of the amplitude. In practice,
however, this is not feasible due to the confining and non-perturbative nature of QCD. For scales
larger than the hadron mass, the parton constituents of the B and D mesons can be resolved. For
scales smaller than the hadron mass, the quarks in the mesons cannot be resolved and the bound-
state hadrons are the relevant degrees of freedom. This coupling is described by the IB and and
SD contributions which describe intermediate resonances. Therefore, if � is chosen in such a way
that it e�ectively separates these two regimes, the long-distance QED correction M1

0,ld(�) can
be calculated using the e�ective theory Eq. (3.31) at order O(k0 –em GF), and the short-distance
corrections can be calculated using the Standard Model. This is justified, in principle, by the
assumption that the e�ective theory describes the Standard Model and its e�ective degrees of
freedom at these low scales. This mere fact, however, directly leads to inconsistencies at the
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3. Final state radiation in B æ D l ‹

The semileptonic B-meson decays into charmed 1S final states receive corrections from elec-
tromagnetic final state radiation, i.e. through photon emissions from all charged particles in
the decay and loops between the mesons and lepton. These corrections are described by the
quantum field theory of the U(1)Q gauge group of the Standard Model: Quantum Electrody-
namics (QED). For the mesons, involved in the semileptonic decay, electromagnetic corrections
are considerably suppressed due to the small coupling strength –em and the large mass of the
hadronic initial and final states. For the leptons, however, the electromagnetic corrections are
sizeable and experimentally very important since they soften the reconstructed lepton momen-
tum spectrum. QED final state radiation can be studied systematically in the vanishing photon
energy limit, where the applied correction terms become universal and do not depend on the
details of the actual decay process anymore, but only on the initial and final states, cf. Ref-
erences [96, 126, 3]: a full factorization of the QED process from the Born level decay matrix
element emerges. This is used in the all-purpose algorithm of PHOTOS [19, 20] to correct simu-
lated Born level decays for the e�ects of QED final state radiation. This algorithm is used by
many high-energy experiments, including BABAR .

In this chapter, an approach is outlined how to include precision beyond the vanishing limit
by determining the process dependent soft corrections for the semileptonic B æ D l ‹ decays.
Furthermore, the long-distance corrections to the electroweak short-distance correction of Ref-
erences [116, 115] are determined. The short-distance corrections originate from renormalizing
Fermi’s constant by means of the the muon decay constant at O(–em).

The work in this chapter is the result of a collaboration with Marek Schönherr, cf.
Ref. [31]1

3.1. Long- and short-distance physics

B `+

D̄

⌫`

`+

c̄

b̄

⌫`

Fig. 3.1 The tree-level weak B æ D̄ ¸+ ‹¸ decay is shown both in the phenomenological
picture (left) and, at parton level, in Fermi’s theory a low energy approximation
of the Standard Model (right). The shaded circle represents the e�ective vertex
parametrized by form factors f±.

The transition amplitude of the B æ D l ‹l decay is determined by the matrix element of the
1Under revision due to comments from referee.
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Short-Distance

• Short-distance parts: Sirlin 
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Fig. 3.2 Representative Feynman diagrams of the Standard Model partonic decay b̄ æ
c̄ l+ ‹l are shown. The white circles indicate hadronic contributions that are ne-
glected in the short-distance expansion. The illustration was taken from Ref. [31].

theory of

M1
0,sd = –em GF

4fi

C

3 ln mW

� + 6Q̄ ln mW

� ≠ 3
2

1
1 + 2Q̄

2
ln m2

W

m2
Z

+ . . .

D

M̃0
0 ,

= 3–em
4fi

1
1 + 2Q̄

2
ln mZ

� M0
0 + . . . , (3.37)

where GF was absorbed into the leading order matrix element M0
0 in the last line. For semilep-

tonic B-meson decays, the average charge of the decaying quark line is given by Q̄ = 1
2 |Q

b̄
+Qc̄| =

1
6 which leads to

M1
0,sd = –em

fi
ln mZ

� M0
0 + . . . . (3.38)

The logarithm in Eq. (3.38) then represents the leading logarithmic corrections at O(–em GF)
due to the virtual particle exchange with photon energies above �.

3.2. Long distance next-to-leading order calculation at O(k0)
Using the e�ective Lagrangian Eq. (3.31), the next-to-leading order calculation at O(k0 –em GF)
for the long-distance contributions can be carried out. Figures 3.3 and 3.4 depict the Feynman
diagrams of the long-distance corrections that need to be calculated: diagrams a) and b) depict
the emission of a real photon from the lepton and the charged meson. Diagram c) depicts the
arising seagull graph that needs to be included to obtain a gauge invariant amplitude. Diagrams
d) and e) depict the self-energy corrections of the charged lepton and meson. Diagram f) shows
the dominant virtual vertex diagram. Diagrams g) and h) depict the coupling of the seagull
diagram to the charged lepton and meson.

32

[115] Sirlin, A. : Current Algebra Formulation of Radiative Corrections in Gauge Theories
and the Universality of the Weak Interactions. In: Rev. Mod. Phys. 50 (1978), S. 573.
http://dx.doi.org/10.1103/RevModPhys.50.573. – DOI 10.1103/RevModPhys.50.573

[116] Sirlin, A. : Large m(W), m(Z) Behavior of the O(alpha) Corrections to Semileptonic
Processes Mediated by W. In: Nucl. Phys. B196 (1982), S. 83. http://dx.doi.org/10.
1016/0550-3213(82)90303-0. – DOI 10.1016/0550–3213(82)90303–0

[117] Suzuki, T. B. u. a.: Semileptonic Decays of B Meson into Charmed Higher Resonances
in the Heavy Quark E�ective Theory. In: Progress of Theoretical Physics 91 (1994), Nr.
4, 757-774. http://dx.doi.org/10.1143/PTP.91.757. – DOI 10.1143/PTP.91.757

[118] Tackmann, F. J.: Full-phase-space twist expansion in semileptonic and radiative B-
meson decays. In: Phys. Rev. D72 (2005), S. 034036. http://dx.doi.org/10.1103/
PhysRevD.72.034036. – DOI 10.1103/PhysRevD.72.034036

[119] http://ckmfitter.in2p3.fr/plots_ICHEP10/ckmEval_results_ICHEP10.html

[120] Uraltsev, N. : A BPS expansion for B and D mesons. In: Phys. Lett. B585
(2004), S. 253–262. http://dx.doi.org/10.1016/j.physletb.2004.01.053. – DOI
10.1016/j.physletb.2004.01.053

[121] Ward, J. C.: An Identity in Quantum Electrodynamics. In: Phys. Rev. 78 (1950), 182.
http://dx.doi.org/10.1103/PhysRev.78.182. – DOI 10.1103/PhysRev.78.182

[122] Was, Z. : Radiative Corrections. In: CERN-TH. 7154/94 (1994)

[123] Wise, M. ; Manohar, A. : Heavy Quark Physics. Cambridge University Press, 2000

[124] Wolfenstein, L. : Parametrization of the Kobayashi-Maskawa Matrix. In: Phys. Rev.

Lett. 51 (1983), S. 1945. http://dx.doi.org/10.1103/PhysRevLett.51.1945. – DOI
10.1103/PhysRevLett.51.1945

[125] Xiao, Z.-j. ; Zhuang, C. : Exclusive B æ (Kú, fl)“ decays in the general two- Higgs-
doublet models. In: Eur. Phys. J. C33 (2004), S. 349–368. http://dx.doi.org/10.
1140/epjc/s2004-01592-0. – DOI 10.1140/epjc/s2004–01592–0

[126] Yennie u. a.: The Infrared Divergence Phenomena and High-Energy Processes. In: Ann.

Phys. 13 (1961), 379-452. http://www.slac.stanford.edu/spires/find/hep/www?j=
APNYA,13,379

345

W

Z, �, h

W

c̄ ⌫` `+

b̄

W

Z, �, h

c̄ ⌫` `+

b̄

W

Z
c̄ ⌫`

b̄

W

, Z
�, h

c̄ ⌫` `+

b̄

W

c̄ ⌫` `+

b̄

W W

c̄ ⌫`

b̄

Fig. 3.2 Representative Feynman diagrams of the Standard Model partonic decay b̄ æ
c̄ l+ ‹l are shown. The white circles indicate hadronic contributions that are ne-
glected in the short-distance expansion. The illustration was taken from Ref. [31].

theory of

M1
0,sd = –em GF

4fi

C

3 ln mW

� + 6Q̄ ln mW

� ≠ 3
2

1
1 + 2Q̄

2
ln m2

W

m2
Z

+ . . .

D

M̃0
0 ,

= 3–em
4fi

1
1 + 2Q̄

2
ln mZ

� M0
0 + . . . , (3.37)

where GF was absorbed into the leading order matrix element M0
0 in the last line. For semilep-

tonic B-meson decays, the average charge of the decaying quark line is given by Q̄ = 1
2 |Q

b̄
+Qc̄| =

1
6 which leads to

M1
0,sd = –em

fi
ln mZ

� M0
0 + . . . . (3.38)

The logarithm in Eq. (3.38) then represents the leading logarithmic corrections at O(–em GF)
due to the virtual particle exchange with photon energies above �.

3.2. Long distance next-to-leading order calculation at O(k0)
Using the e�ective Lagrangian Eq. (3.31), the next-to-leading order calculation at O(k0 –em GF)
for the long-distance contributions can be carried out. Figures 3.3 and 3.4 depict the Feynman
diagrams of the long-distance corrections that need to be calculated: diagrams a) and b) depict
the emission of a real photon from the lepton and the charged meson. Diagram c) depicts the
arising seagull graph that needs to be included to obtain a gauge invariant amplitude. Diagrams
d) and e) depict the self-energy corrections of the charged lepton and meson. Diagram f) shows
the dominant virtual vertex diagram. Diagrams g) and h) depict the coupling of the seagull
diagram to the charged lepton and meson.
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Using the current algebra formulation of radiative corrections and working in the framework 
of the SU(2)t. × U( 1 ) × SU(3)c theory, we derive a theorem that governs the large row, mz behaviour 
of the O(a) corrections to general semileptonic processes mediated by W. The leading asymptotic 
dependence is logarithmic with a universal coefficient not affected by the strong interactions. As 
a byproduct, we obtain the leading asymptotic effect induced perturbatively by the strong inter- 
actions, which is of O(In In (row/A)). 

The  aim of this paper  is to analyze the large row, m z  behaviour  of the O ( a )  
correct ions to semi leptonic  processes media ted  by the W meson,  in the f ramework  
of the SU(2)x × U(1) × SU(3)c theory.  

Ou r  main  results are summar ized  in the fol lowing theorem:  
(a) In the simplest  vers ion of the theory in which cos 0w = m w / m z  at the tree 

level, the leading asymptot ic  behav iour  in mz  of the O ( a )  correct ions to an arbi t rary  
semi leptonic  process media ted  by W is given by 

M + 3 a t  
M 0 - 1  4 7 r ( l + 2 0 )  I n m Z + ' ' ' ,  (1) /x 

where  M is the ampl i tude  up to terms of O(a ) ,  M ° is the ze ro th-order  ampl i tude  
but  expressed in terms of the convent iona l ly  defined* m u o n  decay coupl ing cons tant  
G , ,  tz is an unspecif ied mass scale characterist ic of the process, and 0 is the average 
charge of the quarks  in a SU(2)L. isodoublet .  H e n c e f o r t h . . .  indicates non - l ead ing  
con t r ibu t ions  as rn 2w or m 3. "-* oo. For the usual  charge assignments ,  ()  = ~. It is also 
under s tood  that any quark  masses which may be involved in M ° are renormal ized  
masses which include the h igh-f requency correct ions of O ( a )  induced  by elec- 
t roweak interact iens**.  The  proof of the theorem assumes that  the couplings of 
the Higgs scalars to the quarks  and leptons  par t ic ipat ing in the decay are of 
O ( g m / m w )  with m << row. 
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* G,, is defined by 

r ,  = 192rr3[ roT, a 2n- 4 • 

Numerically G,, = (1.16632+ 0.0002)x 10 '~ GeV 2 
** A more precise discussion of this point is given in the appendix. 
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• Long-distance part: Scalar QED with some ad-hoc QCD evolution 
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Fig. 3.3 The Feynman diagrams for the next-to-leading order corrections at O(k0 –em GF)
to B+ æ D̄0 l+ ‹l are shown.

3.2.1. Real next-to-leading order corrections at O(k0)
Using the Feynman rules derived from Eq. (3.31), the summed real emission matrix element for
B+ æ D̄0 l+ ‹l“ is given by

ÿ

a)≠c)
M

1

2

1 = ≠i e
GFÔ

2
Vcb ū “µ PL

A

≠ Hµ

2p¸ · k
(‘/úk/ + 2‘ú · p¸) + Hµ ‘ú · p

p · k
+ f3

3
kµ ‘ú · p

p · k
≠ ‘ú

µ

4 B

v ,

(3.39)

where ‘ú = ‘ú(k) denotes the polarization vector of the real final state photon. Similarly, one
finds for the summed real emission matrix element for B0 æ D̄≠ l+ ‹l“

ÿ

a)≠c)
M

1

2

1 = ≠i e
GFÔ

2
Vcb ū “µ PL

A

≠ Hµ

2p¸ · k
(‘/úk/ + 2‘ú · p¸) + Hµ ‘ú · pÕ

pÕ · k
≠ f2

3
kµ ‘ú · pÕ

pÕ · k
≠ ‘ú

µ

4 B

v ,

(3.40)

with f2 = f+(t)≠f≠(t). Both summed real emission matrix elements are infrared divergent, and
the arising divergencies cancel with identical poles from the virtual next-to-leading order matrix
elements. In order to proceed, the arising singularities need to be regularized: this is done by
introducing a small photon mass ⁄, and the artificial dependence on this parameter cancels in
the full next-to-leading-order amplitude. However, a massive photon possesses a non-vanishing
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The authors of Ref. [73] construct the IB part as,

V IB
µ‹ = Hµ(tÕ) p‹

p · k
+ f3(tÕ)

3
kµ p‹

p · k
≠ gµ‹

4
+ . . . , (3.22)

where the ellipsis denote the seagull terms which need to be included to ensure gauge invariance
of the amplitude. The SD contributions from this IB definition is given by [112]

V SD
µ‹ = V1

Ë
kµ p‹ ≠ (p · k) gµ‹

È
+ V2

Ë
kµ(p¸ + p‹)‹ ≠ (k · (p¸ + p‹))gµ‹

È

+ V3
Ë
(k · (p¸ + p‹))(p¸ + p‹)µ p‹ ≠ (p · k)(p¸ + p‹)µ(p¸ + p‹)‹

È

+ V4
Ë
(k · (p¸ + p‹))(pXµ p‹ ≠ (p · k) pµ(p¸ + p‹)‹

È
, (3.23)

where the Lorentz-invariant scalars Vi are functions of the three independent scalar variables
that can be built with p, pÕ and k.

Another possible choice for the IB terms is simply given by the first term of Eq. (3.20),

V IB
µ‹ = Hµ(t) p‹

p · k
, (3.24)

where the term of order k0 from Low’s matrix element are absorbed in the definition of the
vector SD contributions (which henceforth are of order O(k0)). The SD contributions for the
IB definition of Eq. (3.24) can be found in Ref. [49].

The overall knowledge of the SD contributions for semileptonic B meson decays is modest,
and so far no attempt in the literature (known to us) was made to calculate them from first
principles. The authors of Ref. [28] studied the soft SD contributions from a Dú intermediate
state, which is produced after the emission of a real photon, by using the DDú“ coupling
predictions from lattice QCD, cf. Ref. [27]. Naively, one would expect that SD contributions
should be more important in semileptonic B meson decays than they are in semileptonic kaon
decays, due to the proximity of the Bú, and Dú, and Dúú resonances to the B and D ground
states. On the other hand, the B and D mesons mass suppress the production of soft (and
hard) photons considerably.

3.1.3. E�ective Lagrangian for the IB contributions at O(k0)

The IB corrections to the leading-order decay can be described by using an e�ective Lagrangian,
which neglects the composite nature of the involved mesons. Furthermore, neglecting the t
dependence for the time being, the tree-level B æ D l ‹l decay amplitude can be described by
an interaction Lagrangian of the form

LW = GFÔ
2

Vcb
#
(f+ + f≠) „Õ ˆµ„ + (f+ ≠ f≠) „ ˆµ„Õ$ Â̄‹ PR “µ Â¸ + h.c. , (3.25)

where „ and „Õ are the scalar fields of the B and D meson QCD states, respectively. The
matrix element obtained from Eq. (3.25) has the same Lorentz structure as the matrix element
calculated from the e�ective Hamiltonian Eq. (3.1), i.e.

≠ i
GFÔ

2
Vcb

Ë
f+

!
p + pÕ"

µ
+ f≠

!
p ≠ pÕ"

µ

È
ū‹ PR “µ vl , (3.26)
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Fig. 3.3 The Feynman diagrams for the next-to-leading order corrections at O(k0 –em GF)
to B+ æ D̄0 l+ ‹l are shown.

