

EDINBURGH

QED corrections in $B \rightarrow K\ell^+\ell^-$: comparing PHOTOS to a Monte Carlo based on a fully differential NLO computation. **QED** in weak decays Workshop

Davide Lancierini, University of Zürich

Universität Zürich

Outline

- Introduction on Bremsstrahlung and Final State Radiation (FSR) • What is Bremsstrahlung, what does it depend on
- [PHOTOS] vs our Monte Carlo for FSR simulation
 - How does PHOTOS work? How does our MC work?
 - Kinematic distributions of decay products
 - Comparisons between [PHOTOS] and our MC, with and without resonant J/ψ contribution
- How does bremsstrahlung recovery affect our measurements
- Conclusions

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Bremsstrahlung

- Bremsstrahlung effects arise from the interaction of charged particles with the detector material (Coulomb field of atoms)
- Probability $\propto E/m^2 \rightarrow$ mainly affects electrons
- An electron loses energy by bremsstrahlung at a rate dE/dx nearly proportional to its energy \rightarrow fractional loss is roughly independent of e^{\pm} energy.

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

23. June 2022

PDG

50

The LHCb detector

- Forward arm spectrometer designed for heavy flavour physics
- Instrumented in the forward region where $\sigma(pp \rightarrow bbX)$ is maximal
- Low- p_T triggers (few GeV)
- Excellent vertexing (VELO) and PID capabilities to identify displaced b-hadron vertices and rare decays
- Momentum measurement with spectrometer $\sigma_p/p \sim 0.5 \%$

Tracking

Particle Identification

Brem photons emitted at LHCb

- Most brem emission is due to material interaction and occurs before the bending magnet
- If brem is emitted before the bending magnet, momentum resolution is affected
- For $E(e^{\pm}) > 10$ GeV, average number of brem photons emitted per electron, before the magnet, given $min(E_T(\gamma)) = 75$ MeV is $\simeq 1$
- Brem recovery algorithm in place to add back lost momentum to the electron tracks (more on this later)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Final State Radiation (FSR)

 Energy radiated through photon emission from charged final state particles in B-meson decays

 This effect has to be taken into account in order to correctly model the distributions on which the detection efficiencies depend on

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

PHOTOS

- How is this accounted for in LHCb? Via the [PHOTOS] package
- [PHOTOS] corrects a MC event after it has been fully generated to account for FSR, at the generator level, i.e. prior to any detector effect
- Interface with [PHOTOS] in LHCb simulation is via the [EvtGen] package which handles the decay of heavy flavour hadrons

$$d\sigma^{Born}(a^0 \to \ell^{\pm} b^0) = |M_{Born}| d\phi_2(a^0)$$

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

PHOTOS

- How is this accounted for in LHCb? Via the [PHOTOS] package
- [PHOTOS] corrects a MC event after it has been fully generated to account for FSR, at the generator level, i.e. prior to any detector effect
- Interface with [PHOTOS] in LHCb simulation is via the [EvtGen] package which handles the decay of heavy flavour hadrons

$$d\sigma^{Born}(a^0 \to \ell^{\pm} b^0) = |M_{Born}| d\phi_2(a^0)$$

 $d\sigma^{NLO}(a^0 \to (\ell^{\pm}\gamma)b^0) = |M_{NLO}| d\phi_3(a^0; \ell^{\pm}, \gamma, b^0)$

D. Lancierini (Universität Zürich)

QED corrections in $\bar{B} \rightarrow \bar{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

PHOTOS

Assuming factorisation of splitting function in leading log approximation

$$|M_{NLO}|^2 = |M_{Bor}|^2$$

$$d\sigma^{NLO}(a^0 \to (\ell^{\pm}\gamma)b^0) = d\sigma^{Born}$$

- *f_{brem}*'s functional form depends on properties of the charged particle and determines probability of brem. photon emission.

