YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

YFS soft-photon resummation in hadron decays, systematics and ME corrections

Marek Schönherr

IPPP, Durham University

THE ROYAL SOCIETY

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

The SHERPA event generator framework

Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039

Two Parton Shower (PS) generators CSSHOWER++ JHEP03(2008)038 DIRE EPJC75(2015)461

A multiple interaction simulation à la PYTHIA AMISIC++ ${\tt hep-ph/0601012}$

A cluster fragmentation module AHADIC++ EPJC36(2004)381

A hadron and τ decay package HADRONS++

A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

The SHERPA event generator framework

Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044

COMIX JHEP12(2008)039

Two Parton Shower (PS) generators CSSHOWER++ JHEP03(2008)038 DIRE EPJC75(2015)461

A multiple interaction simulation à la PYTHIA AMISIC++ hep-ph/0601012

A cluster fragmentation module AHADIC++ EPJC36(2004)381

A hadron and τ decay package HADRONS++

A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions OO

SHERPA

HADRONS++ package for hadron and τ decays

- decay tables for au and $\mathcal{O}(200)$ hadrons
- in total > 2.6k decay channels
- many have multiple form factor models available
- accounts for $D \overline{D}$ -, $B \overline{B}$ -, $B_s \overline{B}_s$ -mixing, off-shell decays, ...
- new calculations for specific decay channels can be introduced without modifying the existing release through dynamically loaded libs

QED corrections

• through soft-photon resummation in YFS framework

Yennie, Frauschi, Suura Annals Phys. 13 (1961) 379-452

- universal collinear logarithms supplied at fixed-order
 - \Rightarrow details in the following

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions OO

SHERPA

HADRONS++ package for hadron and τ decays

- decay tables for τ and $\mathcal{O}(\text{200})$ hadrons
- in total > 2.6k decay channels
- many have multiple form factor models available
- accounts for $D \overline{D}$ -, $B \overline{B}$ -, $B_s \overline{B}_s$ -mixing, off-shell decays, ...
- new calculations for specific decay channels can be introduced without modifying the existing release through dynamically loaded libs

QED corrections

• through soft-photon resummation in YFS framework

Yennie, Frauschi, Suura Annals Phys. 13 (1961) 379-452

- universal collinear logarithms supplied at fixed-order
 - \Rightarrow details in the following

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Overview

1 YFS soft photon resummation

2 Hard emission corrections

4 Conclusions

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
●0000	0000	0000000	00

YFS soft photon resummation

1 YFS soft photon resummation

2 Hard emission corrections

3 Some results

4 Conclusions

YFS soft photon resummation ○●○○○	Hard emission corrections	Some results	Conclusions 00

Yennie, Frauschi, Suura Annals Phys. 13 (1961) 379-452

General ideas:

- identify the infrared divergence structure of QED to all orders
- all charged particles (leptons, hadrons, etc) are considered massive
 - \rightarrow no collinear singularities
 - \rightarrow no $\gamma\text{-splittings}$ in soft-photon limit
 - \mapsto radiator function the same to all orders
- all divergences associated with emission off external legs
 - \rightarrow all large (soft) logs can be resummed to all orders can be constructed universally without knowledge of the hard interaction
- soft-photon limit is spin-independent, same soft limit in scalar, fermion, vector QED

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

Divergences in loop diagrams

Construct off-shell Eikonal B to subtract all infrared divergences at amplitude level

$$\begin{aligned} \mathcal{M}_{0}^{1} &= \mathcal{M}_{0}^{1} + \alpha \mathcal{B}\mathcal{M}_{0}^{0}, \\ \mathcal{M}_{0}^{2} &= \mathcal{M}_{0}^{2} + \alpha \mathcal{B}\mathcal{M}_{0}^{1} + \frac{(\alpha \mathcal{B})^{2}}{2!}\mathcal{M}_{0}^{0} \end{aligned}$$

$$\mathcal{M}_0^{\bar{n}\gamma} = \sum_{r=0}^{\bar{n}\gamma} M_0^{\bar{n}\gamma-r} \frac{(\alpha B)^r}{r!}$$

The $M_0^{n_\gamma}$ are now free of divergences due to r of the \bar{n}_γ virtual photons becoming soft. This holds for any simultaneous real-emission photons n_γ

