Next-to-Leading-Order QCD corrections to ZZ production through gluon fusion

RADCOR - 2023

Bakul Agarwal, Karlsruhe Institute of Technology

In collaboration with G. Heinrich, S. Jahn, S. Jones, M. Kerner, and A. von Manteuffel

Motivation

- ZZ production important channel for BSM searches
- Indirectly constrain Higgs width [Caola, Melnikov (2013)]
- Significant contribution to off-shell Higgs production through interference [Kauer, Passarino (2012)]
- $g g \rightarrow Z Z$ at the LHC:
- Loop induced; formally NNLO for $p p \rightarrow Z Z$ (starting at $O\left(\alpha_{S}^{2}\right)$)
- Large contribution due to high gluon luminosity; $\sim 60 \%$ of the total NNLO correction [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]
- $g g \rightarrow Z Z$ at NLO (massless quarks in the loop) increases total $p p \rightarrow Z Z$ by $\sim 5 \%$ [Grazzini, Kallweit, Wiesemann, Yook (2018)]
- Top quark corrections to $g g \rightarrow Z Z$:
- Expected to be significant, especially for longitudinal modes due to Goldstone boson equivalence theorem
- Measuring anomalous $t \bar{Z} Z$ coupling [Azatov, Grojean, Paul, Salvioni (2016)], [Cao, Yan, Yuan, Zhang (2020)]

NLO Calculation

Two-loop diagrams

Massless:
[von Manteuffel, Tancredi (2015)] [Caola, Henn, Melnikov, Smirnov, Smirnov (2015)]

Higgs mediated:
[Spira et al (1995)] [Harlander \&
Kant (2005)] [Anastasiou et al (2006)] [Bonciani et al (2006)]

Anomaly type:
[Kniehl, Kühn (1990)] [Cambell, Ellis, Zanderighi (2007)] [Cambell, Ellis, Czakon, Kirchner (2016)]

Massive
[BA, Jones, von Manteuffel (2020)] [BrennumHansen, Wang (2021)] and for various expansions: [Melnikov, Dowling (2015)] [Caola et al (2016)] [Cambell, Ellis, Czakon, Kirchner (2016)] [Gröber, Maier, Rauh (2019)] [Davies, Mishima, Steinhauser, Wellmann (2020)]

Calculating multi-loop amplitudes

Recipe for a multi-loop amplitude:

1. Generation of unreduced amplitude
2. IBP reduction and back substitution of IBP identities

- Major bottleneck for processes with many scales and / or legs
- Significant progress with syzygy based approaches and finite-field methods
- Use of multivariate partial fractioning to tame the computational complexity and improve numerical performance

3. Evaluation of master integrals

- Express in terms of multiple polylogarithms; internal masses $=>$ Functions beyond multiple polylogarithms
- Use of numerical methods instead, improved with the use of finite integrals

Form factors and helicity amplitudes

- Decompose the amplitude into a set of basis tensors using Lorentz invariance:

$$
\mathscr{M}=\mathscr{M}_{\mu \nu \rho \sigma} \epsilon_{\lambda_{1}}^{\mu}\left(p_{1}\right) \epsilon_{\lambda_{2}}^{\nu}\left(p_{2}\right) \epsilon_{\lambda_{3}}^{* \rho}\left(p_{3}\right) \epsilon_{\lambda_{4}}^{* \sigma}\left(p_{4}\right)=\left(\Sigma A_{i} T_{i, \mu \nu \rho \sigma}\right) \epsilon_{\lambda_{1}}^{\mu}\left(p_{1}\right) \epsilon_{\lambda_{2}}^{\nu}\left(p_{2}\right) \epsilon_{\lambda_{3}}^{* \rho}\left(p_{3}\right) \epsilon_{\lambda_{4}}^{* \sigma}\left(p_{4}\right)
$$

T_{i} are 20 basis tensors obtained using an explicit gauge choice
A_{i} are form factors, functions of kinematic invariants, masses, and dimension $\left(s, t, m_{Z}^{2}, m_{t}^{2}, d\right)$, where

$$
s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}
$$

Use projection operators to obtain A_{i} from $\mathscr{M}_{\mu \nu \rho \sigma}$

- Can also consider explicit parameterisation of external momenta/ polarisation tensors for specific helicities to obtain helicity amplitudes $\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}$ in terms of A_{i}

Only 18 helicity amplitudes; redundancy in A_{i} due to the use of CDR

Calculating multi-loop amplitudes

Recipe for a multi-loop amplitude:

1. Generation of unreduced amplitude
2. IBP reduction and back substitution of IBP identities

- Major bottleneck for processes with many scales and / or legs
- Significant progress with syzygy based approaches and finite-field methods
- Use of multivariate partial fractioning to tame the computational complexity and improve numerical performance

3. Evaluation of master integrals

- Express in terms of multiple polylogarithms; internal masses $=>$ Functions beyond multiple polylogarithms
- Use of numerical methods instead, improved with the use of finite integrals

