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Charged states in a finite box

▶ A finite volume is needed in lattice simulations.

▶ Translational invariance is preserved in a finite box with periodic boundary conditions

Aµ(t, x + Lk) = Aµ(t, x)

▶ Gauss law forbids states with nonzero charge in a periodic box

Q =

∫ L

0

d3x j0(t, x) =

∫ L

0

d3x ∂kEk (t, x) = 0

▶ Solutions discussed in this workshop:

▶ change boundary conditions;
▶ consider a massive photo (Della Morte);
▶ break Gauss law by removing zero modes of the gauge field (Sachrajda,

Hermansson-Truedsson);
▶ consider QED in infinite volume (Jin).

▶ C⋆ (or C-periodic) boundary conditions represent the only option if you want preserve
locality, translational and gauge invariance.



C⋆ boundary conditions
Wiese, Nucl. Phys. B 375, 45 (1992)

Polley, Z. Phys. C 59, 105 (1993)
Kronfeld and Wiese, Nucl. Phys. B 357, 521 (1991)

Lucini et al., JHEP 1602, 076 (2016)
Fields are periodic up to charge conjugation:

Aµ(t, x + Lk) = −Aµ(t, x)

Bµ(t, x + Lk) = −B∗
µ(t, x)

ψ(t, x + Lk) = C−1
ψ̄

T (t, x)

Flux of electric field across the boundaries is not
forced to vanish

Q(t) =

∫
d3x j0(t, x) =

∫
d3x ∂kEk (t, x) ̸= 0

The charge is locally conserved, but not globally: it can flow outside of the box. This is analogous
to the physical situation in infinite volume in which one measures the charge only in a finite volume.

▶ On-shell Ward identities ⟨ψ1|∂µjµ(x)|ψ2⟩ = 0.

▶ Global U(1) broken to Z2.



Gauge invariant interpolating operators

▶ In infinite volume, a charged pion can be created with the following gauge invariant operator:

e
−i 1

∇2 ∇A(t,x)
ūγ5d(t, x) = e−i

∫
d3y ϕ(x−y)∇A(t,y)ūγ5d(t, x)

where ϕ is the Coulomb potential. These operators create a pion with its own Coulomb field.

P. Dirac, Gauge invariant formulation of quantum electrodynamics, Can. J. Phys. 33 (1955), 650.

▶ In finite volume with C⋆ boundary conditions these operators are constructed in the same
way: ϕ is the Coulomb potential with antiperiodic boundary conditions.

▶ Why do we care about gauge invariance? Using covariant gauges with gauge-variant
operators is a bad idea!

⟨Ω|C†e−tHC |Ω⟩ =
∑

physical states

+
∑

unphysical states

|⟨ψn|C |Ω⟩|2 e−tEn

e.g. in the Gupta-Bleuler formalism, physical states satisfy ∂µA+
µ(x)|ψ⟩ = 0.

▶ Unphysical states do not appear when gauge-invariant operators are used (or if one works in
Coulomb gauge).



Two strategies for QCD+QED: RM123 method

de Divitiis et al. [RM123], Leading isospin breaking effects on the lattice, Phys.Rev. D87 (2013) 11, 114505.

▶ Expand action in powers of eAµ (the photon field appears non linearly in the
lattice-discretized interaction action):

SQCD+QED =SQCD + Sγ + e
∑
xµ

Aµ(x)Jµ(x)

+ e2
∑
xyµν

Aµ(x)Aν(y)Tµν(x, y) + O(e3)

▶ Expand expectation values in powers of e, e.g. if O does not depend on A:

⟨O⟩QCD+QED =⟨O⟩QCD +
e2

2

∑
xyµ

D(x, y)⟨OJµ(x)Jµ(y)⟩QCD,c

− e2
∑
xyµ

D(x, y)⟨OTµν(x, y)⟩QCD,c + O(e4)

▶ Calculate the coefficients of the expansion with QCD simulations.