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

Divergences in loop diagrams

Construct off-shell Eikonal B to subtract all infrared divergences at amplitude level

$$\mathcal{M}_{0}^{1} = \mathcal{M}_{0}^{1} + \alpha B \mathcal{M}_{0}^{0},$$

$$\mathcal{M}_{0}^{2} = \mathcal{M}_{0}^{2} + \alpha B \mathcal{M}_{0}^{1} + \frac{(\alpha B)^{2}}{2!} \mathcal{M}_{0}^{0}$$

$$\vdots$$

$$\mathcal{M}_{0}^{\bar{n}_{\gamma}} = \sum_{r=0}^{\bar{n}_{\gamma}} \mathcal{M}_{0}^{\bar{n}_{\gamma}-r} \frac{(\alpha B)^{r}}{r!}$$

The $M_0^{\bar{n}_{\gamma}}$ are now free of divergences due to r of the \bar{n}_{γ} virtual photons becoming soft. This holds for any simultaneous real-emission photons n_{γ} .

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Divergences in real-emission diagrams

Construct on-shell Eikonal \tilde{S} to subtract all infrared divergences at squared amplitude level

$$\begin{split} \left| \mathcal{M}_{1}^{\frac{1}{2}} \right|^{2} &= \tilde{\beta}_{1}^{1} + \alpha \tilde{S} \left| \mathcal{M}_{0}^{0} \right|^{2} \\ \left| \mathcal{M}_{2}^{1} \right|^{2} &= \tilde{\beta}_{2}^{2} + \alpha \tilde{S} \left| \mathcal{M}_{1}^{\frac{1}{2}} \right|^{2} + (\alpha \tilde{S})^{2} \left| \mathcal{M}_{0}^{0} \right|^{2} \\ &\vdots \end{split}$$

The $\tilde{\beta}_{n_{\gamma}}^{\tilde{n}_{\gamma}+n_{\gamma}}$ are now free of any (real and virtual) infrared divergence. Additional $\frac{1}{n-1}$ from symmetry factor, introduce $\tilde{B}(\omega_{\text{cut}}) = \int_{0}^{\omega_{\text{cut}}} d\Phi \tilde{S}$.

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Divergences in real-emission diagrams

Construct on-shell Eikonal \tilde{S} to subtract all infrared divergences at squared amplitude level

$$\left| M_{1}^{\frac{1}{2}} \right|^{2} = \tilde{\beta}_{1}^{1} + \alpha \tilde{S} \left| M_{0}^{0} \right|^{2}$$
$$\left| M_{2}^{1} \right|^{2} = \tilde{\beta}_{2}^{2} + \alpha \tilde{S} \left| M_{1}^{\frac{1}{2}} \right|^{2} + (\alpha \tilde{S})^{2} \left| M_{0}^{0} \right|^{2}$$
$$.$$

The $\tilde{\beta}_{n_{\gamma}}^{\tilde{n}_{\gamma}+n_{\gamma}}$ are now free of any (real and virtual) infrared divergence. Additional $\frac{1}{n_{\gamma}!}$ from symmetry factor, introduce $\tilde{B}(\omega_{\text{cut}}) = \int_{0}^{\omega_{\text{cut}}} d\Phi \tilde{S}$.

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Differential decay rate

$$d\Gamma^{\rm YFS} = e^{\alpha \, Y(\omega_{\rm cut})} \cdot \sum_{n_{\gamma}} \frac{1}{n_{\gamma}!} \, d\Phi \left[\prod_{i=1}^{n_{\gamma}} d\Phi_{k_i} \cdot \alpha \, \tilde{S}_{\omega_{\rm cut}}(k_i) \right] \\ \times \left(\tilde{\beta}_0^0 + \tilde{\beta}_0^1 + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_1^1(k_i)}{\alpha \tilde{S}(k_i)} + \dots \right)$$

The YFS form factor $Y(\omega_{\text{cut}}) = B + \tilde{B}(\omega_{\text{cut}})$ resums all soft-photon logarithms to all orders, and all $\tilde{\beta}_{n_{\gamma}}^{\bar{n}_{\gamma}+n_{\gamma}}$ are IR finite.

So far, the perturbative series has only been reordered. There is no matching procedure, etc, needed. Compute the hard emission corrections $\tilde{\beta}$ as far as possible/needed.

