BERNHARD MISTLBERGER

APPROXIMATIONS FOR LHC CROSS SECTIONS USING COLLINEAR EXPANSIONS

With **Gherardo Vita**

arXiv:2006.03055 And To Appear ...

Formulate and test a useful approximation for inclusive color singlet observables.

$$Q^2 \frac{d\sigma_{PP\to h+X}}{dYdQ^2}$$

- Improve fixed order precision predictions by obtaining ingredients and understanding for universal structures of QFT.
- Learn about structure of kinematic limits.
- Obtain universal quantities for resummation.
- Find a new way to approximate perturbative cross sections.
- Study the universal structure of QCD beyond the leading term in kinematic expansions (beyond leading power)

• • • •

$$\hat{\sigma} = \hat{\sigma}^{(0)} + \alpha_S^1 \hat{\sigma}^{(1)} + \alpha_S^2 \hat{\sigma}^{(2)} + \alpha_S^3 \hat{\sigma}^{(3)} \dots$$

Partonic Scattering Process:

Integrate out all radiation besides Born kinematics

Born degrees of freedom for h:

- ullet Virtuality Q^2
- lacksquare Rapidity Y
- Hadronic c.o.m energy

$$\xi_1 = \sqrt{\frac{Q^2}{S}}e^{-Y}$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}} e^Y$$

Let the virtuality be close to S:

 p_2 p_2 Pioneered by

 $E_g \sim 0$

[Catani, Trentadue, 89]

[Sterman,91]

$$E_g \sim 0$$

$$\xi_1 = \sqrt{\frac{Q^2}{S}}e^{-Y} \longrightarrow 1$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}}e^{Y} \longrightarrow 1$$

Threshold
Factorization
and Resummation

 p_2

Let all final state radiation be collinear to the initial state parton with p_1

Results in the past years:

Formulated a systematic and improvable expansion around the kinematic limit.

arXiv:2006.03055

Computed N3LO beam function for

N-Jettiness and qT factorization. arXiv:2006.03056 arXiv:2006.05329

* Related DY - DIS - e^+e^- and derived new predictions for EEC.

arXiv:2012.07853 arXiv:2012.07859

Let all final state radiation be collinear to the initial state parton with \mathcal{P}_1

 p_2

Rapidity Factorization

and Resummation

 p_1

 p_i .

$$\xi_1 = \sqrt{\frac{Q^2}{S}} e^{-Y} \longrightarrow 1$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}} e^{Y}$$

Hard Function: Describes the hard born process (Higgs production vs 12W production)

PDF: Parton Distributions

Rapidity Beam Function: Describes collinear dynamics of the process.

- Collinear limit pioneered by CSS, SCET, Catani-Grazzini ...
- Factorization theorem ("generalized threshold") realized and studied by [<u>Lustermans, Michel, Tackmann, 19</u>]!
- Explored factorization in arXiv:1810.09462

Let's build an approximation:

Collinear 1

$$Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}} = \lim_{\xi_{1}\to 1} Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}}$$

Let's build an approximation:

Collinear 1

$$Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}} = \lim_{\xi_{1}\to 1} Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}}$$

Collinear 2

$$+ \lim_{\xi_2 \to 1} Q^2 \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dY dQ^2}$$

Let's build an approximation:

Collinear 1

$Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}} = \lim_{\xi_{1}\to 1} Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}}$

Collinear 2

$$+ \lim_{\xi_2 \to 1} Q^2 \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dY dQ^2}$$

Soft

$$-\lim_{\xi_1,\xi_2\to 1} Q^2 \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^2}$$

Let's build an approximation:

Collinear 1

$Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}} = \lim_{\xi_{1}\to 1} Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}}$

Collinear 2

$$+ \lim_{\xi_2 \to 1} Q^2 \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dY dQ^2}$$

Soft

$$-\lim_{\xi_1,\xi_2\to 1} Q^2 \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^2}$$

A little bit of magic ...

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \bar{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \bar{\xi}_{1}) \right]$$

Hard Function: Describes the hard Born process (Higgs production vs 12 W production).

Rapidity Beam Function: Collinear dynamics for radiation collinear to Proton 1.