 $_{rn}|^{2} f_{brem}(E_{\gamma}, cos\theta_{\gamma}, \phi_{\gamma})$ ${}^{n}(a^{0} \rightarrow \ell^{\pm}b^{0})d\phi_{3}f_{brem}(E_{\gamma}, cos\theta_{\gamma}, \phi_{\gamma})$

Once the photon is generated, it is added to the event which is modified accordingly

Our Monte Carlo setup: framework

- implementing the fully differential results presented in [2009.00929]
- Monte Carlo event generator.

•
$$q - RF$$

 $q^2 = (p_1 + p_2)^2$
 $c_{\ell} = -\left(\frac{\overrightarrow{p}_1 \cdot \overrightarrow{p}_K}{|\overrightarrow{p}_1| |\overrightarrow{p}_K|}\right)_{q-RF}$

 $\bar{p}_B = p_B - k = p_1 + p_2 + p_K, \qquad \bar{p}_B^2 = (m_B^{rec})^2$

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Our recent work [2205.08635] aims at testing the approximations adopted by [PHOTOS] by

This results confirms the predictions of [1605.07633] and extends it by building a custom

Our Monte Carlo setup: framework

- implementing the fully differential results presented in [2009.00929]
- Monte Carlo event generator.

$$\mathcal{A}_{\bar{B}\to\bar{K}\ell^+\ell^-} \equiv \langle \bar{K}\ell^+\ell^- | (-\mathcal{L}_{\rm int}) | \bar{B} \rangle = \frac{G_F}{\sqrt{2}} V_{\rm ts}^* V_{\rm tb} L_0 \cdot H_0 + \mathcal{O}(\alpha)$$

$$L_0^{\mu}(q^2) = \bar{u}(\ell^-)\gamma^{\mu}(C_V + C_A\gamma_5)v(\ell^+) ,$$

$$H_0^{\mu}(q^2) = f_+(q^2)(p_B + p_K)^{\mu} + f_-(q^2)(p_B - p_K)^{\mu}$$

D. Lancierini (Universität Zürich)

Our recent work [2205.08635] aims at testing the approximations adopted by [PHOTOS] by

This results confirms the predictions of [1605.07633] and extends it by building a custom

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Our Monte Carlo setup: framework

- body matrix element and phase space.
- The relative normalisation between 3 body and 4 body events is a key theory input:

 $f^{th}(E_{\gamma,cu})$

By observing that the total rate $\Gamma_{tot} \equiv I$ obtain a relation for $f^{th}(E_{\gamma,cut})$

 $f^{th}(E_{\gamma,cut}) =$

D. Lancierini (Universität Zürich)

• Set $E_{\gamma,cut}$ (= 100 KeV) so that events with $E_{\gamma} \leq E_{\gamma,cut}$ can be simulated using a 3 or 4

$$= \frac{N_3}{N_4} = \frac{\Gamma_3}{\Gamma_4}$$

$$\Gamma_3 + \Gamma_4 = \Gamma_{tree} \times [1 + \mathcal{O}(\alpha)] \text{ one can easily}$$

$$= \left(\frac{\Gamma_{tree}}{\Gamma_3} - 1\right)^{-1}$$

- The 3 and 4 body events are simulated separately using the hit-or-miss algorithm provided by the [zfit package]

D. Lancierini (Universität Zürich)

QED corrections in $\bar{B} \rightarrow \bar{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

- The 3 and 4 body events are simulated separately using the hit-or-miss algorithm provided by the [zfit package]

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

• The 3 and 4 body events are simulated separately using the hit-or-miss algorithm provided by the [zfit package]

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

• The 3 and 4 body events are simulated separately using the hit-or-miss algorithm provided by the [zfit package]

$$q_0^2 \neq q_2$$
 for the 4 body decay,

different efficiency of $1.1 < q_2/\text{GeV}^2 < 6 \& \bar{p}_R^2 > (m_R^{rec})^2$ cut in μ/e impacts on value of QED corrections on LFU ratios

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Our Monte Carlo results: q_0^2 spectrum comparison

QED corrections either on the q_0^2 spectra, for both μ/e

and LO distributions to unity

D. Lancierini (Universität Zürich)

By taking the ratio of NLO/LO in our Monte Carlo generator we can derive the impact of