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Differential decay rate

$$d\Gamma^{\rm YFS} = e^{\alpha \, \mathbf{Y}(\omega_{\rm cut})} \cdot \sum_{n_{\gamma}} \frac{1}{n_{\gamma}!} \, \mathrm{d}\Phi \left[\prod_{i=1}^{n_{\gamma}} \mathrm{d}\Phi_{k_i} \cdot \alpha \, \tilde{S}_{\omega_{\rm cut}}(k_i) \right] \\ \times \left(\tilde{\beta}_0^0 + \tilde{\beta}_0^1 + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_1^1(k_i)}{\alpha \tilde{S}(k_i)} + \dots \right)$$

The YFS form factor $Y(\omega_{cut}) = B + \tilde{B}(\omega_{cut})$ resums all soft-photon logarithms to all orders, and all $\tilde{\beta}_{n_{\gamma}}^{\bar{n}_{\gamma}+n_{\gamma}}$ are IR finite.

So far, the perturbative series has only been reordered. There is no matching procedure, etc, needed.

Compute the hard emission corrections $\tilde{\beta}$ as far as possible/needed.

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	●000	0000000	00

Hard emission corrections

1 YFS soft photon resummation

2 Hard emission corrections

3 Some results

4 Conclusions

Hard emission corrections

Full hard emission corrections are process dependent.

Universal collinear hard emission approximation:

 use collinear approximation (DGLAP splitting functions) D and subtract fraction of soft Eikonal associated with each coll. region D^{soft}

$$\tilde{\beta}_1^1 = \alpha \sum_i \left[D_i - D_i^{\text{soft}} \right] \, \tilde{\beta}_0^0$$

• in SHERPA use Catani-Seymour splitting functions for *D* as they conserve momentum locally

$$\Rightarrow$$
 essentially restores log $\frac{M}{m_{\ell}}$ to $\mathcal{O}(\alpha)$

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Full hard emission corrections are process dependent. Computed NLO QED corrections to semileptonic *B* decays. $B \rightarrow D\ell\nu, B \rightarrow D^*\ell\nu, B \rightarrow \pi\ell\nu (B^0, B^{\pm})$ Bernlochner, MS '10

LO hadronic current is given by

$$H^{\mu}(p_B, p_X; q^2) = (p_B + p_X)^{\mu} f_+(q^2) + (p_B - p_X)^{\mu} f_-(q^2)$$

For constant form factors one can assign a **Lagrangian** for the weak decay

$$\mathcal{L}_W = \frac{G_F}{\sqrt{2}} V_{xb} \left[(f_+ + f_-) \phi_X \partial^\mu \phi_B + (f_+ - f_-) \phi_B \partial^\mu \phi_X \right] \overline{\psi}_\nu P_R \gamma_\mu \psi_\ell + \text{h.c.}$$

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

 $\begin{array}{ll} \mbox{Full hard emission corrections are process dependent.} \\ \mbox{Computed NLO QED corrections to semileptonic B decays.} \\ \mbox{$B \to D\ell\nu$, $B \to D^*\ell\nu$, $B \to \pi\ell\nu$ (B^0, B^\pm)} \\ \end{array} \\ \begin{array}{ll} \mbox{Bernlochner, MS '10} \end{array}$

LO hadronic current is given by

$$H^{\mu}(p_B, p_X; q^2) = (p_B + p_X)^{\mu} f_+(q^2) + (p_B - p_X)^{\mu} f_-(q^2)$$

For constant form factors one can assign a **Lagrangian** for the weak decay

$$\mathcal{L}_W = \frac{G_F}{\sqrt{2}} V_{xb} \left[(f_+ + f_-) \phi_X \partial^\mu \phi_B + (f_+ - f_-) \phi_B \partial^\mu \phi_X \right] \overline{\psi}_\nu P_R \gamma_\mu \psi_\ell + \text{h.c.}$$

|--|

Full hard emission corrections are process dependent. Computed NLO QED corrections to semileptonic *B* decays. $B \rightarrow D\ell\nu, B \rightarrow D^*\ell\nu, B \rightarrow \pi\ell\nu (B^0, B^{\pm})$ Bernlochner, MS '10

LO hadronic current is given by

$$H^{\mu}(p_B, p_X; q^2) = (p_B + p_X)^{\mu} f_+(q^2) + (p_B - p_X)^{\mu} f_-(q^2)$$

For constant form factors one can assign a $\ensuremath{\textbf{Lagrangian}}$ for the weak decay

$$\mathcal{L}_{W} = \frac{G_{F}}{\sqrt{2}} V_{xb} \left[(f_{+} + f_{-})\phi_{X}\partial^{\mu}\phi_{B} + (f_{+} - f_{-})\phi_{B}\partial^{\mu}\phi_{X} \right] \overline{\psi}_{\nu} P_{R}\gamma_{\mu}\psi_{\ell} + \text{h.c.}$$