Rapidity Beam Function: Collinear dynamics for radiation collinear to Proton 2.

Soft Function: Describes soft radiation.

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \bar{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \bar{\xi}_{1}) \right]$$

Fact 1:

We can make the these objects very concrete:

$$B_i^Y(\xi_2; \bar{\xi}_1) = \sum_j I_{ij}^Y(\xi_2; \bar{\xi}_1) \otimes_{\xi_2} f_j(\xi_2).$$

BF related to usual PDF via perturbative matching kernel, which is calculable from the strict collinear limit of the partonic coefficient function.

$$I_{ij}^{Y}(\xi_{2};\xi_{1}) = \int_{0}^{1} dx \int_{0}^{\infty} dw_{1} dw_{2} \, \delta \left[\xi_{2} - (1 - w_{2})\right]$$

$$\times \lim_{\text{strict } n - \text{coll.}} \left\{ \delta \left[\bar{\xi}_{1} - \frac{2 - w_{2} - w_{2}x}{2(1 - w_{2})} w_{1}\right] \frac{d\eta_{j\bar{i}}}{dQ^{2} dw_{1} dw_{2} dx} \right\}$$

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \bar{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \bar{\xi}_{1}) \right]$$

Fact 2:

There are some non-trivial things

Mixed, two variable convolutions. All Laplace convolutions are performed first.

$$f(x_1, x_2) \otimes_{x_1; x_2} g(x_1, x_2) = \int_{x_1}^1 \frac{\mathrm{d}y_1}{y_1} \int_{x_2}^1 \mathrm{d}y_2 f(y_1, y_2) g\left(\frac{x_1}{y_1}, 1 + x_2 - y_2\right)$$

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \bar{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \bar{\xi}_{1}) \right]$$

Fact 3:

In the double limit we reproduce exactly threshold factorization.

$$\lim_{\xi_1,\xi_2\to 1}Q^2\frac{d\sigma_{P\,P\to h+X}^{\rm approx.}}{dYdQ^2}(\xi_1,\xi_2) = \text{Threshold XS}$$

Rapidity Factorization

Why should this give anything good?

How well does it work?

Can you compute resummed cross sections?

Rapidity Factorization

Why should this give anything good?

How well does it work?

Can you compute resummed cross sections?

For LHC cross sections the kinematic limit sounds like nonsense.

For central rapidities (Y=0) and typical hard interactions (Q=100 GeV) we find

$$\xi \sim 0.01$$
 Very far away ...

$$\xi_1 = \sqrt{\frac{Q^2}{S}} e^{-Y}$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}} e^{Y}$$

We can go to large invariant mass:

$$\xi = 0.9$$

$$Q=12.24 {
m TeV}$$
 Very large ...

We can go forward:

$$\xi = 0.9$$

$$Y = -4.8$$

Very forward ...

$$\xi_1 = \sqrt{\frac{Q^2}{S}}e^{-Y}$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}}e^{Y}$$

$$Q^{2} \frac{d\sigma_{PP \to h+X}}{dY dQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \int_{\xi_{1}}^{1} \frac{dx_{1}}{x_{1}} f_{i} \left(\frac{\xi_{1}}{x_{1}}\right) B_{j}^{Y}(\xi_{2}, \mu^{2}; \bar{x}_{1}) + \mathcal{O}(\bar{\xi}_{1}^{0}).$$

First term in the expansion around $x_1 o 1$

$$\xi \sim 0.01$$

$$\xi_1 = \sqrt{\frac{Q^2}{S}}e^{-Y}$$

$$\xi_2 = \sqrt{\frac{Q^2}{S}}e^{Y}$$

$$Q^{2} \frac{d\sigma_{PP \to h+X}}{dY dQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \int_{\xi_{1}}^{1} \frac{dx_{1}}{x_{1}} f_{i} \left(\frac{\xi_{1}}{x_{1}}\right) B_{j}^{Y}(\xi_{2}, \mu^{2}; \bar{x}_{1}) + \mathcal{O}(\bar{\xi}_{1}^{0}).$$

First term in the expansion around $\,x_1
ightarrow 1\,$

The partonic coefficient function is enhanced by:

$$\frac{\log^m(1-x)}{1-x}$$
 Our approx. contains all this!

$$\frac{\log^n(x)}{x}$$
 Kinematically suppressed

Rapidity Factorization has a chance to describe LHC pheno due to enhancement + PDF suppression.