<u>Note:</u> normalisation of these plots is arbitrarily obtained by normalising separately the NLO

Our Monte Carlo results: q_0^2 spectrum comparison

approach

Sub percent agreement between our Monte Carlo and PHOTOS is found in the q_0^2 variable

A comparison with [PHOTOS] is established by taking the ratio of the impact of QED corrections on the q_0^2 spectra, for both μ/e , between [PHOTOS] and our Monte Carlo

Our Monte Carlo results: q^2 spectrum comparison

QED corrections either on the q^2 spectra, for both μ/e

NLO and LO distributions to unity

D. Lancierini (Universität Zürich)

By taking the ratio of NLO/LO in our Monte Carlo generator we can derive the impact of

<u>Note:</u> normalisation of these plots is arbitrarily obtained by normalising separately the

Our Monte Carlo results: q^2 spectrum comparison

on the q^2 spectra, for both μ/e , between [PHOTOS] and our Monte Carlo approach

- the fixed $\mathcal{O}(\alpha)$ accuracy of our MC.
- of O(20%) and maximally imbalanced btw virtual and real emission.

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

A comparison with [PHOTOS] is established by taking the ratio of the impact of QED corrections

At the kinematic endpoint, due to lack of available phase space for real radiation, corrections are

Our Monte Carlo results: c_{e} spectrum comparison

QED corrections either on the c_{ℓ} spectra, for both μ/e

NLO and LO distributions to unity

D. Lancierini (Universität Zürich)

By taking the ratio of NLO/LO in our Monte Carlo generator we can derive the impact of

<u>Note:</u> normalisation of these plots is arbitrarily obtained by normalising separately the

Our Monte Carlo results: *c* spectrum comparison

approach

variable

QED corrections in
$$\bar{B} \to \bar{K}\ell^+$$

A comparison with [PHOTOS] is established by taking the ratio of the impact of QED corrections on the c_{ℓ} spectra, for both μ/e , between [PHOTOS] and our Monte Carlo

Sub percent agreement between our Monte Carlo and PHOTOS is found in the C_{ℓ}

Including the J/ψ resonance

- Regions at $q^2 \sim m_{J/\psi}^2$, $m_{\psi(2S)}^2$ dominated by resonances \rightarrow used as control channels
- Rare mode extends throughout the q^2 range, but is selected in a region away from charmonium resonances
- However in analysis rare and resonant modes are simulated separately, could this induce a non universal effect between μ/e

D. Lancierini (Universität Zürich)

QED corrections in $\overline{B} \to \overline{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Including the J/ψ resonance: method

- of C_0 :
 - $C_9 \rightarrow C_0^{eff} = C_9 + \Delta C_9(q^2)$ See Saad's Talk
- This however introduces some technical difficulties in the event generation:
 - in generation due to excessively low sampling efficiencies at the J/ψ peak
 - the interference effect is captured
 - Due to low sampling efficiency a fake lepton of mass $10 \cdot m_{\rho}$ is simulated

• In order to include QED effects induced by the J/ψ resonance we perform a modification

• The modulus squared of the resonant amplitude $\mathscr{A}(B \to J/\psi(\ell^+ \ell^-)K)$ is not included

• Events are generated up to a maximum q_0^2 threshold such that the decay width is still positive and can be interpreted as a PDF, the maximum q_0^2 is chosen so that the bulk of

Including the J/ψ resonance: results

data

• We simulated the two extreme cases in which $\delta_{J/\psi} = 0, \pi/2$ although we know from [1612.06764] that the worst case scenario of maximal interference is not favoured by the

Bremsstrahlung recovery at LHCb

- The upstream e^{\pm} track is extrapolated to the ECAL
- All $E_T > 75$ reconstructed neutral clusters, compatible with the e^{\pm} trajectory, are added back to the electron momentum
- Shortcomings
 - Poor energy resolution of ECAL
 - Brem can be out of acceptance
- Electrons with brem recovered have
 - Better momentum resolution

