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Introduction



INTRODUCTION

• Last few years: massive theoretical progress towards the NNLO cross-sections and amplitudes
for 2 → 3 processes: e.g. (...; Badger et al. 2018; D. Chicherin et al. 2019; Chawdhry et al. 2020; Kallweit, Sotnikov, and
Wiesemann 2021; Abreu et al. 2021; Kardos et al. 2022; Hartanto et al. 2022; Dmitry Chicherin, Sotnikov, and Zoia 2022)

• Up to now: Computable 2→ 3 process at NNLO have no internal mass and only one external
massive particle.

• Computational complexity grows fast when adding more kinematic or mass scales.

• Idea: numerical integration directly in momentum space: fixed number of integrations for
each loop.

• Remove infrared (IR) and ultraviolet (UV) singularities locally before integrating.

• Program started by investigating amplitudes with incoming quarks and colorless final states.
Locally finite amplitude for generic electroweak productions in quark scattering at two loops:
(Anastasiou, Haindl, et al. 2021; Anastasiou and G. Sterman 2022)

qq̄ → V1...Vn with Vi ∈ {γ∗
,W, Z}

• Next step: incoming gluons with colorless final states e.g. Higgs (NLO)
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Introduction

Factorization and subtraction



FACTORIZATION AND SUBTRACTION

Infrared factorization

UV renormalised scattering amplitudes factorize: (Ma 2020; Erdoğan and G. Sterman 2015; Dixon, Magnea, and
G. F. Sterman 2008; Catani 1998; Sen 1983)

Amplitude = Hard · Soft ·
∏
i

Jeti,

M =
Hard

Jet

Jet
Jet

Jet

Soft

• Hard function is process-dependent and receives contributions from non-singular regions; in
this case the heavy top-quark loop.

• Soft and Jeti functions contain all singularities and are universal functions

• For new process should only need to compute Hard function.
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FACTORIZATION AND SUBTRACTION

Using factorization for Higgs production

Hard

H

H

·
·
·
=

H

H

·

·

·
M

1/Jet

1/J
et

1/Soft

Derive Hard function for amplitudes as an integrand free of IR and UV singularities.

M =

∫
[dk] M =

∫
[dk] S

∏
i

Ji︸ ︷︷ ︸
IR divergent
universal

∫
[dk] M S−1

∏
i

J−1
i︸ ︷︷ ︸

=H
finite, process dependent
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FACTORIZATION AND SUBTRACTION

Using factorization

Derive Hard function for amplitudes as an integrand free of IR and UV singularities.

M =

∫
[dk] M =

∫
[dk] S

∏
i

Ji︸ ︷︷ ︸
IR divergent
universal

∫
[dk] M S−1

∏
i

J−1
i︸ ︷︷ ︸

=H
finite

process dependent

Identify and subtract the singular parts point-by-point in the integration domain at each order in
the perturbative expansion. For gg → nH:

H(1)
= M(1)

H(2)
= M(2) − SM(1) − JM(1)

• Naive construction has non-local cancellations −→ cannot be integrated numerically.

• All IR and UV singularities need to cancel locally on the integrand level!

• This is a challenge!
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FACTORIZATION AND SUBTRACTION

Challenges

• Arrange loop momentum flows for each diagram such that cancellations due to Ward
identities arise locally.

• Take care of shift mismatches arising in the collinear limits.

• Modify the usual Feynman rules for some diagrams.

Main result: Local Factorization

Factorization based construction of a local IR counterterm for two-loop gluon-fusion amplitude
integrand for an arbitrary number of Higgs.

M(2)

n,IR-finite = M(2)
n − F

(
M(1)

n

)
with F

(
M(1)

n

)
= M(1)

n

p1

p2

Jet and Soft function are exactly the same for the generic gluon fusion form factor amplitude
2 → 1 −→ subtract to remove all IR singularities.
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Single Higgs production amplitude
in gluon fusion



SINGLE HIGGS PRODUCTION

Infrared singular diagrams of the two-loop amplitude for the single Higgs production in gluon
fusion:
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• Diagrams with triple gluon vertices are the origin of collinear singularities.

• Different terms from the triple gluon vertex have a different behaviour and play a different
role in the local factorization.