3.2.1. Real next-to-leading order corrections at O(k0)
Using the Feynman rules derived from Eq. (3.31), the summed real emission matrix element for
B+ æ D̄0 l+ ‹l“ is given by

ÿ

a)≠c)
M

1

2

1 = ≠i e
GFÔ

2
Vcb ū “µ PL

A

≠ Hµ

2p¸ · k
(‘/úk/ + 2‘ú · p¸) + Hµ ‘ú · p

p · k
+ f3

3
kµ ‘ú · p

p · k
≠ ‘ú

µ

4 B

v ,

(3.39)

where ‘ú = ‘ú(k) denotes the polarization vector of the real final state photon. Similarly, one
finds for the summed real emission matrix element for B0 æ D̄≠ l+ ‹l“

ÿ

a)≠c)
M

1

2

1 = ≠i e
GFÔ

2
Vcb ū “µ PL

A

≠ Hµ

2p¸ · k
(‘/úk/ + 2‘ú · p¸) + Hµ ‘ú · pÕ

pÕ · k
≠ f2

3
kµ ‘ú · pÕ

pÕ · k
≠ ‘ú

µ

4 B

v ,

(3.40)

with f2 = f+(t)≠f≠(t). Both summed real emission matrix elements are infrared divergent, and
the arising divergencies cancel with identical poles from the virtual next-to-leading order matrix
elements. In order to proceed, the arising singularities need to be regularized: this is done by
introducing a small photon mass ⁄, and the artificial dependence on this parameter cancels in
the full next-to-leading-order amplitude. However, a massive photon possesses a non-vanishing
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the hadronic vector and axial vector contributions need to fulfill

k‹ Vµ‹ = Hµ , (3.6)
k‹ Aµ‹ = 0 , (3.7)

what relates the vector contributions of the QED next-to-leading order matrix element to the
hadronic current of the leading order matrix elements. In the soft photon limit this connection
leads to «Low’s theorem», cf. References [96], which states that in a systematic expansion of
the QED next-to-leading order hadronic current in powers of the photon four-momentum k, the
terms proportional to k≠1 and k0 are completely determined by the on-shell form factors of the
tree-level decay.

3.1.1. Low’s theorem and pole contributions

In the soft photon part of phase-space, the non-local operator Eq. (3.4) should be very well
approximated by the first few intermediate resonances due to excited beauty and charm states,
i.e. for a charged initial B meson the vector and axial vector expand as

Vµ‹ ≠ Aµ‹ = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)ÍÈB(p ≠ k)|Jem
‹ |B(p)Í

m2
B

≠ (p ≠ k)2

+ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|Bú(p ≠ k)ÍÈBú(p ≠ k)|Jem
‹ |B(p)Í

m2
Bú ≠ (p ≠ k)2

+ÈD(pÕ ≠ k)|Jem
‹ |Dú(pÕ)ÍÈDú(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í

m2
Dú ≠ (pÕ ≠ k)2 + . . . , (3.8)

where the ellipsis denotes contributions from higher order states and the expansion for a charged
final state is done analogously. Furthermore, the infrared region is completely determined by
the B-pole contributions, since in the vanishing photon energy limit with k π mú

B
≠mB excited

states can no contribute. This corresponds to the physical interpretation, that a soft photon can
neither excite nor resolve the charged B meson. Contracting Eq. (3.6) with k and evaluating
the matrix elements results in

k‹ Vµ‹ = H Õ
µ(tÕ)

k ·
!
2p ≠ k

"

2p · k
+ . . . (3.9)

where the electromagnetic coupling to a spin-zero particle, i.e.

ÈB(p ≠ k)|Jem
‹ |B(p)Í =

!
2p ≠ k

"
‹

Fem , (3.10)

was used to describe the coupling to the B meson with the electromagnetic form factor Fem.
This form factor can be set to unity in the soft photon limit since a soft photon cannot resolve
the underlying structure of a B meson. The o�-shell generalization of the hadronic current
Eq. (3.3) is given by

ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = ‚f+(tÕ, rÕ, sÕ)
!
p ≠ k + pÕ"

µ
+ ‚f≠(tÕ, rÕ, sÕ)

!
p ≠ k ≠ pÕ"

µ
, (3.11)

where the o�-shell form factors ‚f± depend on all invariants of the problem, i.e. tÕ =
!
p ≠ pÕ ≠ k

"2,
rÕ = p · pÕ, and sÕ = k · pÕ are a possible choice. In the soft limit the B meson is not far from
its mass shell and the form factors in Eq. (3.3) give an adequate description which gets exact
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in the k æ 0 infrared limit. The hadronic current H Õ
µ = H Õ

µ(tÕ) is defined as

H Õ
µ(tÕ) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = f+(tÕ)

!
p ≠ k + pÕ"

µ
+ f≠(tÕ)

!
p ≠ k ≠ pÕ"

µ
, (3.12)

and the ellipsis in Eq. (3.9) denotes further seagull-like terms which need to be included to
obtain a gauge invariant amplitude. These seagull terms terms can be obtained by expanding
H Õ

µ in powers of k, i.e.

k‹ Vµ‹ = Hµ(t) + kÕ dH Õ
µ

dtÕ

----
kÕ=0

+ kÕ2 d2H Õ
µ

dtÕ2

----
kÕ=0

+ . . . , (3.13)

where the ellipsis denote higher order derivatives, and tÕ = t + kÕ with kÕ = ≠2 k ·
!
p ≠ pÕ". By

neglecting all terms of order O(kÕ2) and higher in Eq. (3.13), and requiring a gauge invariant
summed amplitude, a set of counter terms can be isolated which corresponds to the seagull
terms. The emission matrix element in the soft limit is then given by

i e
GFÔ

2
Vcb ū‹ “µ PL

A

≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Hµ p‹

p · k
+ f3(t)

3
kµ p‹

p · k
≠ gµ‹

4

+
A

≠2
!
p ≠ pÕ"– dHµ(tÕ)

dtÕ

----
kÕ=0

B 3
k– p‹

p · k
≠ g–‹

4 B

vl ,

(3.14)

where f3(t) = f+(t)+f≠(t) and Low’s matrix element for the process is recovered, cf. Ref. [45].
Furthermore, note that in Eq. (3.14) the derivative of Hµ(tÕ) with respect to tÕ occurs, instead
of the derivative of H Õ

µ(tÕ). To derive Eq. (3.14), several approximations were made:

1. The non-local operator Eq. (3.4) was expanded in a number of matrix elements which
correspond to intermediate resonances allowed in the soft photon part of phase-space.

2. The o�-shell hadronic current was approximated by the on-shell hadronic current.

3. The higher order terms of Eq. (3.13) which are ambiguous and depend on the parametriza-
tion of the on-shell matrix element were neglected.

4. No intermediate excited resonances were considered.

All of these approximations are exact in the infrared limit and Eq. (3.14) can be understood
as an expansion of the electromagnetic coupling to the hadronic current in powers of k. By
neglecting all contributions of O(k0) and higher, the matrix element Eq. (3.14) factorizes into
an eikonal factor multiplied by the leading order matrix element Eq. (3.2), i.e.

i e
3 1

p · k
p‹ ≠ 1

p¸ · k

!
p¸

"
‹

4
M0

0 . (3.15)

This factorization is the starting point of the soft exponentiation used in the PHOTOS algorithm.
In particular, Eq. (3.15) can be generalized to include an arbitrary number of soft real and virtual
photons, and an infrared safe correction factor can be extracted, cf. References [126, 3, 122].
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The authors of Ref. [73] construct the IB part as,

V IB
µ‹ = Hµ(tÕ) p‹

p · k
+ f3(tÕ)

3
kµ p‹

p · k
≠ gµ‹

4
+ . . . , (3.22)

where the ellipsis denote the seagull terms which need to be included to ensure gauge invariance
of the amplitude. The SD contributions from this IB definition is given by [112]

V SD
µ‹ = V1

Ë
kµ p‹ ≠ (p · k) gµ‹

È
+ V2

Ë
kµ(p¸ + p‹)‹ ≠ (k · (p¸ + p‹))gµ‹

È

+ V3
Ë
(k · (p¸ + p‹))(p¸ + p‹)µ p‹ ≠ (p · k)(p¸ + p‹)µ(p¸ + p‹)‹

È

+ V4
Ë
(k · (p¸ + p‹))(pXµ p‹ ≠ (p · k) pµ(p¸ + p‹)‹

È
, (3.23)

where the Lorentz-invariant scalars Vi are functions of the three independent scalar variables
that can be built with p, pÕ and k.

Another possible choice for the IB terms is simply given by the first term of Eq. (3.20),

V IB
µ‹ = Hµ(t) p‹

p · k
, (3.24)

where the term of order k0 from Low’s matrix element are absorbed in the definition of the
vector SD contributions (which henceforth are of order O(k0)). The SD contributions for the
IB definition of Eq. (3.24) can be found in Ref. [49].

The overall knowledge of the SD contributions for semileptonic B meson decays is modest,
and so far no attempt in the literature (known to us) was made to calculate them from first
principles. The authors of Ref. [28] studied the soft SD contributions from a Dú intermediate
state, which is produced after the emission of a real photon, by using the DDú“ coupling
predictions from lattice QCD, cf. Ref. [27]. Naively, one would expect that SD contributions
should be more important in semileptonic B meson decays than they are in semileptonic kaon
decays, due to the proximity of the Bú, and Dú, and Dúú resonances to the B and D ground
states. On the other hand, the B and D mesons mass suppress the production of soft (and
hard) photons considerably.

3.1.3. E�ective Lagrangian for the IB contributions at O(k0)

The IB corrections to the leading-order decay can be described by using an e�ective Lagrangian,
which neglects the composite nature of the involved mesons. Furthermore, neglecting the t
dependence for the time being, the tree-level B æ D l ‹l decay amplitude can be described by
an interaction Lagrangian of the form

LW = GFÔ
2

Vcb
#
(f+ + f≠) „Õ ˆµ„ + (f+ ≠ f≠) „ ˆµ„Õ$ Â̄‹ PR “µ Â¸ + h.c. , (3.25)

where „ and „Õ are the scalar fields of the B and D meson QCD states, respectively. The
matrix element obtained from Eq. (3.25) has the same Lorentz structure as the matrix element
calculated from the e�ective Hamiltonian Eq. (3.1), i.e.

≠ i
GFÔ

2
Vcb

Ë
f+

!
p + pÕ"

µ
+ f≠

!
p ≠ pÕ"

µ

È
ū‹ PR “µ vl , (3.26)
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• Assumed that the off-shell hadronic current can be modeled using the 
on-shell current; in particular that the form factors depend on t = q2 only

t’ = (p - p’ - k)2

r’, s’: other lorentz scalars

• Long-distance part: Scalar QED with some ad-hoc QCD evolution 
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• More formal: coupling an electromagnetic current to LO decay results in

weak interaction Hamiltonian,

HW = 4GFÔ
2

Vcb [c̄ “µ PL b]
Ë
Â̄‹ “µ PL Â¸

È
+ h.c. , (3.1)

where c and b are the fields of the heavy quarks of the process, and Âl and Â‹ denote the fields
of the lepton and neutrino. Moreover, PL = 1

2 (1 ≠ “5) is the left-hand projection operator, and
GF denotes the Fermi coupling. Neglecting any higher-order electroweak corrections, the matrix
element factorizes into the product of a leptonic and hadronic matrix elements. The hadronic
matrix element is the sum of the vector and the axial vector currents

‚Vµ = c̄ “µ b and ‚Aµ = c̄ “µ “5 b ,

and can be parametrized as a function of two Lorentz invariant amplitudes f±. The conventional
choice is2

M0
0 = ≠i

GFÔ
2

Vcb
Ë
f+(t)

!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ

È
ū‹ PR “µ vl , (3.2)

where p and pÕ denote the four momenta of the B and D meson, respectively. Furthermore,
ū‹ and vl denote the spinors of the neutrino and the lepton, and PR = 1

2 (1 ≠ “5) is the right-
handed projection operator. Fig. 3.1 shows the decay at parton and meson levels. In order to be
Lorentz invariant functions, the amplitudes or form factors can only depend on the invariants
of the problem, i.e. p2, pÕ2, and p · pÕ. If the B and D meson are on their mass shells, the form
factors are conventionally parametrized as functions of the four-momentum transfer squared
t =

!
p ≠ pÕ"2 of the B meson to the D meson system. It is convenient to introduce the notation

Hµ = Hµ(t) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í = f+(t)
!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ
, (3.3)

where |BÍ and |DÍ denote the full QCD states of the B and D meson.

Coupling an electromagnetic current to the matrix element Eq. (3.2) results in

i e
GFÔ

2
Vcb ū‹ “µ PL

3
≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Vµ‹ ≠ Aµ‹

4
vl , (3.4)

where p¸ denotes the four-momentum of the lepton, and k the four-momentum of a (real) photon.
The hadronic vector and axial vector contributions describing the B-“ and D-“ coupling are
given by the non-local operator

Vµ‹ ≠ Aµ‹ =
⁄

d4x eik·xÈD|T {hµ(0) Jem
‹ (x)}|BÍ , (3.5)

where hµ(0) = c̄ “µ PL b is the quark current, and Jem
‹ (x) =

1
2c̄“‹c ≠ b̄“‹b ≠ nl“‹ l̄

2
/3 denotes

the electromagnetic current. Furthermore, l is a light quark field either corresponding to an u or
d quark, and n accounts for the charge of the light quark field, i.e. n = ≠2 for u and n = 1 for d.
The matrix element Eq. (3.4) needs to obey the electromagnetic Ward identity, cf. Ref. [121],
and in order for the amplitude to vanish when contracted with the photon four-momentum k,

2Throughout this chapter M
n
m denote a matrix element at O(–n

em GF) with m photons in the final state. The
total decay rate at O(–n

em GF) is denoted as �n
m.
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weak interaction Hamiltonian,

HW = 4GFÔ
2

Vcb [c̄ “µ PL b]
Ë
Â̄‹ “µ PL Â¸

È
+ h.c. , (3.1)

where c and b are the fields of the heavy quarks of the process, and Âl and Â‹ denote the fields
of the lepton and neutrino. Moreover, PL = 1

2 (1 ≠ “5) is the left-hand projection operator, and
GF denotes the Fermi coupling. Neglecting any higher-order electroweak corrections, the matrix
element factorizes into the product of a leptonic and hadronic matrix elements. The hadronic
matrix element is the sum of the vector and the axial vector currents

‚Vµ = c̄ “µ b and ‚Aµ = c̄ “µ “5 b ,

and can be parametrized as a function of two Lorentz invariant amplitudes f±. The conventional
choice is2

M0
0 = ≠i

GFÔ
2

Vcb
Ë
f+(t)

!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ

È
ū‹ PR “µ vl , (3.2)

where p and pÕ denote the four momenta of the B and D meson, respectively. Furthermore,
ū‹ and vl denote the spinors of the neutrino and the lepton, and PR = 1

2 (1 ≠ “5) is the right-
handed projection operator. Fig. 3.1 shows the decay at parton and meson levels. In order to be
Lorentz invariant functions, the amplitudes or form factors can only depend on the invariants
of the problem, i.e. p2, pÕ2, and p · pÕ. If the B and D meson are on their mass shells, the form
factors are conventionally parametrized as functions of the four-momentum transfer squared
t =

!
p ≠ pÕ"2 of the B meson to the D meson system. It is convenient to introduce the notation

Hµ = Hµ(t) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í = f+(t)
!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ
, (3.3)

where |BÍ and |DÍ denote the full QCD states of the B and D meson.

Coupling an electromagnetic current to the matrix element Eq. (3.2) results in

i e
GFÔ

2
Vcb ū‹ “µ PL

3
≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Vµ‹ ≠ Aµ‹

4
vl , (3.4)

where p¸ denotes the four-momentum of the lepton, and k the four-momentum of a (real) photon.
The hadronic vector and axial vector contributions describing the B-“ and D-“ coupling are
given by the non-local operator

Vµ‹ ≠ Aµ‹ =
⁄

d4x eik·xÈD|T {hµ(0) Jem
‹ (x)}|BÍ , (3.5)

where hµ(0) = c̄ “µ PL b is the quark current, and Jem
‹ (x) =

1
2c̄“‹c ≠ b̄“‹b ≠ nl“‹ l̄

2
/3 denotes

the electromagnetic current. Furthermore, l is a light quark field either corresponding to an u or
d quark, and n accounts for the charge of the light quark field, i.e. n = ≠2 for u and n = 1 for d.
The matrix element Eq. (3.4) needs to obey the electromagnetic Ward identity, cf. Ref. [121],
and in order for the amplitude to vanish when contracted with the photon four-momentum k,

2Throughout this chapter M
n
m denote a matrix element at O(–n

em GF) with m photons in the final state. The
total decay rate at O(–n

em GF) is denoted as �n
m.
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Hµ(t) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í

with a non-local operator describing the B-ɣ and D-ɣ couplingthe hadronic vector and axial vector contributions need to fulfill

k‹ Vµ‹ = Hµ , (3.6)
k‹ Aµ‹ = 0 , (3.7)

what relates the vector contributions of the QED next-to-leading order matrix element to the
hadronic current of the leading order matrix elements. In the soft photon limit this connection
leads to «Low’s theorem», cf. References [96], which states that in a systematic expansion of
the QED next-to-leading order hadronic current in powers of the photon four-momentum k, the
terms proportional to k≠1 and k0 are completely determined by the on-shell form factors of the
tree-level decay.

