QED in Weak Decays, Edinburgh 2022

QCD+QED on the lattice with C^{*} boundary conditions

Agostino Patella Humboldt University, Berlin

RC*ON collaboration

L. Bushnaq, I. Campos, M. Catillo, A. Cotellucci, M. Dale, P. Fritzsch, J. Lücke, M. Krstić Marinković, N. Tantalo

previously: M. Hansen, B. Lucini, A. Ramos

Charged states in a finite box

A finite volume is needed in lattice simulations.

► Translational invariance is preserved in a finite box with periodic boundary conditions

 $A_{\mu}(t,\mathbf{x}+L\mathbf{k})=A_{\mu}(t,\mathbf{x})$

Gauss law forbids states with nonzero charge in a periodic box

$$Q = \int_0^L d^3 x \, j_0(t, \mathbf{x}) = \int_0^L d^3 x \, \partial_k E_k(t, \mathbf{x}) = 0$$

- Solutions discussed in this workshop:
 - change boundary conditions;
 - consider a massive photo (Della Morte);
 - break Gauss law by removing zero modes of the gauge field (Sachrajda, Hermansson-Truedsson);
 - consider QED in infinite volume (Jin).
- C* (or C-periodic) boundary conditions represent the only option if you want preserve locality, translational and gauge invariance.

C^{*} boundary conditions

Wiese, Nucl. Phys. B **375**, 45 (1992) Polley, Z. Phys. C **59**, 105 (1993) Kronfeld and Wiese, Nucl. Phys. B **357**, 521 (1991) Lucini *et al.*, JHEP **1602**, 076 (2016)

Fields are periodic up to charge conjugation:

$$\begin{split} A_{\mu}(t,\mathbf{x}+L\mathbf{k}) &= -A_{\mu}(t,\mathbf{x}) \\ B_{\mu}(t,\mathbf{x}+L\mathbf{k}) &= -B_{\mu}^{*}(t,\mathbf{x}) \\ \psi(t,\mathbf{x}+L\mathbf{k}) &= C^{-1}\bar{\psi}^{T}(t,\mathbf{x}) \end{split}$$

Flux of electric field across the boundaries is not forced to vanish

$$Q(t) = \int d^3 x \, j_0(t, \mathbf{x}) = \int d^3 x \, \partial_k E_k(t, \mathbf{x}) \neq 0$$

The charge is locally conserved, but not globally: it can flow outside of the box. This is analogous to the physical situation in infinite volume in which one measures the charge only in a finite volume.

- On-shell Ward identities $\langle \psi_1 | \partial_\mu j^\mu(x) | \psi_2 \rangle = 0.$
- ▶ Global U(1) broken to Z₂.

Gauge invariant interpolating operators

In infinite volume, a charged pion can be created with the following gauge invariant operator:

$$e^{-i\frac{1}{\nabla^2}\nabla \mathsf{A}(t,\mathsf{x})}\bar{u}\gamma_5 d(t,\mathsf{x}) = e^{-i\int d^3y \ \phi(\mathsf{x}-\mathsf{y})\nabla \mathsf{A}(t,\mathsf{y})}\bar{u}\gamma_5 d(t,\mathsf{x})$$

where ϕ is the Coulomb potential. These operators create a pion with its own Coulomb field. P. Dirac, *Gauge invariant formulation of quantum electrodynamics*, Can. J. Phys. **33** (1955), 650.

- In finite volume with C^{*} boundary conditions these operators are constructed in the same way: φ is the Coulomb potential with antiperiodic boundary conditions.
- Why do we care about gauge invariance? Using covariant gauges with gauge-variant operators is a bad idea!

$$\langle \Omega | C^{\dagger} e^{-tH} C | \Omega \rangle = \sum_{\text{physical states}} + \sum_{\text{unphysical states}} | \langle \psi_n | C | \Omega \rangle |^2 e^{-tE_n}$$

e.g. in the Gupta-Bleuler formalism, physical states satisfy $\partial^{\mu}A^{+}_{\mu}(x)|\psi\rangle = 0.$

Unphysical states do not appear when gauge-invariant operators are used (or if one works in Coulomb gauge).