• Analyze each contribution separately −→ decompose triple gluon vertex.
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Single Higgs production amplitude
in gluon fusion

“Scalar decomposition”



“SCALAR DECOMPOSITION”

Diagrammatic decomposition of a triple-gluon vertex:

α, a β, b

γ, c

k1 k2

k3

= (−gs)fabc
(
(k1 − k2)γηαβ

+ (k2 − k3)αη
βγ

+ (k3 − k1)βηαγ)

=

α, a β, b

γ, c

k1 k2

k3 +

α, a β, b

γ, c

k1 k2

k3 +

α, a β, b

γ, c

k1 k2

k3

Each term resembles a tree-level Feynman rule for the interaction of a colour-octet scalar and a
gluon. −→ Decompose all IR singular diagrams and separately introduce a momentum labels.
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“SCALAR DECOMPOSITION”

Collinear divergent k||p1 diagrams after “Scalar decomposition”

M(2)

1,coll p1
=

p2

p1

q1 +

p2

p1

q1

+

p2

p1

q1 +

p2

p1

q1 +

p2

p1

q1

+ other charge flow

• Some “scalar”-decomposed diagrams are IR-finite, due to the choice of polarization vectors.

• Now: Ready to introduce loop momentum labels.
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“SCALAR DECOMPOSITION”

Collinear divergent k||p1 diagrams after “Scalar decomposition”

M(2)

1,coll p1
=

p2

p1

q1 +

p2

p1

q1

+

p2

p1

q1 +

p2

p1

q1 +

p2

p1

q1

+ other charge flow

Diagrams with “scalar” in t-channel do not contribute to the local factorization in the collinear
limits. Only IR singular on the local level and finite when integrated!

• Solution: add counterterms, which vanish due to Ward identities on the integrated level, but
make diagrams IR finite on the local level.

• → modified the integrand of the diagrams to regularize it in all its soft and collinear limits,
without changing its integrated value.
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MOMENTUM LABELS

Impose a local loop momentum routing for all the different scalar decomposed diagrams.

• k momentum label is introduced such that we always have 1
k2

, 1
(k+p1)2

, 1
(k−p2)2

propagators or a subset thereof.

• l momentum label flows out of gqq-vertex next to external p1 .

• kmomentum label flows in the direction of the charge flow when entering the top-quark loop.

All diagrams for one charge flow, which are singular in the collinear limit k → p1 with specified
loop momentum labels l, k:

p2

p1

q1l+ k

l− p1

k +

p2

p1

q1

l− p1

k

+

p2

p1

q1

l− p1

k
+

p2

p1

q1

l− p1

k
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Single Higgs production amplitude
in gluon fusion

Infrared singularities



SOFT SINGULARITY k→ 0

Soft singular diagrams for one charge flow after “scalar” decomposition:

M(2)
ss =

p2

p1

q1l+ k

l+ p2

l− p1

k

The form factor counterterm

F(2)
ss

(
M̃(1)

)
=

p1

p2

k

 l

l+ p2

l− p1


cancels the soft singularity k −→ 0.
Does this counterterm also cancel the collinear limits?
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COLLINEAR SINGULARITIES

In the collinear limits the virtual gluons become longitudinally polarized.

p

µ

k− p

k

= . . .
(k− 2p)µ

k2(k− p)2
. . .

k=xp−−−−→
x= k·η

p·η

. . .
x − 2

x
kµ

k2(k− p)2

We represent this by an arrow:

p

µ

k− p

k
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WARD IDENTITIES

Tree-level Ward identity for longitudinally polarised gluon in a quark-quark-gluon vertex:

c

l l+ k

k
=

i
/l + /k − m

(−igs)Tc/k
i

/l − m
= gsTc

( i
/l − m

−
i

/l + /k − m

)

=

c

l

k
+

c

l+ k

k

with the vertices defined as
c

k = gsTc,

c

k = −gsTc

We can see that the following identity holds:

l

l+ k− q

+

l

l+ k− q = 0
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WARD IDENTITIES

In a diagrammatic representation:

c
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=

i
/l + /k − m

(−igs)Tc/k
i
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( i
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i
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)
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c

l
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+

c

l+ k

k
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c
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c
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l
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WARD IDENTITIES