Two strategies for QCD+QED: full simulations

Borsanyi et al. [BMW], Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455.

R. Horsley et al. [CSSM, QCDSF and UKQCD], Isospin splittings in the decuplet baryon spectrum from dynamical

QCD+QED, J. Phys. G 46 (2019), 115004.

▶ Simulate QCD+QED at several values of αem, including αem = 0, then interpolate to
αem = 1/137.

▶ We are currently using this approach. However in the long term we plan to make a detailed
comparison of the two methods.



Overview of simulations
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Finite volume effects
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▶ QCD with periodic boundary conditions from: R. Höllwieser et al. [ALPHA], Scale setting for
Nf = 3 + 1 QCD, Eur. Phys. J. C 80 (2020) no.4, 349.

▶ QCD fits to LO χPT. Simulations at MπL ≃ 3.3 and MπL ≃ 4.9.

▶ QED finite volume effects:

M(L) = M(∞) − αR

{
q2 1.748...

2L
+

q2 2.519...

πM(∞)L2
+ O

(
1

L4

)}

▶ Finite volume effects are unsurprisingly too big on our small volume.



Baryons
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Some technical details

▶ Compact formulation of QED: fundamental variables are the parallel transports between

nearest neighbours on the lattice zµ(x) = e iaqel Aµ(x). Action:

Sγ =
1

8πq2
elα

∑
xµν

[1 − zµν(x)]

In practice, we are always in the deep perturbative regime, e.g.

ensemble α q2
elα U(1) plaquette

A380a07b324 0.007299 0.00020275 1 − 6.33184(11) × 10−4

A360a50b324 0.050000 0.00138889 1 − 4.19405(21) × 10−3

Why? Straightforward implementation, no need to fix the gauge at any stage, out-of-the box
compatibility with all temporal boundary conditions of openQCD.

▶ Lüscher-Weisz SU(3) gauge action.

▶ Dirac-Wilson fermions with SW term for SU(3) and U(1) field with csw,SU(3) determined
non-perturbatively in QCD and csw,U(1) = 1.



Some technical details

▶ Because of C⋆ boundary conditions, we need to calculate the Pf(CKD). We always include
the sign of the Pfaffian in our results.

▶ RHMC used for all quarks.

▶ Light-quark Dirac operator inverted with Generalized Conjugate Residue Method + Schwarz
Alternating Procedure Preconditioner + Lüscher’s Inexact Deflation (GCR+SAP+DFL).
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Cost of simulations

αR Nf a[fm] Mπ [MeV] acc. τexp [MDU] core×hours/MDU

0 3+1 0.05 400 95% 102(36) 242 RC⋆, HLRN Lise

1/137 1+2+1 0.05 380 92% 92(30) 599 ”

0.04 1+2+1 0.05 360 95% 94(38) 616 ”

0 2+1 0.05 420 95% ∼110(40) 99 rescCLS, SuperMUC

0 2+1 0.086 350 97% ∼40(10) 137 ”



Conclusions

▶ C⋆ boundary conditions provide the only option for QED in finite volume, if you want to
preserve locality, gauge inveriance and translational invariance.

▶ QED corrections to hadronic observables can be calculated on the lattice by means of a
perturbative expansion in αem (only QCD needs to be simulated), or by simulating the full
theory (QCD+QED).

▶ The RC⋆ collaboration is investigating the second option. We have generated configurations
with md = ms , α = 0, 1/137, 0.04 and a ≃ 0.05 fm.

▶ Is simulating QCD+QED the best option? A detailed comparison with the RM123 method is
under way.

▶ The tuning of quark masses is particularly painful, but we managed to reduce the pain by
using mass reweighting.

▶ Finite volume effects are unsurprisingly too big on our small volume, but the large volume
seems OK. More studies are needed.

▶ We are calculating baryon masses; some preliminary results are available.