Hard emission corrections Some results	Conclusions
00000 000 0000 0000 0000 0000 0000 0000 0000	00 00

Requiring QED gauge invariance gives interaction terms

$$\mathcal{L}_{\text{int}}^{\text{QED}} = -e\overline{\psi}_{\ell}\gamma^{\mu}\psi_{\ell}A_{\mu} - ieQ_{\phi}\left(\phi^{+}\partial^{\mu}\phi^{-} - \phi^{-}\partial^{\mu}\phi^{+}\right)A_{\mu} + e^{2}Q_{\phi}^{2}\phi^{+}\phi^{-}A_{\mu}A^{\mu}$$
$$+ ie\sqrt{2}G_{F}V_{xb}f_{\pm}(Q_{B}\pm Q_{X})\phi_{B}\phi_{X}\overline{\psi}_{\mu}P_{R}\gamma^{\mu}\psi_{\ell}A_{\mu} + \text{h.c.}$$

In addition to usual QED and scalar QED interactions an additional terms describing emissions off the vertex arises.

- off-shell form-factors in hadronic current
- proper treatment of hadronic resonances, eg. $B \rightarrow D^* \ell \nu \rightarrow D\gamma \ell \nu$
- hadron-photon interaction beyond point-like scalar QED

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	000●	0000000	00

Requiring QED gauge invariance gives interaction terms

$$\mathcal{L}_{\text{int}}^{\text{QED}} = -e\overline{\psi}_{\ell}\gamma^{\mu}\psi_{\ell}A_{\mu} - ieQ_{\phi}\left(\phi^{+}\partial^{\mu}\phi^{-} - \phi^{-}\partial^{\mu}\phi^{+}\right)A_{\mu} + e^{2}Q_{\phi}^{2}\phi^{+}\phi^{-}A_{\mu}A^{\mu}$$
$$+ ie\sqrt{2}G_{F}V_{ab}f_{\pm}(Q_{B}\pm Q_{X})\phi_{B}\phi_{X}\overline{\psi}_{\nu}P_{R}\gamma^{\mu}\psi_{\nu}A_{\mu} + \text{h.c.}$$

In addition to usual QED and scalar QED interactions an additional terms describing emissions off the vertex arises.

- off-shell form-factors in hadronic current
- proper treatment of hadronic resonances, eg. $B \rightarrow D^* \ell \nu \rightarrow D \gamma \ell \nu$
- hadron-photon interaction beyond point-like scalar QED

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	000•	0000000	00

Requiring QED gauge invariance gives interaction terms

$$\mathcal{L}_{\text{int}}^{\text{QED}} = -e\overline{\psi}_{\ell}\gamma^{\mu}\psi_{\ell}A_{\mu} - ieQ_{\phi}\left(\phi^{+}\partial^{\mu}\phi^{-} - \phi^{-}\partial^{\mu}\phi^{+}\right)A_{\mu} + e^{2}Q_{\phi}^{2}\phi^{+}\phi^{-}A_{\mu}A^{\mu}$$

$$+ ie\sqrt{2}G_{F}V_{xb}f_{\pm}(Q_{B}\pm Q_{X})\phi_{B}\phi_{X}\overline{\psi}_{\nu}P_{R}\gamma^{\mu}\psi_{\ell}A_{\mu} + \text{h.c.}$$

In addition to usual QED and scalar QED interactions an additional terms describing emissions off the vertex arises.

- off-shell form-factors in hadronic current
- proper treatment of hadronic resonances, eg. $B \rightarrow D^* \ell \nu \rightarrow D \gamma \ell \nu$
- hadron-photon interaction beyond point-like scalar QED

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	000•	0000000	00

Requiring QED gauge invariance gives interaction terms

$$\mathcal{L}_{\text{int}}^{\text{QED}} = -e\overline{\psi}_{\ell}\gamma^{\mu}\psi_{\ell}A_{\mu} - ieQ_{\phi}\left(\phi^{+}\partial^{\mu}\phi^{-} - \phi^{-}\partial^{\mu}\phi^{+}\right)A_{\mu} + e^{2}Q_{\phi}^{2}\phi^{+}\phi^{-}A_{\mu}A^{\mu}$$

$$+ ie\sqrt{2}G_{F}V_{xb}f_{\pm}(Q_{B}\pm Q_{X})\phi_{B}\phi_{X}\overline{\psi}_{\nu}P_{R}\gamma^{\mu}\psi_{\ell}A_{\mu} + \text{h.c.}$$

In addition to usual QED and scalar QED interactions an additional terms describing emissions off the vertex arises.