• Better PID (π^{\pm} don't emit brem)

D. Lancierini (Universität Zürich)

Bremsstrahlung recovery at LHCb

- In the hypothesis of:
 - An e[±] emits at most one bremsstrahlung photons
 - And the probability of brem recovery is uncorrelated between
 e⁺ and e⁻

$$1 = f_{2cl}^{ee} + f_{1cl}^{ee} + f_{0cl}^{ee}$$

= $P^2 + 2P(1 - P) + (1 - P)^2$
 $\Rightarrow P \simeq 50\%$

Effects of brem recovery on the mass resolution

D. Lancierini (Universität Zürich)

[NPHYS-2021-03-00814B]

Conclusions

- We have built a NLO Monte Carlo event generator for the $\bar{B} \to \bar{K}\ell^+\ell^-$ that includes all infrared sensitive logs, at the full differential level
- We have shown with a custom Monte Carlo approach that [PHOTOS] correctly describes the distortions of the q^2 , q_0^2 distributions, as well as the c_ℓ , due to QED corrections.
- By including the interference term of the rare mode with the resonant J/ψ mode in our simulation, we have shown that neglecting it's modelling in current experiments is a good approximation

QED corrections in $\bar{B} \rightarrow \bar{K}\ell^+\ell^-$: PHOTOS comparison to custom MC

Backup

- Diagonal elongations: radiative tails + incorrectly-added bremsstrahlung
- Vertical band: $B^+ \to K^+ \ell^+ \ell^-$ (rare decay mode)

D. Lancierini (Universität Zürich)

LFU tests at LHCb 8

[PRL 122 (2019) 191801]

• Peaking structures: $B^+ \to K^+ J/\psi(\ell^+ \ell^-)$ and $B^+ \to K^+ \psi(2S)(\ell^+ \ell^-)$ (resonant decay modes)

R_{K} measurement at LHCb

Control electron-muon differences using double ratio between nonresonant $B^+ \to K^+ \ell^+ \ell^-$ and resonant $B^+ \to K^+ J/\psi(\ell^+ \ell^-).$

$$R_{K} = \frac{N(K^{+}\mu\mu)}{N(K^{+}J/\psi(\mu\mu))} \frac{\varepsilon(K^{+}J/\psi(\mu\mu))}{\varepsilon(K^{+}\mu\mu)} \left/ \frac{N(K^{+}ee)}{N(K^{+}J/\psi(ee))} \frac{\varepsilon(K^{+}J/\psi(ee))}{\varepsilon(K^{+}ee)} \right|$$

- High statistics of the resonant mode;
- Similar kinematics of rare and resonant mode leads to suppression of systematic uncertainties;
 - Identical selection up to $m(K^+ \ell^+ \ell^-)$ and q^2 for rare and resonant modes
- $r_{J/\psi}$ known to be LFU within 0.4% [PDG] \rightarrow used as a cross check

LFU tests at LHCb 12

Analysis outline

- 1. Resonant modes yields extracted from a fit to the selected data samples.
- 2. Efficiencies are calculated from simulation and corrected using control mode data samples.
- 3. Estimation of systematic uncertainties.
- 4. Cross-checks with LFU channels such as $r_{J/\psi}$ are conducted.
- 5. Fit to the rare mode data $\rightarrow R_K$ is extracted.

LFU tests at LHCb 13

Selection

Requirements on reconstructed data, unchanged w.r.t. previous R_{K} analysis

- ^o High quality tracks and reconstructed B^+ decay vertex
- Particle identification (PID) on kaon and lepton candidates, to suppress background from mis-ID
- Trigger requirements (more on next slide)
- Mass vetoes in order to suppress semileptonic cascades
- Multivariate selection to suppress combinatorial background

Trigger strategy

- For muon channels, trigger on L0 Muon
- For electron channels, three exclusive trigger categories:

L0 Electron, L0 Hadron and L0 TIS.