3.1.1. Low’s theorem and pole contributions

In the soft photon part of phase-space, the non-local operator Eq. (3.4) should be very well
approximated by the first few intermediate resonances due to excited beauty and charm states,
i.e. for a charged initial B meson the vector and axial vector expand as

Vµ‹ ≠ Aµ‹ = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)ÍÈB(p ≠ k)|Jem
‹ |B(p)Í

m2
B

≠ (p ≠ k)2

+ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|Bú(p ≠ k)ÍÈBú(p ≠ k)|Jem
‹ |B(p)Í

m2
Bú ≠ (p ≠ k)2

+ÈD(pÕ ≠ k)|Jem
‹ |Dú(pÕ)ÍÈDú(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í

m2
Dú ≠ (pÕ ≠ k)2 + . . . , (3.8)

where the ellipsis denotes contributions from higher order states and the expansion for a charged
final state is done analogously. Furthermore, the infrared region is completely determined by
the B-pole contributions, since in the vanishing photon energy limit with k π mú

B
≠mB excited

states can no contribute. This corresponds to the physical interpretation, that a soft photon can
neither excite nor resolve the charged B meson. Contracting Eq. (3.6) with k and evaluating
the matrix elements results in

k‹ Vµ‹ = H Õ
µ(tÕ)

k ·
!
2p ≠ k

"

2p · k
+ . . . (3.9)

where the electromagnetic coupling to a spin-zero particle, i.e.

ÈB(p ≠ k)|Jem
‹ |B(p)Í =

!
2p ≠ k

"
‹

Fem , (3.10)

was used to describe the coupling to the B meson with the electromagnetic form factor Fem.
This form factor can be set to unity in the soft photon limit since a soft photon cannot resolve
the underlying structure of a B meson. The o�-shell generalization of the hadronic current
Eq. (3.3) is given by

ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = ‚f+(tÕ, rÕ, sÕ)
!
p ≠ k + pÕ"

µ
+ ‚f≠(tÕ, rÕ, sÕ)

!
p ≠ k ≠ pÕ"

µ
, (3.11)

where the o�-shell form factors ‚f± depend on all invariants of the problem, i.e. tÕ =
!
p ≠ pÕ ≠ k

"2,
rÕ = p · pÕ, and sÕ = k · pÕ are a possible choice. In the soft limit the B meson is not far from
its mass shell and the form factors in Eq. (3.3) give an adequate description which gets exact
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which can be expanded around first few resonant states

lepton leg coupling hadronic coupling
hadronic current

See also D. Becirevic, N. Kosnik	
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More formal:

• More formal: coupling an electromagnetic current to LO decay results in
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4
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d4x eik·xÈD|T {hµ(0) Jem
‹ (x)}|BÍ ,
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with a non-local operator describing the B-ɣ and D-ɣ coupling
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k‹ Aµ‹ = 0 ,
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lepton leg coupling hadronic coupling
hadronic current

the hadronic vector and axial vector contributions need to fulfill
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what relates the vector contributions of the QED next-to-leading order matrix element to the
hadronic current of the leading order matrix elements. In the soft photon limit this connection
leads to «Low’s theorem», cf. References [96], which states that in a systematic expansion of
the QED next-to-leading order hadronic current in powers of the photon four-momentum k, the
terms proportional to k≠1 and k0 are completely determined by the on-shell form factors of the
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where the ellipsis denotes contributions from higher order states and the expansion for a charged
final state is done analogously. Furthermore, the infrared region is completely determined by
the B-pole contributions, since in the vanishing photon energy limit with k π mú

B
≠mB excited

states can no contribute. This corresponds to the physical interpretation, that a soft photon can
neither excite nor resolve the charged B meson. Contracting Eq. (3.6) with k and evaluating
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where the electromagnetic coupling to a spin-zero particle, i.e.
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Fem , (3.10)

was used to describe the coupling to the B meson with the electromagnetic form factor Fem.
This form factor can be set to unity in the soft photon limit since a soft photon cannot resolve
the underlying structure of a B meson. The o�-shell generalization of the hadronic current
Eq. (3.3) is given by

ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = ‚f+(tÕ, rÕ, sÕ)
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µ
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where the o�-shell form factors ‚f± depend on all invariants of the problem, i.e. tÕ =
!
p ≠ pÕ ≠ k

"2,
rÕ = p · pÕ, and sÕ = k · pÕ are a possible choice. In the soft limit the B meson is not far from
its mass shell and the form factors in Eq. (3.3) give an adequate description which gets exact
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the hadronic vector and axial vector contributions need to fulfill
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k‹ Aµ‹ = 0 , (3.7)

what relates the vector contributions of the QED next-to-leading order matrix element to the
hadronic current of the leading order matrix elements. In the soft photon limit this connection
leads to «Low’s theorem», cf. References [96], which states that in a systematic expansion of
the QED next-to-leading order hadronic current in powers of the photon four-momentum k, the
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where the ellipsis denotes contributions from higher order states and the expansion for a charged
final state is done analogously. Furthermore, the infrared region is completely determined by
the B-pole contributions, since in the vanishing photon energy limit with k π mú
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≠mB excited

states can no contribute. This corresponds to the physical interpretation, that a soft photon can
neither excite nor resolve the charged B meson. Contracting Eq. (3.6) with k and evaluating
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k‹ Vµ‹ = H Õ
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where the electromagnetic coupling to a spin-zero particle, i.e.
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was used to describe the coupling to the B meson with the electromagnetic form factor Fem.
This form factor can be set to unity in the soft photon limit since a soft photon cannot resolve
the underlying structure of a B meson. The o�-shell generalization of the hadronic current
Eq. (3.3) is given by
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where the o�-shell form factors ‚f± depend on all invariants of the problem, i.e. tÕ =
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p ≠ pÕ ≠ k

"2,
rÕ = p · pÕ, and sÕ = k · pÕ are a possible choice. In the soft limit the B meson is not far from
its mass shell and the form factors in Eq. (3.3) give an adequate description which gets exact
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More formal:

• For the hadronic current: Taylor expand

in the k æ 0 infrared limit. The hadronic current H Õ
µ = H Õ

µ(tÕ) is defined as

H Õ
µ(tÕ) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = f+(tÕ)

!
p ≠ k + pÕ"

µ
+ f≠(tÕ)

!
p ≠ k ≠ pÕ"

µ
, (3.12)

and the ellipsis in Eq. (3.9) denotes further seagull-like terms which need to be included to
obtain a gauge invariant amplitude. These seagull terms terms can be obtained by expanding
H Õ

µ in powers of k, i.e.

k‹ Vµ‹ = Hµ(t) + kÕ dH Õ
µ

dtÕ

----
kÕ=0

+ kÕ2 d2H Õ
µ

dtÕ2

----
kÕ=0

+ . . . , (3.13)

where the ellipsis denote higher order derivatives, and tÕ = t + kÕ with kÕ = ≠2 k ·
!
p ≠ pÕ". By

neglecting all terms of order O(kÕ2) and higher in Eq. (3.13), and requiring a gauge invariant
summed amplitude, a set of counter terms can be isolated which corresponds to the seagull
terms. The emission matrix element in the soft limit is then given by

i e
GFÔ

2
Vcb ū‹ “µ PL

A

≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Hµ p‹

p · k
+ f3(t)

3
kµ p‹

p · k
≠ gµ‹

4

+
A

≠2
!
p ≠ pÕ"– dHµ(tÕ)

dtÕ

----
kÕ=0

B 3
k– p‹

p · k
≠ g–‹

4 B

vl ,

(3.14)

where f3(t) = f+(t)+f≠(t) and Low’s matrix element for the process is recovered, cf. Ref. [45].
Furthermore, note that in Eq. (3.14) the derivative of Hµ(tÕ) with respect to tÕ occurs, instead
of the derivative of H Õ

µ(tÕ). To derive Eq. (3.14), several approximations were made:

1. The non-local operator Eq. (3.4) was expanded in a number of matrix elements which
correspond to intermediate resonances allowed in the soft photon part of phase-space.

2. The o�-shell hadronic current was approximated by the on-shell hadronic current.

3. The higher order terms of Eq. (3.13) which are ambiguous and depend on the parametriza-
tion of the on-shell matrix element were neglected.

4. No intermediate excited resonances were considered.

All of these approximations are exact in the infrared limit and Eq. (3.14) can be understood
as an expansion of the electromagnetic coupling to the hadronic current in powers of k. By
neglecting all contributions of O(k0) and higher, the matrix element Eq. (3.14) factorizes into
an eikonal factor multiplied by the leading order matrix element Eq. (3.2), i.e.

i e
3 1

p · k
p‹ ≠ 1

p¸ · k

!
p¸

"
‹

4
M0

0 . (3.15)

This factorization is the starting point of the soft exponentiation used in the PHOTOS algorithm.
In particular, Eq. (3.15) can be generalized to include an arbitrary number of soft real and virtual
photons, and an infrared safe correction factor can be extracted, cf. References [126, 3, 122].
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and neglect all higher order terms, plus introduce seagull terms to make sure matrix

element fulfills the Ward identity / is gauge invariant:
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neither excite nor resolve the charged B meson. Contracting Eq. (3.6) with k and evaluating
the matrix elements results in

k‹ Vµ‹ = H Õ
µ(tÕ)

k ·
!
2p ≠ k

"

2p · k
+ . . . (3.9)

where the electromagnetic coupling to a spin-zero particle, i.e.

ÈB(p ≠ k)|Jem
‹ |B(p)Í =

!
2p ≠ k

"
‹

Fem , (3.10)
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+ kÕ2 d2H Õ
µ

dtÕ2

----
kÕ=0

+ . . . , (3.13)

where the ellipsis denote higher order derivatives, and tÕ = t + kÕ with kÕ = ≠2 k ·
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neglecting all terms of order O(kÕ2) and higher in Eq. (3.13), and requiring a gauge invariant
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where f3(t) = f+(t)+f≠(t) and Low’s matrix element for the process is recovered, cf. Ref. [45].
Furthermore, note that in Eq. (3.14) the derivative of Hµ(tÕ) with respect to tÕ occurs, instead
of the derivative of H Õ

µ(tÕ). To derive Eq. (3.14), several approximations were made:

1. The non-local operator Eq. (3.4) was expanded in a number of matrix elements which
correspond to intermediate resonances allowed in the soft photon part of phase-space.

2. The o�-shell hadronic current was approximated by the on-shell hadronic current.

3. The higher order terms of Eq. (3.13) which are ambiguous and depend on the parametriza-
tion of the on-shell matrix element were neglected.

4. No intermediate excited resonances were considered.

All of these approximations are exact in the infrared limit and Eq. (3.14) can be understood
as an expansion of the electromagnetic coupling to the hadronic current in powers of k. By
neglecting all contributions of O(k0) and higher, the matrix element Eq. (3.14) factorizes into
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This factorization is the starting point of the soft exponentiation used in the PHOTOS algorithm.
In particular, Eq. (3.15) can be generalized to include an arbitrary number of soft real and virtual
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weak interaction Hamiltonian,

HW = 4GFÔ
2

Vcb [c̄ “µ PL b]
Ë
Â̄‹ “µ PL Â¸

È
+ h.c. , (3.1)

where c and b are the fields of the heavy quarks of the process, and Âl and Â‹ denote the fields
of the lepton and neutrino. Moreover, PL = 1

2 (1 ≠ “5) is the left-hand projection operator, and
GF denotes the Fermi coupling. Neglecting any higher-order electroweak corrections, the matrix
element factorizes into the product of a leptonic and hadronic matrix elements. The hadronic
matrix element is the sum of the vector and the axial vector currents

‚Vµ = c̄ “µ b and ‚Aµ = c̄ “µ “5 b ,

and can be parametrized as a function of two Lorentz invariant amplitudes f±. The conventional
choice is2

M0
0 = ≠i

GFÔ
2

Vcb
Ë
f+(t)

!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ

È
ū‹ PR “µ vl , (3.2)

where p and pÕ denote the four momenta of the B and D meson, respectively. Furthermore,
ū‹ and vl denote the spinors of the neutrino and the lepton, and PR = 1

2 (1 ≠ “5) is the right-
handed projection operator. Fig. 3.1 shows the decay at parton and meson levels. In order to be
Lorentz invariant functions, the amplitudes or form factors can only depend on the invariants
of the problem, i.e. p2, pÕ2, and p · pÕ. If the B and D meson are on their mass shells, the form
factors are conventionally parametrized as functions of the four-momentum transfer squared
t =

!
p ≠ pÕ"2 of the B meson to the D meson system. It is convenient to introduce the notation

Hµ = Hµ(t) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p)Í = f+(t)
!
p + pÕ"

µ
+ f≠(t)

!
p ≠ pÕ"

µ
, (3.3)

where |BÍ and |DÍ denote the full QCD states of the B and D meson.

Coupling an electromagnetic current to the matrix element Eq. (3.2) results in

i e
GFÔ

2
Vcb ū‹ “µ PL

3
≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Vµ‹ ≠ Aµ‹

4
vl , (3.4)

where p¸ denotes the four-momentum of the lepton, and k the four-momentum of a (real) photon.
The hadronic vector and axial vector contributions describing the B-“ and D-“ coupling are
given by the non-local operator

Vµ‹ ≠ Aµ‹ =
⁄

d4x eik·xÈD|T {hµ(0) Jem
‹ (x)}|BÍ , (3.5)

where hµ(0) = c̄ “µ PL b is the quark current, and Jem
‹ (x) =

1
2c̄“‹c ≠ b̄“‹b ≠ nl“‹ l̄

2
/3 denotes

the electromagnetic current. Furthermore, l is a light quark field either corresponding to an u or
d quark, and n accounts for the charge of the light quark field, i.e. n = ≠2 for u and n = 1 for d.
The matrix element Eq. (3.4) needs to obey the electromagnetic Ward identity, cf. Ref. [121],
and in order for the amplitude to vanish when contracted with the photon four-momentum k,

2Throughout this chapter M
n
m denote a matrix element at O(–n

em GF) with m photons in the final state. The
total decay rate at O(–n

em GF) is denoted as �n
m.

24



# 38

More assumptions:

• Certainly not a bad set of approximations in the soft-photon limit, unclear 
how well this describes nature if one really wants achieve precision

in the k æ 0 infrared limit. The hadronic current H Õ
µ = H Õ

µ(tÕ) is defined as

H Õ
µ(tÕ) = ÈD(pÕ)| ‚Vµ ≠ ‚Aµ|B(p ≠ k)Í = f+(tÕ)

!
p ≠ k + pÕ"

µ
+ f≠(tÕ)

!
p ≠ k ≠ pÕ"

µ
, (3.12)

and the ellipsis in Eq. (3.9) denotes further seagull-like terms which need to be included to
obtain a gauge invariant amplitude. These seagull terms terms can be obtained by expanding
H Õ

µ in powers of k, i.e.

k‹ Vµ‹ = Hµ(t) + kÕ dH Õ
µ

dtÕ

----
kÕ=0

+ kÕ2 d2H Õ
µ

dtÕ2

----
kÕ=0

+ . . . , (3.13)

where the ellipsis denote higher order derivatives, and tÕ = t + kÕ with kÕ = ≠2 k ·
!
p ≠ pÕ". By

neglecting all terms of order O(kÕ2) and higher in Eq. (3.13), and requiring a gauge invariant
summed amplitude, a set of counter terms can be isolated which corresponds to the seagull
terms. The emission matrix element in the soft limit is then given by

i e
GFÔ

2
Vcb ū‹ “µ PL

A

≠ Hµ

2p¸ · k

1
“‹k/ + 2

!
p¸

"
‹

2
+ Hµ p‹

p · k
+ f3(t)

3
kµ p‹

p · k
≠ gµ‹

4

+
A

≠2
!
p ≠ pÕ"– dHµ(tÕ)

dtÕ

----
kÕ=0

B 3
k– p‹

p · k
≠ g–‹

4 B

vl ,

(3.14)

where f3(t) = f+(t)+f≠(t) and Low’s matrix element for the process is recovered, cf. Ref. [45].
Furthermore, note that in Eq. (3.14) the derivative of Hµ(tÕ) with respect to tÕ occurs, instead
of the derivative of H Õ

µ(tÕ). To derive Eq. (3.14), several approximations were made:

1. The non-local operator Eq. (3.4) was expanded in a number of matrix elements which
correspond to intermediate resonances allowed in the soft photon part of phase-space.

2. The o�-shell hadronic current was approximated by the on-shell hadronic current.

3. The higher order terms of Eq. (3.13) which are ambiguous and depend on the parametriza-
tion of the on-shell matrix element were neglected.