Integration-By-Parts reduction using Syzygies

General scalar Feynman integral with L-loops and N-edges (propagators in integral family) :

$$
I\left(\nu_{1}, \ldots, \nu_{N}\right)=\int d^{D} k_{1} \ldots d^{D} k_{L} \Pi_{i=1}^{N} \frac{1}{\left(q_{i}^{2}-m_{i}^{2}+i \epsilon\right)^{\nu_{i}}}
$$

$$
\begin{aligned}
& k_{1}, \ldots k_{L}: \text { Loop momenta } \\
& q_{i}: \text { Momentum of edge } i \\
& m_{i}: \text { Mass of edge } i \\
& \nu_{i}: \text { Exponent of edge } i
\end{aligned}
$$

Integration-by-parts identity [Chetyrkin \& Tkachov (1981)]:

$$
0=\int d^{D} k_{1} \ldots d^{D} k_{L} \frac{\partial}{\partial k_{\mu}} v_{\mu}\left(\Pi_{i=1}^{N} \frac{1}{\left(q_{i}^{2}-m_{i}^{2}+i \epsilon\right)^{\nu_{i}}}\right)
$$

v_{μ} is in general a linear combination of loop and external momenta.
Generate a linear system of equations and systematically reduce using Laporta's algorithm [Laporta (2000)] to arrive at a set of basis integrals. Many public codes available AIR, FIRE6, Kira, LiteRed, Reduze 2, FiniteFlow(+..) etc. But, leads to equations with integrals not needed for the amplitude \Longrightarrow very large systems to reduce

Integration-By-Parts reduction using Syzygies (Fix)

It is desirable to avoid such doubled propagators i.e. propagators with exponents higher than 1:

- Such integrals do not frequently appear in scattering amplitudes, hence reductions are not required
- IBP systems become much larger in size e.g. $\sim 10^{8}$ equations for $g g \rightarrow Z Z$

How to avoid these doubled propagators?

- Multiple approaches: [Gluza, Kajda, Kosower (2010)] [Schabinger (2011)]
- Compute module intersection of two syzygy modules [Zhang (2014)] [Larsen, Zhang (2015)] [Boehm, Georgoudis, Larsen, Schoenemann, Zhang (2018)]
- Use of computer algebra packages such as Singular for this task.

We use a linear algebra approach based on finite fields [BA, Jones, von Manteuffel (2020)]

- Map the problem of module intersection to row reduction of a matrix; use Finred - IBP solver based on finite field methods [von Manteuffel, Schabinger (2014)], [Peraro (2016)] for the linear algebra
- Linear systems generated from syzygies are much smaller than those from conventional approaches. E.g. for $g g \rightarrow Z Z$, only $\sim 3 \cdot 10^{5}$ equations compared to $\sim 10^{8}$ before

Calculating multi-loop amplitudes

Recipe for a multi-loop amplitude:

1. Generation of unreduced amplitude
2. IBP reduction and back substitution of IBP identities

- Major bottleneck for processes with many scales and / or legs
- Significant progress with syzygy based approaches and finite-field methods
- Use of multivariate partial fractioning to tame the computational complexity and improve numerical performance

3. Evaluation of master integrals

- Express in terms of multiple polylogarithms; internal masses => Functions beyond multiple polylogarithms
- Use of numerical methods instead, improved with the use of finite integrals

Numerical evaluation using finite integrals

- Sector decomposition standard method to resolve IR poles [Binoth, Heinrich (2000)] [Bogner, Weinzierl (2007)]
- Public codes: Fiesta5, pySecDec, etc.

Why use finite integrals?

- Much more stable numerics [Borowka et al (2016)] [von Manteuffel, Schabinger (2017)]
- Require fewer orders in epsilon expansion in general
- Poles drop out into the coefficients $=>$ Easier to take $d \rightarrow 4$ limit, after partial fractioning

Constructing finite integrals:

- Dimension shifted integrals [Bern, Dixon, Kosower (1992)]
- Existence of a finite basis [Panzer (2014)] [von Manteuffel, Panzer, Schabinger (2014)]
- Reduze 2 to find such integrals, usually involving higher propagator powers (dots) and dimension shifts

Divergent integral in $d=4-2 \epsilon$

Finite integral in $d=6-2 \epsilon$

Divergent integral in $d=4-2 \epsilon$ with a numerator

Finite integral in $d=6-2 \epsilon$ with a dot

Numerical evaluation using finite integrals

Alternate approach - combining divergent integrals into

finite linear combinations.