Two strategies for QCD+QED: RM123 method

de Divitiis et al. [RM123], Leading isospin breaking effects on the lattice, Phys.Rev. D87 (2013) 11, 114505.

Expand action in powers of eA_µ (the photon field appears non linearly in the lattice-discretized interaction action):

$$\begin{split} S_{\text{QCD+QED}} = & S_{\text{QCD}} + S_{\gamma} + e \sum_{x\mu} A_{\mu}(x) J_{\mu}(x) \\ & + e^2 \sum_{xy\mu\nu} A_{\mu}(x) A_{\nu}(y) T_{\mu\nu}(x,y) + O(e^3) \end{split}$$

Expand expectation values in powers of e, e.g. if O does not depend on A:

$$\langle O \rangle_{\text{QCD}+\text{QED}} = \langle O \rangle_{\text{QCD}} + \frac{e^2}{2} \sum_{xy\mu} D(x, y) \langle O J_{\mu}(x) J_{\mu}(y) \rangle_{\text{QCD},c}$$

 $- e^2 \sum_{xy\mu} D(x, y) \langle O T_{\mu\nu}(x, y) \rangle_{\text{QCD},c} + O(e^4)$

Calculate the coefficients of the expansion with QCD simulations.

Two strategies for QCD+QED: full simulations

Borsanyi et al. [BMW], Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455. R. Horsley et al. [CSSM, QCDSF and UKQCD], Isospin splittings in the decuplet baryon spectrum from dynamical QCD+QED, J. Phys. G 46 (2019), 115004.

- Simulate QCD+QED at several values of α_{em} , including $\alpha_{em} = 0$, then interpolate to $\alpha_{em} = 1/137$.
- We are currently using this approach. However in the long term we plan to make a detailed comparison of the two methods.

Overview of simulations

scale fixed with the conventional value $\sqrt{8t_0}\,=\,0.415~{\rm fm}$

fixed $\beta = 3.24$ correspoding to $a \simeq 0.05$ fm

 $64 imes 32^3$ lattice corresponding to $M_{\pi\pm}\,L \simeq 3.3$

 $\begin{array}{l} m_u, \ m_d = m_s, \ m_c \ \text{are tuned to} \\ M_{\pi\pm}^2 + M_{K\pm}^2 + M_{K_0}^2 \simeq \text{PDG value} \\ \alpha_R^{-1}(M_{K_0}^2 - M_{K\pm}^2) \simeq \text{PDG value} \\ M_{D\pm} + M_{D_0} + M_{D_s} \simeq \text{PDG value} \end{array}$

Mistuning is corrected by means of mass reweighting.

Overview of simulations

scale fixed with the conventional value $\sqrt{8t_0}=0.415~{\rm fm}$

fixed $\beta = 3.24$ correspoding to $a \simeq 0.05$ fm

 $64 imes 32^3$ lattice corresponding to $M_{\pi\pm}\,L \simeq 3.3$

 $\begin{array}{l} m_u, \ m_d = m_s, \ m_c \ \text{are tuned to} \\ M_{\pi\pm}^2 + M_{K\pm}^2 + M_{K_0}^2 \simeq \text{PDG value} \\ \alpha_R^{-1}(M_{K_0}^2 - M_{K\pm}^2) \simeq \text{PDG value} \\ M_{D\pm} + M_{D_0} + M_{D_s} \simeq \text{PDG value} \end{array}$

Mistuning is corrected by means of mass reweighting.

Overview of simulations

scale fixed with the conventional value $\sqrt{8t_0}\,=\,0.415~{\rm fm}$

fixed $\beta = 3.24$ correspoding to $a \simeq 0.05$ fm

 $64 imes 32^3$ lattice corresponding to $M_{\pi\pm}\,L \simeq 3.3$

 $\begin{array}{l} m_u, \ m_d = m_s, \ m_c \ \text{are tuned to} \\ M_{\pi\pm}^2 + M_{K\pm}^2 + M_{K_0}^2 \simeq \text{PDG value} \\ \alpha_R^{-1}(M_{K_0}^2 - M_{K\pm}^2) \simeq \text{PDG value} \\ M_{D\pm} + M_{D_0} + M_{D_s} \simeq \text{PDG value} \end{array}$

Mistuning is corrected by means of mass reweighting.