4. No intermediate excited resonances were considered.

All of these approximations are exact in the infrared limit and Eq. (3.14) can be understood
as an expansion of the electromagnetic coupling to the hadronic current in powers of k. By
neglecting all contributions of O(k0) and higher, the matrix element Eq. (3.14) factorizes into
an eikonal factor multiplied by the leading order matrix element Eq. (3.2), i.e.

i e
3 1

p · k
p‹ ≠ 1

p¸ · k

!
p¸

"
‹

4
M0

0 . (3.15)

This factorization is the starting point of the soft exponentiation used in the PHOTOS algorithm.
In particular, Eq. (3.15) can be generalized to include an arbitrary number of soft real and virtual
photons, and an infrared safe correction factor can be extracted, cf. References [126, 3, 122].
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More problems:

• Form factors enter into all of the calculations

• All of them are measured by “factoring out QED”


• E.g. tagged measurements simply use q2 as calculated from hadronic 
systems


• Even untagged measurements factorize QED effects out, i.e. change 
the shape of the templates are calculated using “true” q2 values as 
defined w/o QED corrections

q2 = (pB − pD)2 = (pℓ + pν + ∑
i

ki)
2

Shape differences due to inadequate QED modelling are just 
absorbed into form factor parameters. 

Thus any theory based prediction you make on how 
fundamental parameters change based on kinematic changes, 
will likely not be valid. 
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Regularization

• We regularized the UV poles using Pauli-Villars, made it easy to 
match to Sirlin’s quark-level calculation

with the correction matrix

/� = i

(4fi)2

3
≠ 2p/¸ f3 B0(m2

¸ ; ⁄2, m2
¸ ) + 2p/ f3 B0(m2; ⁄2, m2)

+ 1
m2

¸

p/¸ f3 A0(m2
¸) ≠ 1

2m2 p/ f3 A0(m2) + p/¸ f3

4
. (3.65)

The matrix element of the virtual corrections of the two seagull diagrams coupling to the
lepton and the charged final state meson is given by

M1
0 = i e

GFÔ
2

Vcb ū PR “— µ4≠D

⁄ dDk

(2fi)D/2 i
≠p/¸ + k/ + m¸

(p¸ ≠ k)2 ≠ m2
¸

(≠i e“–) ≠ig–—

k2 f2 v ,

+i e
GFÔ

2
Vcb ū PR “— µ4≠D

⁄ dDk

(2fi)D/2
(≠i e

!
2pÕ ≠ k

"—

(pÕ ≠ k)2 ≠ mÕ2
≠ig–—

k2 f2 v , (3.66)

which simplifies after the loop integration is carried out to

M1
0 = e2 GFÔ

2
Vcb

#
ūPR /�v

$
, (3.67)

with

/� = i

(4fi)2

3
≠ 2p/¸ f2 B0(m2

¸ ; ⁄2, m2
¸) + 2p/Õ f2 B0(mÕ2; ⁄2, mÕ2)

≠ 1
m2

¸

p/¸ f2 A0(m2
¸) ≠ 1

2mÕ2 p/Õ f2(t) A0(mÕ2) + p/¸ f2

4
. (3.68)

Transforming dimensional regularization into Pauli-Villars

The Pauli-Villars regulator can be introduced formally into the e�ective theory by adding a
massive photon field with opposite norm, i.e.

LPV = 1
4 F̃ 2 + �2Ã2 , (3.69)

to the Lagrangian of the e�ective theory Eq. (3.31). This massive photon decouples from the
theory in the limit of � æ Œ and gives rise to the same next-to-leading order diagrams as the
QED photon, cf. Figs. 3.3 and 3.4, with a leading minus sign from the norm. E.g. by replacing

B0(m2
¸ , m2

¸ , ⁄2) æ B0(m2
¸ ; m2

¸ , ⁄2) ≠ B0(m2
l ; m2

¸ , �2) ,

Ḃi(m2
¸ , m2

¸ , ⁄2) æ Ḃi(m2
¸ , m2

¸ , ⁄2) ≠ Ḃi(m2
¸ , m2

¸ , �2) ,

with i = 0, 1 in the fermionic wave function renormalization Eq. (3.48) and adding a counter
term of ≠ –

4fi
the dimensional regulator ‘ cancels, and the resulting expression for the fermionic

wave function renormalization is UV finite and diverges logarithmically as � æ Œ. The arising
loop integrals exhibit the long-distance splitting demanded in Eq. (3.33) and can be matched
to the short-distance result Eq. (3.38) by choosing the same value for �.

The set of replacement rules is given by replacing all scalar n-point functions T that depend
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with the correction matrix
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2mÕ2 p/Õ f2(t) A0(mÕ2) + p/¸ f2

4
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Transforming dimensional regularization into Pauli-Villars

The Pauli-Villars regulator can be introduced formally into the e�ective theory by adding a
massive photon field with opposite norm, i.e.

LPV = 1
4 F̃ 2 + �2Ã2 , (3.69)

to the Lagrangian of the e�ective theory Eq. (3.31). This massive photon decouples from the
theory in the limit of � æ Œ and gives rise to the same next-to-leading order diagrams as the
QED photon, cf. Figs. 3.3 and 3.4, with a leading minus sign from the norm. E.g. by replacing

B0(m2
¸ , m2

¸ , ⁄2) æ B0(m2
¸ ; m2

¸ , ⁄2) ≠ B0(m2
l ; m2

¸ , �2) ,

Ḃi(m2
¸ , m2

¸ , ⁄2) æ Ḃi(m2
¸ , m2

¸ , ⁄2) ≠ Ḃi(m2
¸ , m2

¸ , �2) ,

with i = 0, 1 in the fermionic wave function renormalization Eq. (3.48) and adding a counter
term of ≠ –

4fi
the dimensional regulator ‘ cancels, and the resulting expression for the fermionic

wave function renormalization is UV finite and diverges logarithmically as � æ Œ. The arising
loop integrals exhibit the long-distance splitting demanded in Eq. (3.33) and can be matched
to the short-distance result Eq. (3.38) by choosing the same value for �.

The set of replacement rules is given by replacing all scalar n-point functions T that depend
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• After that we also determined the total rate via

on the photon mass ⁄ by

T (. . . ; . . . , ⁄2, . . . ) æ T (. . . ; . . . , ⁄2, . . . ) ≠ T (. . . ; . . . , �2, . . . ) ,

⁄2T (. . . ; . . . , ⁄2, . . . ) æ ⁄2T (. . . ; . . . , ⁄2, . . . ) ≠ �2T (. . . ; . . . , �2, . . . ) , (3.70)

where the ellipses denote arbitrary four momenta or mass terms, further all other terms with
no dependence on ⁄ have to be neglected. In addition, a small number of correction terms have
to be added for diagrams f) and g) due to some algebraic simplifications which were used to
derive Eqs. (3.59) and (3.62) that involved cancelling k2 from the numerator. For the vertex
diagram with a charged initial state, they are given by

�µ

PV = i

(4fi)2

3
≠ Hµ �2 C0 + f3 pµ

¸
�2C1 + f3 pµ �2C2

4
, (3.71)

with Ci = Ci(p2
¸
, s, p2; �2, m2

¸
, m2) and s =

!
p¸ + pÕ"2. For the vertex diagram with a charged

final state, one needs to add

�µ

PV = i

(4fi)2

3
Hµ �2 C0 ≠ f2 pµ

¸
�2 C1 + f2 pµ �2 C2

4
, (3.72)

with Ci = Ci(p2
¸
, s, pÕ2; �2, m2

¸
, mÕ2) and s =

!
p¸ + pÕ"2.

3.2.3. Next-to-leading order di�erential decay rate at O(k0 –em GF)
By summing all virtual long-distance corrections from diagrams d) - h), and the short-distance
result Eq. (3.38), the virtual corrections to the next-to-leading order decay rate can be calculated
at O(k0 –em GF), i.e. in the B-meson rest frame the di�erential decay rate is

d�0
0 + d�1

0 = 1
64fi3m

Q

a
---M0

0

---
2

+ 2Ÿ
ÿ

d)≠h)
M0

0 M1
0 + 2

---M0
0

---
2

3
–em
fi

ln mZ

�

4R

b dEÕ dE¸ , (3.73)

where EÕ = pÕ0, and E¸ = p0
¸
. Using the summed real long-distance corrections from diagrams

a) - c), cf. Eqs. (3.39) and (3.40), the di�erential real next-to-leading order decay rate reads as

d�1
1 = 1

(2fi)12 ”(4)(m ≠ pÕ ≠ p¸ ≠ p‹l ≠ k)
----

ÿ

a)≠c)
M

1

2

1

----
2 d3pÕ

EÕ
d3p¸

E¸

d3p‹l

E‹l

d3k

E“

, (3.74)

with E“ = k0, and E‹l = p0
‹l

. Furthermore, p‹l denotes the neutrino four-momentum. Perform-
ing the phase-space integration in Eqs. (3.73) and (3.74) results in the total QED next-to-leading
order decay rate at O(k0 –em GF) and a correction factor with respect to the tree-level decay
rate can be calculated by:

�0
0 + �1

0 + �1
1 = (1 + ”sd + ”ld) �0

0 = ÷2
EW �0

0 , (3.75)

where ”sd = 2–

fi
ln mZ

� denotes the short-distance correction, and ”ld is the correction factor from
long-distance contributions. The factor ÷EW is the correction that needs to be applied to the
CKM matrix element |Vcb| due to electroweak short-distance and electromagnetic long-distance
e�ects when the tree-level decay rate is used to extract |Vcb| from the measured B æ D l ‹l

branching fraction.
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e.g.

• And we produced NLO events using the corresponding matrix 
elements and mixed them according to these integrals

on the photon mass ⁄ by

T (. . . ; . . . , ⁄2, . . . ) æ T (. . . ; . . . , ⁄2, . . . ) ≠ T (. . . ; . . . , �2, . . . ) ,

⁄2T (. . . ; . . . , ⁄2, . . . ) æ ⁄2T (. . . ; . . . , ⁄2, . . . ) ≠ �2T (. . . ; . . . , �2, . . . ) , (3.70)

where the ellipses denote arbitrary four momenta or mass terms, further all other terms with
no dependence on ⁄ have to be neglected. In addition, a small number of correction terms have
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derive Eqs. (3.59) and (3.62) that involved cancelling k2 from the numerator. For the vertex
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3.2.3. Next-to-leading order di�erential decay rate at O(k0 –em GF)
By summing all virtual long-distance corrections from diagrams d) - h), and the short-distance
result Eq. (3.38), the virtual corrections to the next-to-leading order decay rate can be calculated
at O(k0 –em GF), i.e. in the B-meson rest frame the di�erential decay rate is
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where EÕ = pÕ0, and E¸ = p0
¸
. Using the summed real long-distance corrections from diagrams

a) - c), cf. Eqs. (3.39) and (3.40), the di�erential real next-to-leading order decay rate reads as
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with E“ = k0, and E‹l = p0
‹l

. Furthermore, p‹l denotes the neutrino four-momentum. Perform-
ing the phase-space integration in Eqs. (3.73) and (3.74) results in the total QED next-to-leading
order decay rate at O(k0 –em GF) and a correction factor with respect to the tree-level decay
rate can be calculated by:
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0 = ÷2
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0 , (3.75)

where ”sd = 2–

fi
ln mZ

� denotes the short-distance correction, and ”ld is the correction factor from
long-distance contributions. The factor ÷EW is the correction that needs to be applied to the
CKM matrix element |Vcb| due to electroweak short-distance and electromagnetic long-distance
e�ects when the tree-level decay rate is used to extract |Vcb| from the measured B æ D l ‹l

branching fraction.
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Revised EW corrections

• We also calculated corrections to Sirlin’s correction using

on the photon mass ⁄ by

T (. . . ; . . . , ⁄2, . . . ) æ T (. . . ; . . . , ⁄2, . . . ) ≠ T (. . . ; . . . , �2, . . . ) ,

⁄2T (. . . ; . . . , ⁄2, . . . ) æ ⁄2T (. . . ; . . . , ⁄2, . . . ) ≠ �2T (. . . ; . . . , �2, . . . ) , (3.70)

where the ellipses denote arbitrary four momenta or mass terms, further all other terms with
no dependence on ⁄ have to be neglected. In addition, a small number of correction terms have
to be added for diagrams f) and g) due to some algebraic simplifications which were used to
derive Eqs. (3.59) and (3.62) that involved cancelling k2 from the numerator. For the vertex
diagram with a charged initial state, they are given by
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4
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3.2.3. Next-to-leading order di�erential decay rate at O(k0 –em GF)
By summing all virtual long-distance corrections from diagrams d) - h), and the short-distance
result Eq. (3.38), the virtual corrections to the next-to-leading order decay rate can be calculated
at O(k0 –em GF), i.e. in the B-meson rest frame the di�erential decay rate is
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where EÕ = pÕ0, and E¸ = p0
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. Using the summed real long-distance corrections from diagrams
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. Furthermore, p‹l denotes the neutrino four-momentum. Perform-
ing the phase-space integration in Eqs. (3.73) and (3.74) results in the total QED next-to-leading
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fi
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� denotes the short-distance correction, and ”ld is the correction factor from
long-distance contributions. The factor ÷EW is the correction that needs to be applied to the
CKM matrix element |Vcb| due to electroweak short-distance and electromagnetic long-distance
e�ects when the tree-level decay rate is used to extract |Vcb| from the measured B æ D l ‹l

branching fraction.
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Fig. 3.8 The radiative energy loss for B0 æ D≠ e+ ‹l “ on the left and B+ æ D̄0 e+ ‹l “ on
the right are shown. The result which includes partial SD terms from intermediate
excited D+ ú and D0 ú resonances with the associated DDú“ coupling is shown in
grey. The black curve corresponds to the prediction with IB terms only. The ratio
plot takes the IB terms as the reference.

‡SD = 0.0001. For the tree-level B+ æ D̄0 e+ ‹l decay, one obtains a correction factor of

÷2
EW = 1.0163 ± 0.0001 , (3.99)

which results in an estimator of ‡SD = 0.0016. Since the predictions for electrons and muons are
in good agreement, the electron estimators are used for the uncertainties of the muon results.
Fig 3.8 depicts the predicted photon energy spectrum for the emission matrix element with
additional SD contributions.

Due to the small value of the predicted DDú“ coupling the photon energy spectrum of B0 æ
D≠ e+ ‹l “ is very insensitive to the inclusion of SD contributions. The spectrum for B+ æ
D̄0 e+ ‹l “, however, receive corrections up to 5%. The included SD correction only form a
single term in one class of SD corrections: higher order charm resonances, i.e. through DúúD“
processes, also could contribute to the real corrections. In the soft photon limit contributions
from the narrow 1P states (i.e. the D1 and D2 mesons) are far o�-shell and should be negligible.
The author of Ref. [28] uses this observation to argue, that the lowest order contributions,
namely the Dú pole, should dominate the correction to the IB coupling. The broad 1P states,
however, could also be on-shell in the soft photon region what could lead to further corrections.

3.5. Summary
Adding, in quadrature, all determined theoretical uncertainties results in

÷2
EW = 1.0235 ± 0.0002stat ± 0.0023theo , (3.100)

and

÷2
EW = 1.0237 ± 0.0001stat ± 0.0020theo , (3.101)
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for the correction factors for the tree-level decay rates of the B0 æ D≠ e+ ‹e and the B0 æ
D≠ µ+ ‹µ decay. The dominant contribution in the theoretical uncertainties is due to the match-
ing procedure to the Standard Model. The real emissions from additional IB terms of order
k and beyond, or SD contributions from intermediate resonances do not alter the predicted
values of ÷2

EW much. For the radiative corrections at O(k0 –em GF) tree-level decay rates of
B+ æ D̄0 e+ ‹e “ and B+ æ D̄0 µ+ ‹µ “, one obtains for the summed theoretical uncertainties,

÷2
EW = 1.0147 ± 0.0001stat ± 0.0045theo , (3.102)

and

÷2
EW = 1.0150 ± 0.0001stat ± 0.0045theo , (3.103)

respectively. The dominant source of uncertainty is again from the matching procedure. Due to
the larger DDú“ coupling, the uncertainty from the intermediate SD contributions are sizeable.