Rapidity Factorization

Why should this give anything good?

How well does it work?

Can you compute resummed cross sections?

ANALYTIC FACTS ABOUT RAPIDITY FACTORIZATION

$$Q^{2} \frac{d\sigma_{PP \to H+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \overline{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\overline{\xi}_{1}\overline{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \overline{\xi}_{1}) \right]$$

$$= \tau \sum_{i,j} f_{i}(\xi_{1}) \otimes_{\xi_{1}} \eta_{ij}^{Y_{\text{approx.}}}(\xi_{1}, \xi_{2}) \otimes_{\xi_{2}} f_{j}(\xi_{2})$$

√ Correct rapidity limit!

A regular partonic cross section!

- √ Correct threshold limit!
- ✓ Correct Next-to-Leading Power (NLP) in threshold counting at fixed order!

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \overline{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\overline{\xi}_{1}\overline{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \overline{\xi}_{1}) \right]$$

$$= \tau \sum_{i,j} f_{i}(\xi_{1}) \otimes_{\xi_{1}} \eta_{ij}^{Y_{\text{approx.}}}(\xi_{1}, \xi_{2}) \otimes_{\xi_{2}} f_{j}(\xi_{2})$$

√ Correct rapidity limit!

A regular partonic cross section!

- √ Correct threshold limit!
- ✓ Correct Next-to-Leading Power (NLP) in threshold counting at fixed order!
- ✓ Correct $q\bar{q} \to H + X$ and $gg \to \gamma^* + X$ at NNLP at NNLO in threshold counting.

$$Q^{2} \frac{d\sigma_{PP \to h+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1}, \xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1}; \bar{\xi}_{2}) \otimes_{\xi_{1}; \xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2}; \xi_{1}} B_{j}^{Y}(\xi_{2}; \bar{\xi}_{1}) \right]$$

$$= \tau \sum_{i,j} f_{i}(\xi_{1}) \otimes_{\xi_{1}} \eta_{ij}^{Y_{\text{approx.}}}(\xi_{1}, \xi_{2}) \otimes_{\xi_{2}} f_{j}(\xi_{2})$$

√ Correct rapidity limit!

A regular partonic cross section!

- √ Correct threshold limit!
- ✓ Correct Next-to-Leading Power (NLP) in threshold counting at fixed order!
- ✓ Correct $q\bar{q} \to H + X$ and $gg \to \gamma^* + X$ at NNLP at NNLO in threshold counting.
- ✓ At fixed order, we know how to compute systematically higher power terms for our approximation!

Test based on example production cross sections for the LHC:

Gluon Fusion Higgs Production

$$PP \rightarrow H + X$$

Drell-Yan Production

$$PP \rightarrow \gamma^* + X \rightarrow e^+e^- + X$$

Rapidity Factorization at NNLO

Use collinear expansion to compute NnLP terms to the rapidity approximation:

Gluon Fusion Higgs Production

$$PP \rightarrow H + X$$

Drell-Yan Production

$$PP \rightarrow \gamma^* + X \rightarrow e^+e^- + X$$

- ✓ Great for large Y!
- √ Within ~5% of NNLO good for gluons!

Rapidity Factorization at NNLO

Rapidity Factorization at NNLO

Subtracting the rapidity approximation from the exact cross section:

Relatively small residuals beyond the leading power term of the rapidity approximation.

Rapidity Factorization

Why should this give anything good?

How well does it work?

Can you compute resummed cross sections?