α_R	$M_{K^0} - M_{K^{\pm}}$	$M_{D^{\pm}} - M_{D^{0}}$ [MeV]
α_{phys}	4.26(41)	6.3(1.6)
$5.5\alpha_{phys}$	25.8(4.5)	27.6(8.0)

Finite volume effects

- ▶ QCD with periodic boundary conditions from: R. Höllwieser *et al.* [ALPHA], *Scale setting for* $N_f = 3 + 1$ *QCD*, Eur. Phys. J. C **80** (2020) no.4, 349.
- QCD fits to LO χ PT. Simulations at $M_{\pi}L \simeq 3.3$ and $M_{\pi}L \simeq 4.9$.
- QED finite volume effects:

$$M(L) = M(\infty) - \alpha_R \left\{ \frac{q^2 \, 1.748...}{2L} + \frac{q^2 \, 2.519...}{\pi M(\infty)L^2} + O\left(\frac{1}{L^4}\right) \right\}$$

Finite volume effects are unsurprisingly too big on our small volume.

Baryons

Some technical details

Compact formulation of QED: fundamental variables are the parallel transports between nearest neighbours on the lattice z_µ(x) = e^{iaq}el^{Aµ(x)}. Action:

$$S_{\gamma} = rac{1}{8\pi q_{el}^2 lpha} \sum_{x \mu
u} \left[1 - z_{\mu
u}(x)
ight]$$

In practice, we are always in the deep perturbative regime, e.g.

ensemble	α	$q_{el}^2 \alpha$	U(1) plaquette	
A380a07b324	0.007299	0.00020275	$1-6.33184(11) imes 10^{-4}$	
A360a50b324	0.050000	0.00138889	$1 - 4.19405(21) imes 10^{-3}$	

Why? Straightforward implementation, no need to fix the gauge at any stage, out-of-the box compatibility with all temporal boundary conditions of openQCD.

Lüscher-Weisz SU(3) gauge action.

Dirac-Wilson fermions with SW term for SU(3) and U(1) field with c_{sw,SU(3)} determined non-perturbatively in QCD and c_{sw,U(1)} = 1.

Some technical details

- Because of C^{*} boundary conditions, we need to calculate the Pf(CKD). We always include the sign of the Pfaffian in our results.
- RHMC used for all quarks.
- Light-quark Dirac operator inverted with Generalized Conjugate Residue Method + Schwarz Alternating Procedure Preconditioner + Lüscher's Inexact Deflation (GCR+SAP+DFL).

Cost of simulations

α_R	N _f	<i>a</i> [fm]	$M_{\pi}[{ m MeV}]$	acc.	$\tau_{exp}[MDU]$	$core\!\times\!hours/MDU$	
0	3+1	0.05	400	95%	102(36)	242	RC [*] , HLRN Lise
1/137	1+2+1	0.05	380	92%	92(30)	599	"
0.04	1 + 2 + 1	0.05	360	95%	94(38)	616	"
0	2+1	0.05	420	95%	~110(40)	99	rescCLS, SuperMUC
0	2+1	0.086	350	97%	\sim 40(10)	137	"

Conclusions

- C* boundary conditions provide the only option for QED in finite volume, if you want to preserve locality, gauge inveriance and translational invariance.
- QED corrections to hadronic observables can be calculated on the lattice by means of a perturbative expansion in α_{em} (only QCD needs to be simulated), or by simulating the full theory (QCD+QED).
- The RC^{*} collaboration is investigating the second option. We have generated configurations with $m_d = m_s$, $\alpha = 0, 1/137, 0.04$ and $a \simeq 0.05$ fm.
- Is simulating QCD+QED the best option? A detailed comparison with the RM123 method is under way.
- The tuning of quark masses is particularly painful, but we managed to reduce the pain by using mass reweighting.
- Finite volume effects are unsurprisingly too big on our small volume, but the large volume seems OK. More studies are needed.
- We are calculating baryon masses; some preliminary results are available.