The overall performance of the exponentiation algorithm of Refs. [19] and [20] in comparison
to the next-to-leading order calculation at
O(k0 –em GF) is impressive. Including corrections of order k0 do not significantly alter the dif-
ferential distributions. Including real SD terms at order k and beyond to describe intermediate
Dú resonances show no large e�ect for the B0 æ D≠ l+ ‹l correction factor ÷2

EW nor does the
radiative energy loss receive any sizeable corrections. For B+ æ D̄0 l+ ‹l, however, the changes
in the predicted photon energy spectrum are observable which leads to a shift in the correction
factor. This shift is interpreted as the theoretical uncertainties due to real SD corrections.
Including corrections of order k and beyond by redefining the IB coupling to the model of Eq.
(3.93) only causes a negligible shift in ÷2

EW for both decay channels.
Overall the arising uncertainties from SD and IB contributions at order k and beyond are

small in comparison to the dominant infrared contributions of the scalar IB coupling, and thus,
one could indeed conclude the SD corrections are not very important to describe electromagnetic
corrections. The large success of Ref. [19, 20] also indicates this. However, it would be valuable
to have a more adequate treatment for the electromagnetic coupling to the hadronic system, e.g.
from an e�ective theory that uses a factorization at high photon energies. Ref. [49] for instance
analyzed B æ fi l ‹l“ decays using an adapted SCET factorization and it would be interesting
to repeat this with an adequate e�ective field theory for the charmed semileptonic B meson
decays. A further point remaining unclear is how the decay of B mesons with one or two o�-
shell legs should be handled. In the approach chosen in this chapter, this was circumnavigated
by using an expansion in the soft limit, where one still can assume that the resulting decay is
adequately described by the on-shell form factors. Extending the latter assumption formally to
virtual decays, is a non-trivial step: loop corrections will push the legs further o�-shell than soft
real emissions. Formally such corrections are of order O(k –em GF) and beyond which is beyond
the accuracy of this calculation, but it is not entirely clear that these loop corrections indeed
can be neglected and would not have a sizeable e�ect on the determined correction factor.

In conclusion, the accuracy of Ref. [19, 20] was
proven at O(k0 –em GF), and corrections from real emissions due to further IB terms are neg-
ligible. The real SD contributions for B+ æ D̄0 l+ ‹l are somewhat larger but the IB pole
dominates the correction. The impact of the SD contributions on the di�erential distributions
will be discussed in a future version of Ref. [31]. The impact on virtual corrections of order k
and beyond is less clear. In the soft limit of the photon energy, the o�-shell coupling is well
described by the on-shell parametrization, but corrections of O(k –em GF) from IB and SD con-
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B0 → D− e+ ν̄e(γ)

B0 → D− μ+ ν̄μ(γ)

B+ → D̄0 e+ ν̄e(γ)

B+ → D̄0 μ+ ν̄μ(γ)

Sirlin’s correction: η2
EW = 1.014

• Theory errors: Variation of the matching scale
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Fig. 5 Lepton and Meson momentum spectrum in the e+e− rest frame in the decay B0 → D− e+ νe.
All spectra are normed to the total inclusive decay width predicted by the respective generator.
The ratio plot gives the relative deviation, bin by bin, of the predicted shapes with PHOTOS as
reference. The shaded yellow area gives the statistical uncertainty of the reference distribution.

PHOTOS

BLOR

SHERPA

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eγ in the B rest frame

1
Γ

to
t

d
Γ

d
E

γ
[G

eV
−

1
]

0 0.5 1 1.5 2 2.5 3
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

Eγ [GeV]

SHERPAYFS⊗NLO exponentiated
SHERPAYFS⊗CS exponentiated
SHERPAYFS⊗NLO truncated at O(α)
SHERPAYFS⊗NLO truncated at O(α2)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eγ in the B rest frame

1
Γ

to
t

d
Γ

d
E

γ
[G

eV
−

1
]

0 0.5 1 1.5 2 2.5 3
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

Eγ [GeV]

Fig. 6 Total radiative energy loss, i.e. the sum of all photons radiated, in the decay B0 → D− e+ νe
in the B rest frame. All spectra are normed to the total inclusive decay width predicted by
the respective generator. The left panel shows the predictions of all three generators and
the PHOTOS prediction is taken as the reference in the ratio plot. The right panel shows the
predictions of SHERPA/PHOTONS++ in its full YFS⊗Nlo exponentiated mode (green), a mode
where the exact Nlo matrix element of the perturbative expansion is replaced by universal
Catani-Seymour dipole splitting kernels (red) and two modes where the exact real emission
matrix elements are used, but the expansion in the resolved emission region is truncated at
O(α) (blue) and O(α2) (orange), thus allowing at most one and two photons, respectively.
Here, the full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in the ratio
plot.
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* Fair agreement between PHOTOS & 
NLO; YFS enhanced simulation radiates 
more high-energy photons
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Fig. 6 Total radiative energy loss, i.e. the sum of all photons radiated, in the decay B0 → D− e+ νe
in the B rest frame. All spectra are normed to the total inclusive decay width predicted by
the respective generator. The left panel shows the predictions of all three generators and
the PHOTOS prediction is taken as the reference in the ratio plot. The right panel shows the
predictions of SHERPA/PHOTONS++ in its full YFS⊗Nlo exponentiated mode (green), a mode
where the exact Nlo matrix element of the perturbative expansion is replaced by universal
Catani-Seymour dipole splitting kernels (red) and two modes where the exact real emission
matrix elements are used, but the expansion in the resolved emission region is truncated at
O(α) (blue) and O(α2) (orange), thus allowing at most one and two photons, respectively.
Here, the full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in the ratio
plot.
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Fig. 6 Total radiative energy loss, i.e. the sum of all photons radiated, in the decay B0 → D− e+ νe
in the B rest frame. All spectra are normed to the total inclusive decay width predicted by
the respective generator. The left panel shows the predictions of all three generators and
the PHOTOS prediction is taken as the reference in the ratio plot. The right panel shows the
predictions of SHERPA/PHOTONS++ in its full YFS⊗Nlo exponentiated mode (green), a mode
where the exact Nlo matrix element of the perturbative expansion is replaced by universal
Catani-Seymour dipole splitting kernels (red) and two modes where the exact real emission
matrix elements are used, but the expansion in the resolved emission region is truncated at
O(α) (blue) and O(α2) (orange), thus allowing at most one and two photons, respectively.
Here, the full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in the ratio
plot.
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Fig. 6 Total radiative energy loss, i.e. the sum of all photons radiated, in the decay B0 → D− e+ νe
in the B rest frame. All spectra are normed to the total inclusive decay width predicted by
the respective generator. The left panel shows the predictions of all three generators and
the PHOTOS prediction is taken as the reference in the ratio plot. The right panel shows the
predictions of SHERPA/PHOTONS++ in its full YFS⊗Nlo exponentiated mode (green), a mode
where the exact Nlo matrix element of the perturbative expansion is replaced by universal
Catani-Seymour dipole splitting kernels (red) and two modes where the exact real emission
matrix elements are used, but the expansion in the resolved emission region is truncated at
O(α) (blue) and O(α2) (orange), thus allowing at most one and two photons, respectively.
Here, the full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in the ratio
plot.
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Fig. 6 Total radiative energy loss, i.e. the sum of all photons radiated, in the decay B0 → D− e+ νe
in the B rest frame. All spectra are normed to the total inclusive decay width predicted by
the respective generator. The left panel shows the predictions of all three generators and
the PHOTOS prediction is taken as the reference in the ratio plot. The right panel shows the
predictions of SHERPA/PHOTONS++ in its full YFS⊗Nlo exponentiated mode (green), a mode
where the exact Nlo matrix element of the perturbative expansion is replaced by universal
Catani-Seymour dipole splitting kernels (red) and two modes where the exact real emission
matrix elements are used, but the expansion in the resolved emission region is truncated at
O(α) (blue) and O(α2) (orange), thus allowing at most one and two photons, respectively.
Here, the full exponentiated SHERPA/PHOTONS++ prediction is taken as reference in the ratio
plot.
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# 44

Revised Systematics:
fl2

D
fl2

Dú B(D0 l ‹l) B(Dú 0 l ‹l)
RÕ

1(1) 1.248 3.046 0.841 ≠0.253
RÕ

2(1) 1.351 ≠1.343 0.550 ≠0.481
fD2/D1

≠0.206 0.051 ≠0.153 0.057
fA1/D0

≠0.637 ≠0.641 0.165 0.071
fA2/D

Õ
1

≠0.224 ≠0.163 ≠0.134 0.240
fD0A1/D1D2

≠1.199 0.430 ≠0.576 0.327
fD

Õ
1
A2/D1D2

0.572 ≠0.284 0.335 ≠0.109
f+0 1.334 0.444 0.786 ≠0.529
·+0 0.253 0.108 0.438 0.176
fD2

≠0.089 ≠0.004 ≠0.048 0.027
B(B+ æ D(ú) fi l ‹l) 0.490 ≠0.350 ≠0.130 ≠0.736
B(D0 æ K+ fi≠) 1.032 0.026 ≠0.138 ≠1.612
B(D+ æ K+ fi≠ fi+) ≠1.932 ≠0.361 ≠1.966 0.253
B(Dú+ æ D̄0 fi+)Õ 1.116 ≠0.019 0.464 ≠0.314
B(Dú+ æ D+ fi0)Õ 0.508 ≠0.008 0.212 ≠0.143
Tracking ≠0.371 ≠0.157 ≠1.000 ≠0.732
Vertexing ≠0.983 ≠0.345 ≠0.685 ≠0.698
Lepton mis-ID 0.076 0.0079 ≠0.020 ≠0.010
Lepton PID 0.012 0.199 1.350 1.469
Kaon PID ≠0.173 0.081 ≠0.199 0.065
Bremsstrahlung ≠0.298 ≠0.018 0.089 0.290
Dúú Slope ≠1.495 ≠2.453 ≠0.075 ≠0.189
Dúú FF approximation 0.920 ≠0.511 0.145 ≠0.195
Number of BB̄ events ≠0.123 ≠0.100 ≠0.670 ≠0.669
O�-resonance luminosity 0.059 0.003 ≠0.019 ≠0.003
Radiative corrections for B æ D l ‹l ≠0.126 ≠0.056 ≠0.289 0.045
Radiative corrections for B æ Dú l ‹l 1.657 0.056 0.574 1.187
Radiative corrections for B æ Dúú l ‹l ≠0.023 0.072 0.111 0.298
Correction to o�-resonance ≠1.057 0.155 ≠0.236 0.064
Dúú(2S) æ D(ú)fi contributions ≠0.463 ≠0.998 ≠0.184 ≠0.374
B æ D(ú) fi fi l ‹l contributions 0.876 0.364 0.245 0.445
Further background 0.595 0.699 0.354 0.099
Total 4.856 4.515 3.318 3.124

Table 7.2 Summary of systematic uncertainties of fit scenario a) for electrons. All stated
numbers are expressed as a percentage of the nominal fit result.
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TABLE X: Systematic uncertainties on fitted parameters, given in %. Numbers are negative when the fitted value decreases
as input parameter increases.

Electron sample Muon sample
item ρ2D ρ2D∗ B(D"ν) B(D∗"ν) G(1)|Vcb| F(1)|Vcb| ρ2D ρ2D∗ B(D"ν) B(D∗"ν) G(1)|Vcb| F(1)|Vcb|
R′

1 0.44 2.74 0.71 −0.38 0.60 0.71 0.50 2.67 0.74 −0.40 0.63 0.70
R′

2 −0.40 1.02 −0.18 0.30 −0.32 0.49 −0.45 0.96 −0.19 0.30 −0.33 0.48
D∗∗ slope −1.42 −2.52 −0.07 −0.09 −0.82 −0.87 −1.42 −2.58 −0.10 −0.10 −0.77 −0.92
D∗∗ FF approximation −0.87 0.33 −0.12 0.19 −0.54 0.20 −0.99 0.59 −0.12 0.21 −0.59 0.30
B(B− → D(∗)π"ν) 0.28 −0.27 −0.22 −0.80 0.04 −0.49 0.59 −0.32 −0.13 −0.86 0.24 −0.54
fD∗

2
/D1

−0.39 0.16 −0.38 0.16 −0.41 0.13 −0.50 0.17 −0.41 0.18 −0.47 0.15
fD∗

0
Dπ/D1D

∗

2
−2.30 1.12 −1.53 0.97 −2.07 0.85 −3.13 1.23 −1.53 1.02 −2.41 0.93

fD′

1
D∗π/D1D

∗

2
1.82 −1.14 1.30 −0.65 1.65 −0.70 2.44 −1.15 1.35 −0.72 1.91 −0.75

fDπ/D∗

0
−0.88 −1.28 0.36 0.17 −0.31 −0.34 −0.83 −1.23 0.31 0.18 −0.27 −0.33

fD∗π/D′

1
−0.21 −0.05 −0.13 0.21 −0.18 0.09 −0.30 −0.04 −0.15 0.23 −0.23 0.10

NR D∗/D ratio 0.58 −0.16 0.11 −0.09 0.38 −0.04 0.66 −0.16 0.11 −0.09 0.40 −0.03
B(B− → D(∗)ππ"ν) 1.19 −1.97 0.25 −1.28 0.78 −1.28 1.98 −1.71 0.40 −1.20 1.20 −1.18
X∗/X and Y ∗/Y ratio 0.61 −1.15 0.09 −0.27 0.39 −0.52 0.74 −1.02 0.08 −0.24 0.42 −0.47
X/Y and X∗/Y ∗ ratio 0.76 −0.83 0.21 −0.65 0.52 −0.60 1.09 −0.76 0.25 −0.63 0.68 −0.57
D1 → Dππ 2.22 −1.54 0.74 −1.08 1.63 −1.05 2.74 −1.48 0.76 −1.06 1.81 −1.03
fD∗

2
−0.14 −0.01 −0.10 0.07 −0.12 0.03 −0.16 −0.01 −0.10 0.07 −0.13 0.03

B(D∗+ → D0π+) 0.73 −0.01 0.43 −0.34 0.62 −0.17 0.80 −0.00 0.41 −0.33 0.61 −0.17
B(D0 → K−π+) 0.69 0.02 −0.21 −1.63 0.29 −0.80 0.92 0.12 −0.27 −1.68 0.35 −0.80
B(D+ → K−π+π+) −1.46 −0.42 −2.17 0.30 −1.89 0.01 −1.43 −0.42 −2.10 0.28 −1.77 −0.01
τB−/τB0 0.26 0.16 0.63 0.27 0.46 0.19 0.22 0.16 0.58 0.28 0.41 0.19
f+−/f00 0.88 0.43 0.66 −0.53 0.82 −0.12 0.91 0.48 0.57 −0.52 0.75 −0.10
Number of BB events 0.00 −0.00 −1.11 −1.11 −0.55 −0.55 0.00 −0.00 −1.11 −1.11 −0.55 −0.55
Off-peak Luminosity 0.05 0.01 −0.02 −0.00 0.02 0.00 0.07 0.00 −0.02 −0.00 0.02 −0.00
B momentum distrib. −0.96 0.63 1.29 −0.54 −1.15 0.48 1.30 −0.10 1.27 −0.64 1.31 −0.35
Lepton PID eff 0.52 0.16 1.21 0.82 0.90 0.46 3.30 0.06 5.11 5.83 1.99 2.90
Lepton mis-ID 0.03 0.01 −0.01 −0.01 0.01 −0.00 2.65 0.70 −0.59 −0.50 1.06 −0.01
Kaon PID 0.07 0.80 0.28 0.23 0.18 0.38 1.02 0.71 0.35 0.29 0.70 0.39
Tracking eff −1.02 −0.43 −3.35 −2.00 −2.25 −1.15 −0.63 −0.28 −3.37 −2.09 −2.02 −1.14
Radiative corrections −3.13 −1.04 −2.87 −0.74 −3.02 −0.71 −0.76 −0.61 −0.82 −0.25 −0.79 −0.33
Bremsstrahlung 0.07 0.00 −0.13 −0.28 −0.04 −0.14 0.00 0.00 0.00 0.00 0.00 0.00
Vertexing 0.83 −0.64 0.63 0.60 0.78 0.09 1.79 −0.76 0.97 0.54 1.41 0.01
Background total 1.39 1.12 0.64 0.34 1.07 0.51 1.58 1.09 0.67 0.38 1.16 0.49
Total 6.25 5.66 6.01 4.03 5.99 3.20 8.12 5.47 7.35 7.07 6.06 4.23

B → D0X!ν and B → D+X!ν combinations, is com-
plementary to previous measurements. In particular, it
does not rely on the reconstruction of the soft transition
pion from the D∗ → Dπ decay.