CAN WE RESUM?

$$Q^{2} \frac{d\sigma_{P\,P\to H+X}^{\text{approx.}}}{dYdQ^{2}}(\xi_{1},\xi_{2}) = \tau \sum_{i,j} H_{ij} \left[B_{i}^{Y}(\xi_{1};\bar{\xi}_{2}) \otimes_{\xi_{1};\xi_{2}} S^{r_{ij}}(\bar{\xi}_{1}\bar{\xi}_{2}) \otimes_{\xi_{2};\xi_{1}} B_{j}^{Y}(\xi_{2};\bar{\xi}_{1}) \right]$$

All our functions satisfy renormalization group equations of the form: $\tilde{F} \in \{H_{ij}, \tilde{B}_i^Y, \tilde{S}_r\}.$

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu^2}\tilde{F}\left(\log\frac{\kappa\mu^2}{Q^2},\mu^2\right) = \left[\Gamma(\alpha_S(\mu^2))\log\left(\frac{\kappa\mu^2}{Q^2}\right) + \frac{1}{2}\gamma(\alpha_S(\mu^2))\right]\tilde{F}\left(\log\frac{\kappa\mu^2}{Q^2},\mu^2\right)$$

With the anomalous dimensions:

	$ig H_{ij}$	$ ilde{B}_i^Y$	$ ilde{ ilde{S}_r}$
$oxed{\Gamma_F^r}$	$-\Gamma_{ m cusp}^r$	$\Gamma^r_{ m cusp}$	$-\Gamma_{\mathrm{cusp}}^{r}$
$\gamma^{\mathrm{F,r}}$	$\gamma_{ m H}^r$	$\gamma_J^r = rac{1}{2} \left(\gamma_{ m thr.}^r - \gamma_{ m coll.}^r ight)$	$-\gamma_{ m thr.}^r$

Rapidity Resummation

Following relative standard SCETty technology we find:

$$Q^{2} \frac{d\sigma_{PP\to h+X}^{\text{approx.}}}{dYdQ^{2}} (\xi_{1}, \xi_{2}, \mu^{2}, \mu_{S}^{2}, \mu_{C_{1}}^{2}, \mu_{C_{2}}^{2})$$

$$=\tau\sum_{i,j}\frac{H_{ij}(\mu^2,\mu_H^2)}{H_{ij}(\mu^2,\mu_H^2)}\Big[B_i^Y(\xi_1,\mu^2,\mu_{C_1}^2;\bar{\xi}_2)\otimes_{\xi_1;\xi_2}S^{r_{ij}}(\mu^2,\mu_S^2;\bar{\xi}_1\bar{\xi}_2)\otimes_{\xi_2;\xi_1}S^{Y}(\xi_2,\mu^2,\mu_{C_2}^2;\bar{\xi}_1)\Big]$$

Canonical scale choices:

$$\hat{\mu}_S^2 = Q^2(1 - \xi_1)(1 - \xi_2), \qquad \hat{\mu}_{C_1}^2 = Q^2(1 - \xi_2), \qquad \hat{\mu}_{C_2}^2 = Q^2(1 - \xi_1).$$

Results logs of

$$(1-\xi_1)(1-\xi_2),$$
 $(1-\xi_2),$ $(1-\xi_1).$

We implemented and matched to fixed order.

Rapidity Resummation at NNLL' + NNLO

Gluon Fusion Higgs Production

Drell-Yan Production

$$PP \rightarrow H + X$$

$$PP \rightarrow \gamma^* + X \rightarrow e^+e^- + X$$

- Resummation scale uncertainty comparable in size to FO.
- Resummation adds almost nothing for DY and is positive for Higgs.
- Resummation certainly possible but probably more just an alternative representation of the fixed order accurate cross section. (MHOU).

Rapidity Factorization

- N3LO+N3LL' in progress -> Gherardo's talk!
- Apply to anything we can think about and do some phenomenology.
- Extend to top quarks?
- Extend to Next-to-Leading Power?
- Extend to color-charged final states?
- ...

CONCLUSIONS Rapidity Factorization

- Rapidity Factorization:
 A framework to approximate color-singlet LHC cross sections.
- Rapidity Factorization contains all universal soft and collinear radiation factorizing to the Born cross section.
- Approximate cross sections contain a good bit of analytic information and intriguing patterns (NNLP terms).
- This framework should supersede threshold approximations / resummation.
- We demonstrated our results for Higgs Boson and Drell-Yan production and computed the cross sections at NNLO+NNLL' accuracy. 10^{-7}

 p_2