- off-shell form-factors in hadronic current
- proper treatment of hadronic resonances, eg. $B \rightarrow D^* \ell \nu \rightarrow D\gamma \ell \nu$
- hadron-photon interaction beyond point-like scalar QED

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions

Some results

1 YFS soft photon resummation

2 Hard emission corrections

4 Conclusions

YFS soft photon resummation 00000	Hard emission corrections	Some results	Conclusions 00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

- bulk of the effect capture already by pure soft-photon resummation, universal collinear corrections needed at small |p|
- though large enhancement through full NLO QED hard emission corrections at small |p|, physical or artifact?

YFS soft photon resummation 00000	Hard emission corrections	Some results	Conclusions 00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

Useful observable:

total radiative energy loss

Kinematic restrictions limit energy taken by single photon, higher losses only through multi-photon radiation

YFS soft photon resummation 00000	Hard emission corrections	Some results	Conclusions 00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

Useful observable:

total radiative energy loss

Kinematic restrictions limit energy taken by single photon, higher losses only through multi-photon radiation

00000 00000 0000 00	YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
	00000	0000	0000000	00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

Useful observable:

total radiative energy loss

Kinematic restrictions limit energy taken by single photon, higher losses only through multi-photon radiation

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

- large enhancement through full NLO QED hard emission corrections at small |p| induced by hard multi-photon radiation, but physical or artifact?
- cannot say, no NNLO corrections impl., investigate systematics

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	0000000	00

Some results – $B^- \rightarrow D^- e^+ \nu_e$

- large enhancement through full NLO QED hard emission corrections at small |p| induced by hard multi-photon radiation, but physical or artifact?
- cannot say, no NNLO corrections impl., investigate systematics

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

Systematics

Not much in the YFS soft-photon resummation framework, no free scales or choices. Only some freedom how to distribute recoil for photon emissions away from the soft limit.

Improvements: calculate NLO QED hard emission corrections including off-shell currents and full treatment of resonances. Calculate dominant NNLO QED hard emission corrections, ie. in the two-hard-photon phase space.

Some results – $B^- \rightarrow D^- \mu^+ \nu_\mu$

- due to $m_\mu \gg m_e$ radiative corrections much smaller
- no enhancement at small |p|

YFS soft photon resummation	Hard emission corrections	Some results	Conclusions
00000	0000	00000000	00

Some results – ratio μ/e

- lepton universality broken at LO due to $m_\mu \gg m_e$ in phase space
- QED induces non-universal effect at small $|p_D|$, $|p_\ell|$

Some results – $B^- \rightarrow D^- \mu^+ \nu_\mu$ vs. $B^- \rightarrow D^- e^+ \nu_e$

- spectra coincide away from mass suppressed collinear region
- deadcone of both electron numerically stable

Some results – $B^- \rightarrow D^- \mu^+ \nu_\mu$ vs. $B^- \rightarrow D^- e^+ \nu_e$

- spectra coincide away from mass suppressed collinear region
- deadcone of both electron numerically stable

YFS soft photon resummation	Hard emission corrections	Some results 00000000	Conclusions • O

Conclusions

- soft-photon resummation, however, captures the bulk of the QED corrections
- hard emission corrections can universally be constructed through collinear splitting functions
- some indication that larger effects induced by vertex emissions may be present at small $|p_B|$, and may be significantly affected by structure-dependent terms
- dedicated hard emission corrections available for generic $S \rightarrow SS$, $S \rightarrow \ell\ell$, $V \rightarrow SS$, $V \rightarrow \ell\ell$, $S \rightarrow S\ell\nu$, $S \rightarrow V\ell\nu$, and $\tau \rightarrow \ell\nu\nu$ decays using point-like scalar and vector QED implemented in SHERPA
- $\gamma \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \dots$ currently in development (L. Flower) \rightarrow finite NNLO correction to soft-photon resummation

YFS soft photon resummation H	lard emission corrections	Some results	Conclusions
00000 C	0000	0000000	0.

Thank you!