Diagrammatic representation of the tree-level Ward identity of the “scalar”-“scalar”-gluon vertex is:

a, α b, β

c

l l+ k

k
=

d, α
a b, β

c

l+ k

k
+

d, β
ba, α

c

l

k

with the vertex defined as

a

c

b

k = igsfabc

In the collinear limits of the amplitude the following identity is useful:

+ + = 0
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COLLINEAR LIMIT

Example

All diagrams for one charge flow, which are singular in the collinear limit k → p1 with specified
loop momentum labels l, k:

p2
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q1l+ k
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k +
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q1

l− p1

k

+

p2

p1

q1

l− p1

k
+

p2

p1

q1

l− p1

k

15



COLLINEAR LIMIT

Examine the limit k → p1 for one charge flow:

p2

p1

q1
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p1

q1
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k +

p2

p1

q1
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+
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=
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+
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COLLINEAR LIMIT
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COLLINEAR LIMIT
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COLLINEAR LIMIT

Examine the limit k → p1 for one charge flow:
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COLLINEAR LIMIT

The remaining diagrams in the collinear limit are two external leg corrections −→ factorization!

p2

p1

q1

l− p1

k +

p2

p1

q1

l− p1

k +

p2

p1

q1

l− p1

k
+

p2

p1

q1

l− p1

k

=

p2

p1

q1

l− p1

k +
p2

p1

q1l+ k

l+ k− p1

k

• NOTE: The top-quark loop momentum routing differs by a shift.

• Does the form factor counterterm introduced to remove the soft singularity also remove the
collinear singularity?
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COLLINEAR LIMIT

Collinear limit of the form factor counterterm

The form factor counterterm for one charge flow contribution of the one-loop diagram in the
collinear limit k → p1 :

p1

p2

k

 l

l+ p2

l− p1
 =

p1

p2

 l

l+ p2

l− p1


=

p2

p1

q1

l− p1

k +

p2

p1

q1l

l− p1

k

not locally equal to

which can be seen by factorizing out the color factors.

→ The form factor counterterm needs a
loop momentum shift in the quark-loop to remove the the two external leg corrections in the
collinear limit.
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COLLINEAR LIMIT

Collinear limit of the form factor counterterm
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→ The form factor counterterm needs a loop momentum shift in the quark-loop to remove the
the two external leg corrections in the collinear limit.
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COLLINEAR LIMIT

Shift counterterm

We shift the quark-loop contribution of the form factor counterterm with a local counterterm to
remove the collinear limits locally.

CT shift =
1

2

p1

p2

k

 l

l+ p2

l− p1

− l+ k

l+ k+ p2

l+ k− p1


The shift counterterm integrates to zero but ensures local factorization!

Shifted form factor counterterm for one charge flow

F(1)
ss

(
M̃(1)

(l)
)
− CT shift =

1

2
F(1)
ss

(
M̃(1)

(l) + M̃(1)
(l+ k)

)

=
1

2

p1

p2

k

 l

l+ p2

l− p1

+ l+ k

l+ k+ p2

l+ k− p1


Removes the soft limit as well as the collinear k → p1 and k → p2 limit.
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COLLINEAR LIMIT
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Summary and Conclusion



SUMMARY AND CONCLUSION

• With the introduced loop momentum routing for scalar decomposed diagrams, all IR
singularities of the multiple Higgs production two-loop amplitude are removed by the shifted
form factor counterterm:

M(2)

n,IR-finite = M(2)
n −

1

2
F(1)
ss

(
M̃(1)

n (l) + M̃(1)
n (l+ k)

)
.

• IR finiteness ofM(2)

n,IR-finite checked numerically up to 3 Higgs.

• Local UV counterterms are constructed using the R-operation forest formula (BPHZ) (Bogoliubov
and Parasiuk 1957; Hepp 1966; Zimmermann 1969) −→ fully finite amplitude on the integrand level ready for
numerical integration in D = 4:

M(2)

n,finite = M(2)

n, UV-finite −
1

2
F(1)

ss, UV-finite

(
M̃(1)

n, finite(l) + M̃(1)

n, finite(l+ k)
)
,

with e.g. M(2)

n, UV-finite = R(M(2)
n ).

• Next challenges:

• numerical integration in D = 4

• extend method to colorful final states
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