- Integrals often already appearing in the amplitude => avoid computing extra reductions
- More "natural" $d=4$ representation
- Algorithmically construct finite linear combinations in $d=4$ from a list of seed integrals (arbitrary integrals with numerators, dots, dimension shifts, subsector integrals) [BA, Jones, von Manteuffel (2020)]
- Numerical performance is very competitive with the conventional finite integrals (naively expected to be much worse)
- We use a combination of two approaches for performance reasons: basis of master integrals contains both integrals with dots / dimension-shifts and finite linear combinations of divergent integrals

$$
\begin{aligned}
I= & \left(m_{Z}^{2}-s-t\right)\left(s I_{1}-I_{6}\right)+ \\
& s\left(I_{2}+I_{3}-I_{4}-I_{5}\right)-\left(m_{Z}^{2}-t\right) I_{7}
\end{aligned}
$$

Results

- Write the UV and IR finite amplitudes (after renormalisation and IR subtraction respectively) as:

$$
\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{f i n}=\left(\frac{\alpha_{S}}{2 \pi}\right) \mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(1)}+\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(2)}+O\left(\alpha_{S}\right)^{3}
$$

- Define 1-loop squared and interference between 1-loop and 2-loop amplitudes:

$$
\begin{gathered}
\mathscr{V}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(1)}=\left|\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(1)}\right|^{2} \\
\mathscr{V}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(2)}=2 \operatorname{Re}\left(\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{*(1)} \mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(2)}\right)
\end{gathered}
$$

- Note that in the following results, only the pure top-quark contributions are included (i.e. no Higgs mediated diagrams or massless internal quarks)

Results

- Integration strategy:
- Helicity amplitudes $\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(2)}$ written as a linear combination of $\sim O\left(10^{4}\right)$ integrals after sector decomposition i.e. each sector of a master integral is considered and evaluated separately
- Number of evaluations for each integral set dynamically to minimise the evaluation time for $\mathscr{M}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{(2)}$ instead of each integral [Borowka et al (2016)] T : Total integration time t_{j} : Integration time for integral j

$$
T=\Sigma t_{i}+\lambda\left(\sigma^{2}-\Sigma_{i} \sigma_{i}^{2}\right)
$$

σ : Required precision
σ_{i} : Estimated precision for integral i
λ : Lagrange Multiplier

- Quasi-Monte Carlo algorithm for quadrature [Li, Wang, Zhao (2015)] [Borowka et al (2017)]
- Request per-cent precision on each helicity amplitude (and $\sim 10 \%$ on form factors A_{i}); much better precision obtained usually

Results: Comparison to expansions

Comparison of \sqrt{s} dependence of the unpolarised interference with expansion results at fixed $\cos \theta=-0.1286$. Exact results from [Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima,
Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]). Error bars for the exact

Comparison of $\cos \theta$ dependence of the unpolarised interference with expansion results at fixed energy $\sqrt{s}=403 \mathrm{GeV}$. Exact results from [Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]).

Comparison of $\cos \theta$ dependence of the unpolarised interference with expansion results at fixed energy $\sqrt{s}=814 \mathrm{GeV}$. Exact results from [Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]).

Results: Comparison to expansions

- For previous results, " q_{T} " subtraction scheme
- Transformation between Catani's original scheme and q_{T} scheme

$$
\begin{aligned}
A_{i}^{(2), f i n, C a t a n i} & =A_{i}^{(2), f i n, q_{T}}+\Delta I_{1} A_{i}^{(1), f i n} \\
\Delta I_{1} & =-\frac{1}{2} \pi^{2} C_{A}+i \pi \beta_{0} \sim 15
\end{aligned}
$$

- For interference terms, 1-loop result multiplied by $\sim 30=>$ Leads to a very different qualitative behaviour
- Relative comparisons highly dependent on IR scheme

Results: Comparison to expansions

$$
\begin{aligned}
& \text { Traditional Catani Scheme } \\
& \text { Comparison of } \sqrt{s} \text { dependence of the polarised interference with expansion results at fixed } \cos \theta=-0.1286 \text {. Exact results from }[\text { Sgarwal, Jones, } \\
& \text { von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, } \\
& \text { Steinhauser (2023)]). }
\end{aligned}
$$

Results: Virtual corrections

- Use the born calculation (with only top quarks) to generate unweighted events to sample the virtual corrections (~3000 points)
- Good numerical stability in most regions of phase space, in particular around the top-quark threshold
- Runtimes in $O(10) \mathrm{min}$ for large part of the phase space with expected difficulties for $|\cos \theta| \sim 1$ (very small p_{T})
- Better than per-mille precision for most of the phase-space

Results: Virtual corrections

- Good numerical stability in most regions of phase space, in particular around the top-quark threshold (except for small p_{T})
- Runtimes in $O(10)$ min for large part of the phase space with expected difficulties for very small p_{T}
- Can access high energy and high p_{T} region without much difficulty, but very high energy $(\sqrt{s}>2$ TeV $)$ challenging
- Better than per-mille precision for most of the phase-space

Results: Virtual corrections

- NLO Virtual corrections compared to Born (only top-quark contribution; does not include reals)
- Significant contribution, especially close to the top-quark production threshold

Results: Virtual corrections

- NLO Virtual corrections compared to Born (only top-quark contribution; does not include reals)

Conclusions and Outlook

- Use of syzygies and finite integrals to facilitate the calculation of the amplitudes
- Efficient integration strategy using sector decomposition to minimise the total integration time (see Vitaly's talk for latest pySecDec developments)
- Numerically very stable in most regions of phase-space, even close to top-quark pair production threshold, at high invariant mass and forward scattering
- Able to get good statistics for distributions; full impact of NLO corrections clearer after the addition of real emission contributions
- All the other ingredients available for full NLO cross-section