 Systematics evaluated and cross-checks performed individually on each trigger category

LFU tests at LHCb 15

Fits to the control modes

- High statistics of the control modes, not all of the backgrounds are visible in the plots
- Resolution on reconstructed B^+ mass improved by constraining dilepton invariant mass to that of J/ψ

[arXiv:2103.11769]

LFU tests at LHCb 16

Efficiencies are estimated from simulated samp procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Efficiencies are estimated from simulated samples and calibrated using data, following identical

Fit to the data sample used as a source of π^{\pm} and K^{\pm} calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- <u>Trigger efficiency;</u>
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Efficiencies are estimated from simulated samp procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Efficiencies are estimated from simulated samples and calibrated using data, following identical

procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Leads to excellent agreement between data and simulation

• Extensive cross checks to verify procedure

Efficiencies are estimated from simulated samples and calibrated using data, following identical

LFU tests at LHCb 21

Cross check: $r_{J/\psi}$ single ratio

$$r_{J/\psi} = \frac{N(K^+ J/\psi(\mu\mu))}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ J/\psi(\mu))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ J/\psi(\mu))}$$

• Single ratio requires direct control of electrons with respect to muons:

• Stringent cross-check of efficiencies.

Measured value $r_{J/\psi} = 0.981 \pm 0.020$ (stat & syst)

LFU tests at LHCb 22

Cross check: $r_{J/\psi}$ single ratio

$$r_{J/\psi} = \frac{N(K^+ J/\psi(\mu\mu))}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ J/\psi(\mu))} \frac{\varepsilon(K^+ J/\psi(\mu))}{\varepsilon(K^+ J/\psi(\mu))}$$

• Single ratio requires direct control of electrons with respect to muons

• Stringent cross-check of efficiencies

Measured value. $r_{J/\psi} = 0.981 \pm 0.020$ (stat & syst)

- Cross check that efficiencies are understood in all kinematic regions by checking $r_{J/\psi}$ is flat in all variables relevant to the detector response.
 - If deviations from flatness is actually due to efficiency mismodelling, impact on R_K is of 0.1%.

[arXiv:2103.11769]

Cross check: $r_{J/\psi}$ single ratio

$$r_{J/\psi} = \frac{N(K^+ J/\psi(\mu\mu))}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ J/\psi(\mu))} \frac{\varepsilon(K^+ J/\psi(\mu))}{\varepsilon(K^+ J/\psi(\mu))} \frac{$$

- Single ratio requires direct control of electrons with respect to muons
 - Stringent cross-check of efficiencies

Measured value. $r_{J/\psi} = 0.981 \pm 0.020$ (stat & syst)

- Cross check that efficiencies are understood in all kinematic regions by checking $r_{J/\psi}$ is flat in all variables relevant to the detector response.
 - If deviations from flatness is actually due to efficiency mismodelling, impact on R_K is of 0.1%.
 - Check is also performed in 2D

[arXiv:2103.11769]

 $B^+ \to K^+ J/\psi(e^+ e^-)$ and $B^+ \to K^+(e^+ e^-)$ distributions

2]

S

Cross check: $R_{\psi(2S)}$ **double ratio**

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu\mu))}{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))} \left/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))}{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))} \right|$$

- Data are selected at the $\psi(2S)$ resonance with a suitable q^2 cut.
- Independent validation of double-ratio procedure.
- Test of the efficiencies at q^2 away from J/ψ .

LFU tests at LHCb 25

Cross check: $R_{\psi(2S)}$ **double ratio**

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu\mu))}{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))} \left/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))}{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))} \right|$$

- Data are selected at the $\psi(2S)$ resonance with a suitable q^2 cut.
- Independent validation of double-ratio procedure.
- Test of the efficiencies at q^2 away from J/ψ .
- Result is well compatible with unity:

Measured value

$$R_{\psi(2S)} = 0.997 \pm 0.011$$
 (stat & syst

5400 5600 $m_{\psi(2S)}(K^+e^+e^-) [MeV/c^2]$ 5200 5400

Dilepton mass constrained to mass of $\psi(2S)$

LFU tests at LHCb 26