The results obtained here, which are given in Ta-
ble IV, can be combined with the existing BABAR mea-
surements listed in Table XI. For B → D∗!ν, we com-
bine the present results with two BABAR measurements
of ρ2D∗ and F(1)|Vcb| [9, 10] and four measurements of
B(B → D∗!ν)[6, 9, 10]. We neglect the tiny statistical
correlations among the measurements and treat the sys-
tematic uncertainties as fully correlated within a given
category (background, detector modeling, etc.). We as-
sume the semileptonic decay widths of B+ and B0 to
be equal and adjust all measurements to the values of
the Υ (4S) and D decay branching fractions used in this

article to obtain

B(B− → D∗0!ν) = (5.49± 0.19)% (31)

ρ2D∗ = 1.20± 0.04 (32)

F(1)|Vcb| = (34.8± 0.8)× 10−3. (33)

The associated χ2 probabilities of the averages are
0.39, 0.86 and 0.27, respectively. The average of the
B(B → D!ν) result with the two existing BABAR mea-
surements [6] is

B(B− → D0!ν) = (2.32± 0.09)% (34)

with a χ2 probability of 0.88.
The simultaneous measurements of G(1)|Vcb| and

F(1)|Vcb| allow a determination of the ratio G(1)/F(1)
which can be compared directly with theory. We find

Measured : G(1)/F(1) = 1.20± 0.09 (35)

Theory : G(1)/F(1) = 1.17± 0.04, (36)

From difference 
 of PHOTOS  

& Our Calculation
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Figure 1 Distribution of the total energy of the radiated
photons, E� , up to 100 MeV for B0 !D+⌧�⌫⌧ and B0

!D+µ�⌫µ decays as simulated by Photos. Once a value of
Emax is chosen, e.g. 40 MeV as in the plot, all events with higher
E� values are discarded.

to 2% for B
0 decays, and 0.5� 1% for B

� decays. Un-
fortunately, the effect does not cancel in the ratios of
branching fractions. This is clearly visible from the right
panel of Fig. 2 where radiative corrections on R(D),
�QED(R), are shown as a function of Emax. Photos
predicts a QED correction that is 0.5% lower than the
one in Ref. [9] for R(D+), while it is 0.5% higher than
the one in Ref. [9] for R(D0).

2.1 Coulomb correction

A significant part of the radiative corrections in Ref. [9]
originates from Coulomb interactions, which are not in-
cluded in Photos. Note that the Coulomb correction
is relevant for the D

+ mode, but not for the D
0 mode.

For a fermion-scalar (and fermion-fermion) pair, this
correction is given by

⌦C =
2⇡↵

�D`

1

1� e
� 2⇡↵

�D`

, (5)

where ↵ = 1/137 and �D` is the relative velocity between
the D meson and the lepton, defined as

�D` =


1� 4m2

Dm
2
`

(sD` �m
2
D �m

2
`)

2

�1/2
, (6)

where sD` = (pD+p`)2. A well-known approximation of
the Coulomb correction by Atwood and Marciano [18],
yields ⌦C = (1 + ⇡↵) ⇡ 1.023 which occurs when
�D` ⇡ 1. This is accurate for decays with light leptons,
but not for those with ⌧

� leptons. For the semitauonic
mode, the typical relative velocity is 0.5-0.9, resulting
in a Coulomb correction between 2.5 and 5.0%.

QED corrections from Photos for the D+ mode are
also compared with predictions not including the Cou-
lomb correction from Ref. [9]. This reduces the differ-
ence of the corrections to the branching ratios between
Photos and the theoretical calculations to about 1%
and brings the corrections on R(D+) in close agree-
ment, as shown in Fig. 3 (left and middle, respectively).

Fig. 3 (right) shows the ratio of QED corrections on
R(D+) over those on R(D0). It is worth noting that
both Photos and the calculation in Ref. [9] without
Coulomb correction conserve isospin symmetry (�QED

values for R(D+) and R(D0) agree within the errors),
while the Coulomb correction introduces an isospin-
breaking term.

3 Effects on LHCb-like analysis

The comparison in the previous section only holds for
values of E� up to 100 MeV. For higher energies, no cal-
culations relevant to R(D) are available2. Nevertheless,
Photos generates photons with energies larger than
those treated in Ref. [9], which is the range where the
effect of SD photons might be relevant.

To study the effect of under- or overestimating radi-
ative corrections in simulations used for measurements
of R(D), a simplified analysis is performed in an LHCb-
like environment. Also here, the radiation emitted by
the decay products of the D mesons is neglected be-
cause their contributions largely cancel out in the ratio.

The strategy of this study consists of fitting a data
sample with templates describing the B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ components. The fits are performed with

templates built under the hypothesis that no radiation
with E� above a certain value Emax is emitted. In par-
ticular, five Emax values were chosen to cut on E� : 100,
300, 500, 800 and 1500 MeV. The bias on R(D), determ-
ined from these fits, is an indication of the importance
of the simulation of the E� distribution in the high-
energy region.

This analysis follows a strategy similar to the one
used in Ref. [20], where R(D⇤) is measured using a
three-dimensional templated fit. The data samples, re-
ferred to as pseudo-experiments in the following text,
are generated from a mixture of B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ decays, with radiative corrections gen-

erated by Photos. Here R(D) is assumed to be 0.3 as
predicted by the SM.

The variables used in the templated fit performed to
extract the B ! Dµ

�
⌫µ and B ! D⌧

�
⌫⌧ yields from

2In Ref. [19] a calculation of the high-energy SD contribution to
B ! D`⌫` is reported. This is not relevant to this study because
of the missing lepton-mass dependent effects.

PHOTOS seems to be doing a fine job 
with light leptons as far as we can tell.


It does not include Coulomb 
corrections, but there they seem not very 
relevant as all final state particles have 
considerable momentum
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Figure 1 Distribution of the total energy of the radiated
photons, E� , up to 100 MeV for B0 !D+⌧�⌫⌧ and B0

!D+µ�⌫µ decays as simulated by Photos. Once a value of
Emax is chosen, e.g. 40 MeV as in the plot, all events with higher
E� values are discarded.

to 2% for B
0 decays, and 0.5� 1% for B

� decays. Un-
fortunately, the effect does not cancel in the ratios of
branching fractions. This is clearly visible from the right
panel of Fig. 2 where radiative corrections on R(D),
�QED(R), are shown as a function of Emax. Photos
predicts a QED correction that is 0.5% lower than the
one in Ref. [9] for R(D+), while it is 0.5% higher than
the one in Ref. [9] for R(D0).

2.1 Coulomb correction

A significant part of the radiative corrections in Ref. [9]
originates from Coulomb interactions, which are not in-
cluded in Photos. Note that the Coulomb correction
is relevant for the D

+ mode, but not for the D
0 mode.

For a fermion-scalar (and fermion-fermion) pair, this
correction is given by

⌦C =
2⇡↵

�D`

1

1� e
� 2⇡↵

�D`

, (5)

where ↵ = 1/137 and �D` is the relative velocity between
the D meson and the lepton, defined as

�D` =


1� 4m2

Dm
2
`

(sD` �m
2
D �m

2
`)

2

�1/2
, (6)

where sD` = (pD+p`)2. A well-known approximation of
the Coulomb correction by Atwood and Marciano [18],
yields ⌦C = (1 + ⇡↵) ⇡ 1.023 which occurs when
�D` ⇡ 1. This is accurate for decays with light leptons,
but not for those with ⌧

� leptons. For the semitauonic
mode, the typical relative velocity is 0.5-0.9, resulting
in a Coulomb correction between 2.5 and 5.0%.

QED corrections from Photos for the D+ mode are
also compared with predictions not including the Cou-
lomb correction from Ref. [9]. This reduces the differ-
ence of the corrections to the branching ratios between
Photos and the theoretical calculations to about 1%
and brings the corrections on R(D+) in close agree-
ment, as shown in Fig. 3 (left and middle, respectively).

Fig. 3 (right) shows the ratio of QED corrections on
R(D+) over those on R(D0). It is worth noting that
both Photos and the calculation in Ref. [9] without
Coulomb correction conserve isospin symmetry (�QED

values for R(D+) and R(D0) agree within the errors),
while the Coulomb correction introduces an isospin-
breaking term.

3 Effects on LHCb-like analysis

The comparison in the previous section only holds for
values of E� up to 100 MeV. For higher energies, no cal-
culations relevant to R(D) are available2. Nevertheless,
Photos generates photons with energies larger than
those treated in Ref. [9], which is the range where the
effect of SD photons might be relevant.

To study the effect of under- or overestimating radi-
ative corrections in simulations used for measurements
of R(D), a simplified analysis is performed in an LHCb-
like environment. Also here, the radiation emitted by
the decay products of the D mesons is neglected be-
cause their contributions largely cancel out in the ratio.

The strategy of this study consists of fitting a data
sample with templates describing the B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ components. The fits are performed with

templates built under the hypothesis that no radiation
with E� above a certain value Emax is emitted. In par-
ticular, five Emax values were chosen to cut on E� : 100,
300, 500, 800 and 1500 MeV. The bias on R(D), determ-
ined from these fits, is an indication of the importance
of the simulation of the E� distribution in the high-
energy region.

This analysis follows a strategy similar to the one
used in Ref. [20], where R(D⇤) is measured using a
three-dimensional templated fit. The data samples, re-
ferred to as pseudo-experiments in the following text,
are generated from a mixture of B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ decays, with radiative corrections gen-

erated by Photos. Here R(D) is assumed to be 0.3 as
predicted by the SM.

The variables used in the templated fit performed to
extract the B ! Dµ

�
⌫µ and B ! D⌧

�
⌫⌧ yields from

2In Ref. [19] a calculation of the high-energy SD contribution to
B ! D`⌫` is reported. This is not relevant to this study because
of the missing lepton-mass dependent effects.

But there is one final state, for which this is not true:  has τ β ≈ 0.5 − 0.75

Coulomb Correction scales as Second concern:  and  radiate differentlyτ ℓ 3
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Figure 1 Distribution of the total energy of the radiated
photons, E� , up to 100 MeV for B0 !D+⌧�⌫⌧ and B0

!D+µ�⌫µ decays as simulated by Photos. Once a value of
Emax is chosen, e.g. 40 MeV as in the plot, all events with higher
E� values are discarded.

to 2% for B
0 decays, and 0.5� 1% for B

� decays. Un-
fortunately, the effect does not cancel in the ratios of
branching fractions. This is clearly visible from the right
panel of Fig. 2 where radiative corrections on R(D),
�QED(R), are shown as a function of Emax. Photos
predicts a QED correction that is 0.5% lower than the
one in Ref. [9] for R(D+), while it is 0.5% higher than
the one in Ref. [9] for R(D0).

2.1 Coulomb correction

A significant part of the radiative corrections in Ref. [9]
originates from Coulomb interactions, which are not in-
cluded in Photos. Note that the Coulomb correction
is relevant for the D

+ mode, but not for the D
0 mode.

For a fermion-scalar (and fermion-fermion) pair, this
correction is given by

⌦C =
2⇡↵

�D`

1

1� e
� 2⇡↵

�D`

, (5)

where ↵ = 1/137 and �D` is the relative velocity between
the D meson and the lepton, defined as

�D` =


1� 4m2

Dm
2
`

(sD` �m
2
D �m

2
`)

2

�1/2
, (6)

where sD` = (pD+p`)2. A well-known approximation of
the Coulomb correction by Atwood and Marciano [18],
yields ⌦C = (1 + ⇡↵) ⇡ 1.023 which occurs when
�D` ⇡ 1. This is accurate for decays with light leptons,
but not for those with ⌧

� leptons. For the semitauonic
mode, the typical relative velocity is 0.5-0.9, resulting
in a Coulomb correction between 2.5 and 5.0%.

QED corrections from Photos for the D+ mode are
also compared with predictions not including the Cou-
lomb correction from Ref. [9]. This reduces the differ-
ence of the corrections to the branching ratios between
Photos and the theoretical calculations to about 1%
and brings the corrections on R(D+) in close agree-
ment, as shown in Fig. 3 (left and middle, respectively).

Fig. 3 (right) shows the ratio of QED corrections on
R(D+) over those on R(D0). It is worth noting that
both Photos and the calculation in Ref. [9] without
Coulomb correction conserve isospin symmetry (�QED

values for R(D+) and R(D0) agree within the errors),
while the Coulomb correction introduces an isospin-
breaking term.

3 Effects on LHCb-like analysis

The comparison in the previous section only holds for
values of E� up to 100 MeV. For higher energies, no cal-
culations relevant to R(D) are available2. Nevertheless,
Photos generates photons with energies larger than
those treated in Ref. [9], which is the range where the
effect of SD photons might be relevant.

To study the effect of under- or overestimating radi-
ative corrections in simulations used for measurements
of R(D), a simplified analysis is performed in an LHCb-
like environment. Also here, the radiation emitted by
the decay products of the D mesons is neglected be-
cause their contributions largely cancel out in the ratio.

The strategy of this study consists of fitting a data
sample with templates describing the B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ components. The fits are performed with

templates built under the hypothesis that no radiation
with E� above a certain value Emax is emitted. In par-
ticular, five Emax values were chosen to cut on E� : 100,
300, 500, 800 and 1500 MeV. The bias on R(D), determ-
ined from these fits, is an indication of the importance
of the simulation of the E� distribution in the high-
energy region.

This analysis follows a strategy similar to the one
used in Ref. [20], where R(D⇤) is measured using a
three-dimensional templated fit. The data samples, re-
ferred to as pseudo-experiments in the following text,
are generated from a mixture of B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ decays, with radiative corrections gen-

erated by Photos. Here R(D) is assumed to be 0.3 as
predicted by the SM.

The variables used in the templated fit performed to
extract the B ! Dµ

�
⌫µ and B ! D⌧

�
⌫⌧ yields from

2In Ref. [19] a calculation of the high-energy SD contribution to
B ! D`⌫` is reported. This is not relevant to this study because
of the missing lepton-mass dependent effects.

Changes kinematic distributions, breaks isospin
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Figure 1 Distribution of the total energy of the radiated
photons, E� , up to 100 MeV for B0 !D+⌧�⌫⌧ and B0

!D+µ�⌫µ decays as simulated by Photos. Once a value of
Emax is chosen, e.g. 40 MeV as in the plot, all events with higher
E� values are discarded.

to 2% for B
0 decays, and 0.5� 1% for B

� decays. Un-
fortunately, the effect does not cancel in the ratios of
branching fractions. This is clearly visible from the right
panel of Fig. 2 where radiative corrections on R(D),
�QED(R), are shown as a function of Emax. Photos
predicts a QED correction that is 0.5% lower than the
one in Ref. [9] for R(D+), while it is 0.5% higher than
the one in Ref. [9] for R(D0).

2.1 Coulomb correction

A significant part of the radiative corrections in Ref. [9]
originates from Coulomb interactions, which are not in-
cluded in Photos. Note that the Coulomb correction
is relevant for the D

+ mode, but not for the D
0 mode.

For a fermion-scalar (and fermion-fermion) pair, this
correction is given by

⌦C =
2⇡↵

�D`

1

1� e
� 2⇡↵

�D`

, (5)

where ↵ = 1/137 and �D` is the relative velocity between
the D meson and the lepton, defined as

�D` =


1� 4m2

Dm
2
`

(sD` �m
2
D �m

2
`)

2

�1/2
, (6)

where sD` = (pD+p`)2. A well-known approximation of
the Coulomb correction by Atwood and Marciano [18],
yields ⌦C = (1 + ⇡↵) ⇡ 1.023 which occurs when
�D` ⇡ 1. This is accurate for decays with light leptons,
but not for those with ⌧

� leptons. For the semitauonic
mode, the typical relative velocity is 0.5-0.9, resulting
in a Coulomb correction between 2.5 and 5.0%.

QED corrections from Photos for the D+ mode are
also compared with predictions not including the Cou-
lomb correction from Ref. [9]. This reduces the differ-
ence of the corrections to the branching ratios between
Photos and the theoretical calculations to about 1%
and brings the corrections on R(D+) in close agree-
ment, as shown in Fig. 3 (left and middle, respectively).

Fig. 3 (right) shows the ratio of QED corrections on
R(D+) over those on R(D0). It is worth noting that
both Photos and the calculation in Ref. [9] without
Coulomb correction conserve isospin symmetry (�QED

values for R(D+) and R(D0) agree within the errors),
while the Coulomb correction introduces an isospin-
breaking term.

3 Effects on LHCb-like analysis

The comparison in the previous section only holds for
values of E� up to 100 MeV. For higher energies, no cal-
culations relevant to R(D) are available2. Nevertheless,
Photos generates photons with energies larger than
those treated in Ref. [9], which is the range where the
effect of SD photons might be relevant.

To study the effect of under- or overestimating radi-
ative corrections in simulations used for measurements
of R(D), a simplified analysis is performed in an LHCb-
like environment. Also here, the radiation emitted by
the decay products of the D mesons is neglected be-
cause their contributions largely cancel out in the ratio.

The strategy of this study consists of fitting a data
sample with templates describing the B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ components. The fits are performed with

templates built under the hypothesis that no radiation
with E� above a certain value Emax is emitted. In par-
ticular, five Emax values were chosen to cut on E� : 100,
300, 500, 800 and 1500 MeV. The bias on R(D), determ-
ined from these fits, is an indication of the importance
of the simulation of the E� distribution in the high-
energy region.

This analysis follows a strategy similar to the one
used in Ref. [20], where R(D⇤) is measured using a
three-dimensional templated fit. The data samples, re-
ferred to as pseudo-experiments in the following text,
are generated from a mixture of B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ decays, with radiative corrections gen-

erated by Photos. Here R(D) is assumed to be 0.3 as
predicted by the SM.

The variables used in the templated fit performed to
extract the B ! Dµ

�
⌫µ and B ! D⌧

�
⌫⌧ yields from

2In Ref. [19] a calculation of the high-energy SD contribution to
B ! D`⌫` is reported. This is not relevant to this study because
of the missing lepton-mass dependent effects.
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Figure 2 Radiative corrections to the branching ratios of B̄0 ! D+`�⌫̄` (left) and B� ! D0`�⌫̄` (middle) decays, as a function
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transparent colours when the uncertainties are significant).
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the pseudo-experiments are: the muon energy computed
in the B meson rest frame, Eµ; the missing mass squared,
m

2
miss = (pB�pD�pµ)

2; and the squared four-momentum
transferred to the lepton system, q

2 = (pB � pD)2.
The variables are binned as follows: four bins in q

2 in
the range �0.4 < q

2
< 12.6 GeV, 40 bins in m

2
miss

between �2 < m
2
miss < 10 GeV2, and 30 bins in muon

energy in the range 100 < Eµ < 2500 MeV, consist-
ent with Ref. [20]. In this case study, only the signal
(B ! D⌧

�
⌫⌧ ) and normalisation (B ! Dµ

�
⌫µ) com-

ponents are considered, while all backgrounds are ig-
nored.

Basic selection requirements are applied to mimic
the acceptance of the LHCb detector and its trigger
following Ref. [21]. Both production and B-decay ver-
tex positions are smeared to simulate the resolution of
the LHCb detector. The resolution on the production
vertices is 13µm in x and y, and 70µm in z direc-
tion. For the B-decay vertices a resolution of 20µm in
x and y, and 200µm in z direction is used, after which
the B direction is computed. The D mesons decay as
D

0 ! K
�
⇡
+ and D

+ ! K
�
⇡
+
⇡
+, the ⌧

� lepton as
⌧
� ! µ

�
⌫µ⌫⌧ . The muons and all decay products from

the D mesons are required to be in the pseudorapid-
ity range between 1.9 and 4.9. In addition, the mo-

mentum of each of these particles is required to be
larger than 5 GeV, and its component transverse to
the beam direction must be larger than 250 MeV. The
distance between the production and B-decay vertex
should be at least 3 mm, similar to the requirements
applied in a typical trigger selection.

Due to the missing neutrino and unknown effective
centre-of-mass energy of the collision, the B-meson mo-
mentum cannot be reconstructed in an R(Hc) analysis
at LHCb. Therefore the momentum of the B meson
in the z direction, (pB)z, is approximated as (pB)z =
(mB/mvis)(pvis)z, where mB is the B mass, and mvis

and (pvis)z are the momentum in the z direction and
the mass of the visible decay products of the B meson,
respectively. This directly follows the approach from
Ref. [20]. After computing the B momentum with the
above approximation and applying the selection cri-
teria described in this section, q

2, m
2
miss and Eµ are

calculated. The distributions for the signal and control
samples are shown in Fig. 4. Even using this simplified
detector description, these distributions show the same
key features as those in Ref. [20].

When applying cuts on E� , the templates shapes
change. This is most clearly seen in the distributions
of m2

miss, shown for the B
0 decay in Fig. 5. Especially

2

be weakened or strengthened if radiative corrections are
not properly taken into account.

All experiments measuring these types of LU are de-
pendent on the simulation of QED radiative corrections
in decays of particles and resonances. The widely used
package to simulate these corrections is Photos [10,
11], which is used by all three experiments measuring
R(D) and R(D⇤).

This paper starts by comparing the radiative cor-
rections on R(D+) and R(D0) from Ref. [9] with those
simulated by Photos in Sect. 2. The sensitivity of
measurements of R(D+) and R(D0) to radiative cor-
rections in the µ

� and ⌧
� decay modes is studied with

pseudo-experiments in an LHCb-like environment, with
different assumptions on the shape of the total energy
of the radiated photons. The method and the results
of this study are reported in Sect. 3. Conclusions and
recommendations are summarised in Sect. 4.

2 Radiative corrections in PHOTOS

Photos [11, 12] is a universal Monte Carlo algorithm
that simulates the effects of QED corrections in decays
of particles and resonances. It exploits the factorisa-
tion property of QED coming from the exponentiation
method used to improve the convergence of the per-
turbative expansion. Any particle-decay process accom-
panied by bremsstrahlung photons can be factorised
into a tree term and bremsstrahlung factor. The latter
depends only on the four-momenta of those particles
taking part in the decay, and not on the underlying
process. This approximation, which takes into account
both real and virtual corrections, converges to an exact
expression in the soft-photon region of phase space. It
is worth noting that Photos does not incorporate the
emission of photons depending on the hadronic struc-
ture. These so called structure-dependent (SD) photons
impact the spin of the decay particle, and may also in-
terfere with bremsstrahlung photons. The effect of SD
photons depends on the specific decay under study and,
as was the case for kaon decays [13], may not be negli-
gible.

The latest versions of Photos include multi-photon
emissions, and interference between final-state photons.
The validity of Photos has been tested successfully
by comparing its results to full calculations available in
various processes involving W , Z and hadronic B de-
cays into scalar mesons [11,14]. Because of the universal
treatment of photon emission in Photos, its perform-
ances in specific processes should always be checked,
especially when high precision is desired or when signal
extraction is sensitive to detailed simulation of a phase
space corner of the decay.

The calculation by de Boer et al. in Ref. [9] is the
first that studies the impact of soft-photon corrections
on R(D+) and R(D0). It is valid in the regime in which
the maximum energy of the radiated photons is smal-
ler than the lepton mass, which is the muon mass in
this case. This calculation includes more effects than
Photos does, in particular the interference between
initial- and final-state photons, and the Coulomb cor-
rection. The latter increases the decay rate of decays
with charged particles in the final state. It should be
noted that the contribution of the Coulomb correction
is singular for null relative velocity between final-state
charged particles.

To compare QED corrections between Photos and
Ref. [9], four samples (B0 ! D

+
`
�
⌫` and B

� ! D
0
`
�
⌫`,

where `
� = µ

�
, ⌧

�) with three million B-meson decays
are generated by Pythia 8 [15,16]. The decays are sim-
ulated by EvtGen [17], and the radiative corrections
by Photos v.3.56, with the “option with interference”
switched on. QED corrections are applied by Photos
by modifying the charged track’s four-momentum in the
event record filled by EvtGen every time a photon is
added.

The four-momentum of the total radiated photons,
p� , is defined as

p� = pB �
�
pD + p`� + p⌫`

�
, (3)

where pB , pD, p⌫`
, and p`� are the four-momenta of the

B, D, `� and ⌫` particles, respectively, taken from the
event record updated by Photos. This means that, in
agreement with Ref. [9], the radiation of the D decay
products is not taken into account. The total energy
of the radiated photons, E� , is computed in the B rest
frame. As in Ref. [9], the variable Emax is defined as the
maximum value that E� is allowed to have to consider
B ! D`⌫̄`(�) as signal.

The QED correction, �QED, is given by the relative
variation of the branching ratio when events with total
radiated energy greater than Emax are discarded. This
can be calculated as follows:

�QED =

R Emax

0 N(E�)dE�R1
0 N(E�)dE�

� 1 , (4)

where N(E�) is the distribution of events with E� .
This distribution is shown for B

0 !D
+
⌧
�
⌫⌧ and B

0

!D
+
µ
�
⌫µ decays in Fig. 1. The considered energy

range is up to 100 MeV, which covers the majority of
radiative photons, namely 98% of the µ

� decays and
99.7% for the ⌧

� decays generated by Photos.
Comparisons between radiative corrections from Pho-

tos and Ref. [9] are shown in Fig. 2 for the B
0 !

D
+
`
�
⌫` (left panel) and B

� ! D
0
`
�
⌫` (middle panel)

branching fractions. These plots show differences of up

You can make this fairly dramatic looking by defining a cut-off , which 
defines the maximal value of the photon energy that we would identify 

 still as signal 

Emax

B → Dℓν̄ℓγ
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Figure 1 Distribution of the total energy of the radiated
photons, E� , up to 100 MeV for B0 !D+⌧�⌫⌧ and B0

!D+µ�⌫µ decays as simulated by Photos. Once a value of
Emax is chosen, e.g. 40 MeV as in the plot, all events with higher
E� values are discarded.

to 2% for B
0 decays, and 0.5� 1% for B

� decays. Un-
fortunately, the effect does not cancel in the ratios of
branching fractions. This is clearly visible from the right
panel of Fig. 2 where radiative corrections on R(D),
�QED(R), are shown as a function of Emax. Photos
predicts a QED correction that is 0.5% lower than the
one in Ref. [9] for R(D+), while it is 0.5% higher than
the one in Ref. [9] for R(D0).

2.1 Coulomb correction

A significant part of the radiative corrections in Ref. [9]
originates from Coulomb interactions, which are not in-
cluded in Photos. Note that the Coulomb correction
is relevant for the D

+ mode, but not for the D
0 mode.

For a fermion-scalar (and fermion-fermion) pair, this
correction is given by

⌦C =
2⇡↵

�D`

1

1� e
� 2⇡↵

�D`

, (5)

where ↵ = 1/137 and �D` is the relative velocity between
the D meson and the lepton, defined as

�D` =


1� 4m2

Dm
2
`

(sD` �m
2
D �m

2
`)

2

�1/2
, (6)

where sD` = (pD+p`)2. A well-known approximation of
the Coulomb correction by Atwood and Marciano [18],
yields ⌦C = (1 + ⇡↵) ⇡ 1.023 which occurs when
�D` ⇡ 1. This is accurate for decays with light leptons,
but not for those with ⌧

� leptons. For the semitauonic
mode, the typical relative velocity is 0.5-0.9, resulting
in a Coulomb correction between 2.5 and 5.0%.

QED corrections from Photos for the D+ mode are
also compared with predictions not including the Cou-
lomb correction from Ref. [9]. This reduces the differ-
ence of the corrections to the branching ratios between
Photos and the theoretical calculations to about 1%
and brings the corrections on R(D+) in close agree-
ment, as shown in Fig. 3 (left and middle, respectively).

Fig. 3 (right) shows the ratio of QED corrections on
R(D+) over those on R(D0). It is worth noting that
both Photos and the calculation in Ref. [9] without
Coulomb correction conserve isospin symmetry (�QED

values for R(D+) and R(D0) agree within the errors),
while the Coulomb correction introduces an isospin-
breaking term.

3 Effects on LHCb-like analysis

The comparison in the previous section only holds for
values of E� up to 100 MeV. For higher energies, no cal-
culations relevant to R(D) are available2. Nevertheless,
Photos generates photons with energies larger than
those treated in Ref. [9], which is the range where the
effect of SD photons might be relevant.

To study the effect of under- or overestimating radi-
ative corrections in simulations used for measurements
of R(D), a simplified analysis is performed in an LHCb-
like environment. Also here, the radiation emitted by
the decay products of the D mesons is neglected be-
cause their contributions largely cancel out in the ratio.

The strategy of this study consists of fitting a data
sample with templates describing the B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ components. The fits are performed with

templates built under the hypothesis that no radiation
with E� above a certain value Emax is emitted. In par-
ticular, five Emax values were chosen to cut on E� : 100,
300, 500, 800 and 1500 MeV. The bias on R(D), determ-
ined from these fits, is an indication of the importance
of the simulation of the E� distribution in the high-
energy region.

This analysis follows a strategy similar to the one
used in Ref. [20], where R(D⇤) is measured using a
three-dimensional templated fit. The data samples, re-
ferred to as pseudo-experiments in the following text,
are generated from a mixture of B ! Dµ

�
⌫µ and

B ! D⌧
�
⌫⌧ decays, with radiative corrections gen-

erated by Photos. Here R(D) is assumed to be 0.3 as
predicted by the SM.

The variables used in the templated fit performed to
extract the B ! Dµ

�
⌫µ and B ! D⌧

�
⌫⌧ yields from

2In Ref. [19] a calculation of the high-energy SD contribution to
B ! D`⌫` is reported. This is not relevant to this study because
of the missing lepton-mass dependent effects.
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Of course experiments simulate this with PHOTOS 

(and there are additional FSR photons from the  decay)


Problems could arise if real QED effects would differ 
between PHOTOS and e.g. full NLO rate
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be weakened or strengthened if radiative corrections are
not properly taken into account.

All experiments measuring these types of LU are de-
pendent on the simulation of QED radiative corrections
in decays of particles and resonances. The widely used
package to simulate these corrections is Photos [10,
11], which is used by all three experiments measuring
R(D) and R(D⇤).

This paper starts by comparing the radiative cor-
rections on R(D+) and R(D0) from Ref. [9] with those
simulated by Photos in Sect. 2. The sensitivity of
measurements of R(D+) and R(D0) to radiative cor-
rections in the µ

� and ⌧
� decay modes is studied with

pseudo-experiments in an LHCb-like environment, with
different assumptions on the shape of the total energy
of the radiated photons. The method and the results
of this study are reported in Sect. 3. Conclusions and
recommendations are summarised in Sect. 4.

2 Radiative corrections in PHOTOS

Photos [11, 12] is a universal Monte Carlo algorithm
that simulates the effects of QED corrections in decays
of particles and resonances. It exploits the factorisa-
tion property of QED coming from the exponentiation
method used to improve the convergence of the per-
turbative expansion. Any particle-decay process accom-
panied by bremsstrahlung photons can be factorised
into a tree term and bremsstrahlung factor. The latter
depends only on the four-momenta of those particles
taking part in the decay, and not on the underlying
process. This approximation, which takes into account
both real and virtual corrections, converges to an exact
expression in the soft-photon region of phase space. It
is worth noting that Photos does not incorporate the
emission of photons depending on the hadronic struc-
ture. These so called structure-dependent (SD) photons
impact the spin of the decay particle, and may also in-
terfere with bremsstrahlung photons. The effect of SD
photons depends on the specific decay under study and,
as was the case for kaon decays [13], may not be negli-
gible.

The latest versions of Photos include multi-photon
emissions, and interference between final-state photons.
The validity of Photos has been tested successfully
by comparing its results to full calculations available in
various processes involving W , Z and hadronic B de-
cays into scalar mesons [11,14]. Because of the universal
treatment of photon emission in Photos, its perform-
ances in specific processes should always be checked,
especially when high precision is desired or when signal
extraction is sensitive to detailed simulation of a phase
space corner of the decay.

The calculation by de Boer et al. in Ref. [9] is the
first that studies the impact of soft-photon corrections
on R(D+) and R(D0). It is valid in the regime in which
the maximum energy of the radiated photons is smal-
ler than the lepton mass, which is the muon mass in
this case. This calculation includes more effects than
Photos does, in particular the interference between
initial- and final-state photons, and the Coulomb cor-
rection. The latter increases the decay rate of decays
with charged particles in the final state. It should be
noted that the contribution of the Coulomb correction
is singular for null relative velocity between final-state
charged particles.

To compare QED corrections between Photos and
Ref. [9], four samples (B0 ! D

+
`
�
⌫` and B

� ! D
0
`
�
⌫`,

where `
� = µ

�
, ⌧

�) with three million B-meson decays
are generated by Pythia 8 [15,16]. The decays are sim-
ulated by EvtGen [17], and the radiative corrections
by Photos v.3.56, with the “option with interference”
switched on. QED corrections are applied by Photos
by modifying the charged track’s four-momentum in the
event record filled by EvtGen every time a photon is
added.

The four-momentum of the total radiated photons,
p� , is defined as

p� = pB �
�
pD + p`� + p⌫`

�
, (3)

where pB , pD, p⌫`
, and p`� are the four-momenta of the

B, D, `� and ⌫` particles, respectively, taken from the
event record updated by Photos. This means that, in
agreement with Ref. [9], the radiation of the D decay
products is not taken into account. The total energy
of the radiated photons, E� , is computed in the B rest
frame. As in Ref. [9], the variable Emax is defined as the
maximum value that E� is allowed to have to consider
B ! D`⌫̄`(�) as signal.

The QED correction, �QED, is given by the relative
variation of the branching ratio when events with total
radiated energy greater than Emax are discarded. This
can be calculated as follows:

�QED =

R Emax

0 N(E�)dE�R1
0 N(E�)dE�

� 1 , (4)

where N(E�) is the distribution of events with E� .
This distribution is shown for B

0 !D
+
⌧
�
⌫⌧ and B

0

!D
+
µ
�
⌫µ decays in Fig. 1. The considered energy

range is up to 100 MeV, which covers the majority of
radiative photons, namely 98% of the µ

� decays and
99.7% for the ⌧

� decays generated by Photos.
Comparisons between radiative corrections from Pho-

tos and Ref. [9] are shown in Fig. 2 for the B
0 !

D
+
`
�
⌫` (left panel) and B

� ! D
0
`
�
⌫` (middle panel)
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Figure 2 Radiative corrections to the branching ratios of B̄0 ! D+`�⌫̄` (left) and B� ! D0`�⌫̄` (middle) decays, as a function
of Emax. The long-distance QED corrections to R(D+) (orange) and R(D0) (violet) as a function of Emax (right). The plots
are obtained from simulated data (solid lines, which include the statistical uncertainty) and from Ref. [9] (dashed lines, filled with
transparent colours when the uncertainties are significant).
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Figure 3 Radiative corrections to the branching ratios of B̄0 ! D+`�⌫̄` (left) and R(D+) (middle) in the case that no Coulomb
correction is applied. The plot on the right shows the ratio �QED(R(D+))/�QED(R(D0)). The plots are obtained from simulated
data (solid lines, which include the statistical uncertainty) and from Ref. [9] (dashed lines, filled with transparent colours when the
uncertainties are significant).

the pseudo-experiments are: the muon energy computed
in the B meson rest frame, Eµ; the missing mass squared,
m

2
miss = (pB�pD�pµ)

2; and the squared four-momentum
transferred to the lepton system, q

2 = (pB � pD)2.
The variables are binned as follows: four bins in q

2 in
the range �0.4 < q

2
< 12.6 GeV, 40 bins in m

2
miss

between �2 < m
2
miss < 10 GeV2, and 30 bins in muon

energy in the range 100 < Eµ < 2500 MeV, consist-
ent with Ref. [20]. In this case study, only the signal
(B ! D⌧

�
⌫⌧ ) and normalisation (B ! Dµ

�
⌫µ) com-

ponents are considered, while all backgrounds are ig-
nored.

Basic selection requirements are applied to mimic
the acceptance of the LHCb detector and its trigger
following Ref. [21]. Both production and B-decay ver-
tex positions are smeared to simulate the resolution of
the LHCb detector. The resolution on the production
vertices is 13µm in x and y, and 70µm in z direc-
tion. For the B-decay vertices a resolution of 20µm in
x and y, and 200µm in z direction is used, after which
the B direction is computed. The D mesons decay as
D

0 ! K
�
⇡
+ and D

+ ! K
�
⇡
+
⇡
+, the ⌧

� lepton as
⌧
� ! µ

�
⌫µ⌫⌧ . The muons and all decay products from

the D mesons are required to be in the pseudorapid-
ity range between 1.9 and 4.9. In addition, the mo-

mentum of each of these particles is required to be
larger than 5 GeV, and its component transverse to
the beam direction must be larger than 250 MeV. The
distance between the production and B-decay vertex
should be at least 3 mm, similar to the requirements
applied in a typical trigger selection.

Due to the missing neutrino and unknown effective
centre-of-mass energy of the collision, the B-meson mo-
mentum cannot be reconstructed in an R(Hc) analysis
at LHCb. Therefore the momentum of the B meson
in the z direction, (pB)z, is approximated as (pB)z =
(mB/mvis)(pvis)z, where mB is the B mass, and mvis

and (pvis)z are the momentum in the z direction and
the mass of the visible decay products of the B meson,
respectively. This directly follows the approach from
Ref. [20]. After computing the B momentum with the
above approximation and applying the selection cri-
teria described in this section, q

2, m
2
miss and Eµ are

calculated. The distributions for the signal and control
samples are shown in Fig. 4. Even using this simplified
detector description, these distributions show the same
key features as those in Ref. [20].

When applying cuts on E� , the templates shapes
change. This is most clearly seen in the distributions
of m2

miss, shown for the B
0 decay in Fig. 5. Especially
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the pseudo-experiments are: the muon energy computed
in the B meson rest frame, Eµ; the missing mass squared,
m

2
miss = (pB�pD�pµ)

2; and the squared four-momentum
transferred to the lepton system, q

2 = (pB � pD)2.
The variables are binned as follows: four bins in q

2 in
the range �0.4 < q

2
< 12.6 GeV, 40 bins in m

2
miss

between �2 < m
2
miss < 10 GeV2, and 30 bins in muon

energy in the range 100 < Eµ < 2500 MeV, consist-
ent with Ref. [20]. In this case study, only the signal
(B ! D⌧

�
⌫⌧ ) and normalisation (B ! Dµ

�
⌫µ) com-

ponents are considered, while all backgrounds are ig-
nored.

Basic selection requirements are applied to mimic
the acceptance of the LHCb detector and its trigger
following Ref. [21]. Both production and B-decay ver-
tex positions are smeared to simulate the resolution of
the LHCb detector. The resolution on the production
vertices is 13µm in x and y, and 70µm in z direc-
tion. For the B-decay vertices a resolution of 20µm in
x and y, and 200µm in z direction is used, after which
the B direction is computed. The D mesons decay as
D

0 ! K
�
⇡
+ and D

+ ! K
�
⇡
+
⇡
+, the ⌧

� lepton as
⌧
� ! µ

�
⌫µ⌫⌧ . The muons and all decay products from

the D mesons are required to be in the pseudorapid-
ity range between 1.9 and 4.9. In addition, the mo-

mentum of each of these particles is required to be
larger than 5 GeV, and its component transverse to
the beam direction must be larger than 250 MeV. The
distance between the production and B-decay vertex
should be at least 3 mm, similar to the requirements
applied in a typical trigger selection.

Due to the missing neutrino and unknown effective
centre-of-mass energy of the collision, the B-meson mo-
mentum cannot be reconstructed in an R(Hc) analysis
at LHCb. Therefore the momentum of the B meson
in the z direction, (pB)z, is approximated as (pB)z =
(mB/mvis)(pvis)z, where mB is the B mass, and mvis

and (pvis)z are the momentum in the z direction and
the mass of the visible decay products of the B meson,
respectively. This directly follows the approach from
Ref. [20]. After computing the B momentum with the
above approximation and applying the selection cri-
teria described in this section, q

2, m
2
miss and Eµ are

calculated. The distributions for the signal and control
samples are shown in Fig. 4. Even using this simplified
detector description, these distributions show the same
key features as those in Ref. [20].

When applying cuts on E� , the templates shapes
change. This is most clearly seen in the distributions
of m2

miss, shown for the B
0 decay in Fig. 5. Especially

Disagreement vanishes when Coulomb term

is removed
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Figure 6.12: Expected Eextra distribution of the different components after the BDT requirements
are applied. TheD∗∗"ν component has a similar distribution to the BB and continuum backgrounds.
Histograms are normalized to 1000 entries.

Also, the two BDTs for the D channels and the two BDTs for the D∗ channels depend on the same

input variables, so their distributions have a similar dependence on the BDT cut. Thus, we combine

their corrections. We find 0.901 ± 0.019 in the D channels, and 0.953 ± 0.034 in the D∗ channels.

These correspond to a 10% and 5% underestimation of these backgrounds.

The D∗∗"ν yields are free in the final fit, but their contributions to the signal and D(∗)π0 samples

are constrained by the efficiency ratios

fD∗∗ =
ND∗∗⇒D(∗)

ND∗∗⇒D(∗)π0

=
εD∗∗⇒D(∗)

εD∗∗⇒D(∗)π0

. (6.1)

Here, ND∗∗⇒D(∗) refers to the D∗∗"ν yields in the four signal samples, and ND∗∗⇒D(∗)π0 the D∗∗"ν

yields in the four D(∗)π0 samples. These constraints are taken from the simulation, so the BDT bias

could affect our estimation of this background.

Except in the dedicated D(∗)π0 samples, B → D∗∗"−ν" decays are difficult to isolate. Since most

of the BDT bias is due to discrepancies in the Eextra distributions, and the D∗∗"ν component and

BB and continuum backgrounds have similar Eextra distributions (Fig. 6.12), we correct the D∗∗"ν

events in the signal samples with the same corrections used on those backgrounds (albeit with a

significantly larger uncertainty, Sec. 8.2.2).

6.4 D(∗)π0 BDT

Figures B.14–B.18 show the distributions of the input variables to the D(∗)π0 BDTs. In this case,

the control samples shown are a subset of the D(∗)π0 data samples that are used in the final fit.

The events satisfying the BDT requirements lie at 0.5 < Eextra < 1.2GeV, a region where the

Signal & Normalization

look extremely similar

B → D(*)ℓν̄ℓ

B → D(*)τ[ → ℓντν̄ℓ]ν̄τ

In fact so similar, that it’s impossible to separate both processes with  Eextra

Why similar?  1) more FSR when  decays 

           2) Brem, Beam Backgrounds, not reconstructed  or photons in the event 

τ
π0
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Figure 4 Shapes of the q2, m2
miss, and Eµ distributions after applying basic selection requirements and the rest frame approximation

for the B0 ! D+`�⌫` decays where `� = µ�, ⌧�.

in the µ
� decay mode the effect is large, altering the

shape at high values of m2
miss. Since this feature is not

present in the ⌧� mode, this does not cancel when meas-
uring the ratio R(D+). For completeness, changes in
the shape of q2 and Eµ for the µ

� mode are shown in
Appendix A.

The number of events generated to simulate data is
determined from the estimated number of events that
LHCb gathered during their Run II data-taking period.
The estimate takes into account the B-production cross-
section at 13 TeV, branching fractions, and assumes
the average reconstruction efficiency is the same as in
Ref. [20]. This results in data samples of 1.0⇥ 106 and
0.5 ⇥ 105 for the B

0 ! D
+
`
�
⌫` decays, and 4.4 ⇥ 105

and 2.3⇥ 104 for the B
� ! D

0
`
�
⌫` decays, where the

first yield represents the µ
� sample, and the second

the ⌧
� sample. In an actual analysis, the efficiencies

for B ! D`⌫` decays are likely higher than those for
B ! D

⇤
`⌫` decays, where D

⇤ is reconstructed in the
D⇡ decay mode.

The measured value of R(D) is determined from
two components. The first is the ratio of reconstruc-
tion efficiencies "µ and "⌧ for the µ

� and ⌧
� samples,

respectively, which takes into account the selection re-
quirements described earlier in this section. The second
component is the fraction of semitauonic decays in the
sample, f⌧ , determined from the three-dimensional tem-
plate fit (the absence of background events in the simu-
lated samples implies that the fraction of µ

� and ⌧
�

components add up to one). These are combined to
measure R(D) as

R(D) =
f⌧

1� f⌧

"µ

"⌧
. (7)

The exercise of generating pseudo-experiments is re-
peated 10.000 times after which the spread of the meas-
ured values of R(D) is taken as the statistical uncer-
tainty.

The resulting values of R(D+) and R(D0) as a func-
tion of Emax are shown in Fig. 6. From here it is clear

that there is a significant effect in underestimating the
QED radiative corrections which could be up to 0.02
for both R(D+) and R(D0) values, corresponding to a
relative bias of 7.5%. The largest contribution to the ob-
served bias is due to the fit fraction f⌧ , which is strongly
affected by the shapes of the µ

� templates. Instead, the
ratio of efficiencies "µ/"⌧ is only marginally dependent
on Emax. However, this last statement holds only for
this specific case study. Different sets of selection cuts
or different experimental environments could indeed in-
troduce a significant bias also in the ratio of efficiencies.
The observed bias can be understood when looking at
the m

2
miss distribution in Fig. 4 and Fig. 5. When cut-

ting on E� , part of the tail of the µ
� distribution is

removed, which is compensated by a higher ⌧� fraction
in the fit.

In an actual analysis there are radiative corrections
in MC and radiated photons in data. Therefore, it is
useful to check the above approach using an alternative
strategy. In this case, the templates include all QED
corrections predicted by Photos while an Emax cut
is applied on the pseudo-experiments. This approach
leads to an overestimate on the QED corrections, res-
ulting in a negative bias on the R(D) values. The results
for R(D+) and R(D0) as a function of Emax are repor-
ted in Appendix A. The corrections are of the exact
same size as those in the baseline approach.

It is worth to note that, despite the fact that LHCb
does not cut explicitly on E� in its analyses, indirect
cuts on the total radiated energy are applied through
e.g. requirements on isolation variables or inefficient re-
construction algorithms for low momentum particles.
This could alter the observed bias if E� is not simu-
lated correctly.

These studies show that radiative corrections play a
crucial role in R(D) measurements. Since part of these
corrections are already simulated in Photos, the above
exercise shows the effect of a worst-case scenario. Nev-
ertheless, additional effects such as the Coulomb cor-
rection, as detailed in next section, or the calculation

Typical extraction variables for : R(D(*)) q2 = (pB − pD*)2 ; M2
miss = (pB − pD* − pℓ)2 ; Eμ
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Figure 7 Coulomb correction as a function of q2, m2
miss, and Eµ for B0 ! D+`�⌫` decays, where `� = µ�, ⌧�.

4 Conclusions and recommendations

The work in Ref. [9] describes QED corrections which
are not fully included in Photos. These corrections af-
fect the semimuonic and semitauonic modes differently
at the level of a few percent. Ignoring the Coulomb cor-
rection, there is more radiated energy in the calculation
in Ref. [9] than in Photos for the B0 decays, while this
is the other way around for the B

� decays. In the ratio
R(D), this small discrepancy mostly cancels out. How-
ever, the main difference between the QED corrections
on R(D+) and R(D0), which is up to 1%, is due to the
Coulomb correction that only affects R(D+).

Coulomb interactions are not simulated by Photos
and mainly affect the kinematics of semitauonic decays,
which in turn influence the shape of distributions used
to determine the signal yields in LHCb, BaBar, and
Belle analyses. These effects can alter values of R(D)
up to 1% in an LHCb-like analysis, and should be eval-
uated precisely for each measurement.

Using a simplified LHCb-like analysis, it is shown
that over- or underestimating radiative corrections could
bias measurements of R(D) up to 7% in an extreme
case. This results in a bias of 0.02 on the value of R(D),
and should be studied further when performing these
types of measurements, including a realistic evaluation
of cuts on E� . These effects could potentially be en-
hanced in measurements from Belle II [22] where the
resolution on the kinematic variables is better than at
LHCb.

When measuring values of R(D) with higher pre-
cision, additional calculations of QED corrections for
B ! D`⌫` decays are necessary. Especially calculations
involving high-energy and structure-dependent photons
are currently mostly missing.
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Appendix A: Additional Plots

The fits on the pseudo-experiments are performed on
the three variables Eµ, m2

miss and q
2, as described in

Sect. 3. The effect of cutting on Emax on the shape
of the Eµ and m

2
miss templates is shown in Fig. 8 for

the B
0 ! D

+
µ
�
⌫µ decay. Analogous plots for the

semitauonic mode show a negligible dependence on the
Emax cut.

The results of performing the simplified LHCb-like
analysis with the alternative strategy are shown in Fig. 9.
These results are obtained using templates with an E�

distribution in agreement with Photos predictions, and
pseudo-experiments with cuts on E� applied.
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Figure 6.12: Expected Eextra distribution of the different components after the BDT requirements
are applied. TheD∗∗"ν component has a similar distribution to the BB and continuum backgrounds.
Histograms are normalized to 1000 entries.

Also, the two BDTs for the D channels and the two BDTs for the D∗ channels depend on the same

input variables, so their distributions have a similar dependence on the BDT cut. Thus, we combine

their corrections. We find 0.901 ± 0.019 in the D channels, and 0.953 ± 0.034 in the D∗ channels.

These correspond to a 10% and 5% underestimation of these backgrounds.

The D∗∗"ν yields are free in the final fit, but their contributions to the signal and D(∗)π0 samples

are constrained by the efficiency ratios

fD∗∗ =
ND∗∗⇒D(∗)

ND∗∗⇒D(∗)π0

=
εD∗∗⇒D(∗)

εD∗∗⇒D(∗)π0

. (6.1)

Here, ND∗∗⇒D(∗) refers to the D∗∗"ν yields in the four signal samples, and ND∗∗⇒D(∗)π0 the D∗∗"ν

yields in the four D(∗)π0 samples. These constraints are taken from the simulation, so the BDT bias

could affect our estimation of this background.

Except in the dedicated D(∗)π0 samples, B → D∗∗"−ν" decays are difficult to isolate. Since most

of the BDT bias is due to discrepancies in the Eextra distributions, and the D∗∗"ν component and

BB and continuum backgrounds have similar Eextra distributions (Fig. 6.12), we correct the D∗∗"ν

events in the signal samples with the same corrections used on those backgrounds (albeit with a

significantly larger uncertainty, Sec. 8.2.2).

6.4 D(∗)π0 BDT

Figures B.14–B.18 show the distributions of the input variables to the D(∗)π0 BDTs. In this case,

the control samples shown are a subset of the D(∗)π0 data samples that are used in the final fit.

The events satisfying the BDT requirements lie at 0.5 < Eextra < 1.2GeV, a region where the

Signal & Normalization

look extremely similar

B → D(*)ℓν̄ℓ

B → D(*)τ[ → ℓντν̄ℓ]ν̄τ

Experimental effects broaden the 
experimental equivalent of  
considerably

Emax

𝒪(10−3)
reduction

𝒪(0.5)
reduction

Reduction from [0,50 MeV] wildly 
different
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Summary

I am personally excited about the renewed attention that QED effects are getting!


We are stepping into an exciting era with 


 - Precision measurements of  at the LHC


 - Exciting prospects of  and  at Belle II & LHCb


 - Belle II will discover , how to deal with  interesting question


 - QED effects for  will become more and more for  

determinations

Bs,d → μμ(γ)

B → ℓνγ B → ℓνγ*[ → ℓℓ]

B → μν B → μνγ

Hb → Hu,cℓν̄ℓ (γ) |Vqb |

b

q

q

Many thanks to Roman and all the organizers for bringing us all together here!




