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Motivation
• ZZ production important channel for BSM searches 

• Indirectly constrain Higgs width [Caola, Melnikov (2013)]

• Significant contribution to off-shell Higgs production through interference [Kauer, Passarino (2012)]

•  at the LHC:

• Loop induced; formally NNLO for   (starting at )

• Large contribution due to high gluon luminosity; of the total NNLO correction [Cascioli, Gehrmann, 
Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]

•  at NLO (massless quarks in the loop) increases total  by ~ 5% [Grazzini, Kallweit, Wiesemann, 
Yook (2018)]

• Top quark corrections to :

• Expected to be significant, especially for longitudinal modes due to Goldstone boson equivalence theorem

• Measuring anomalous  coupling [Azatov, Grojean, Paul, Salvioni (2016)], [Cao, Yan, Yuan, Zhang (2020)]

gg → ZZ
pp → ZZ O(α2

S)
∼ 60 %

gg → ZZ pp → ZZ

gg → ZZ

ttZ
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NLO Calculation

Born
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Two-loop diagrams
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Massless:
[von Manteuffel, Tancredi (2015)] 
[Caola, Henn, Melnikov, Smirnov, 
Smirnov (2015)] 

Higgs mediated:
[Spira et al (1995)] [Harlander & 
Kant (2005)] [Anastasiou et al (2006)] 
[Bonciani et al (2006)]

Anomaly type:
[Kniehl, Kühn (1990)] [Cambell, Ellis, 
Zanderighi (2007)] [Cambell, Ellis, 
Czakon, Kirchner (2016)]  

Massive: 
[BA, Jones, von Manteuffel (2020)] [Brønnum-

Hansen, Wang (2021)]  and for various 
expansions: [Melnikov, Dowling (2015)]  
[Caola et al (2016)] [Cambell, Ellis, Czakon, 

Kirchner (2016)]  [Gröber, Maier, Rauh (2019)] 
[Davies, Mishima, Steinhauser, Wellmann 
(2020)]  
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Calculating multi-loop amplitudes
Recipe for a multi-loop amplitude:
1. Generation of unreduced amplitude
2. IBP reduction and back substitution of IBP identities

• Major bottleneck for processes with many scales and/or legs

• Significant progress with syzygy based approaches and finite-field methods

• Use of multivariate partial fractioning to tame the computational complexity and 
improve numerical performance

3. Evaluation of master integrals

• Express in terms of multiple polylogarithms; internal masses => Functions beyond 
multiple polylogarithms

• Use of numerical methods instead, improved with the use of finite integrals
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Form factors and helicity amplitudes
• Decompose the amplitude into a set of basis tensors using Lorentz invariance:

 are 20 basis tensors obtained using an explicit gauge choice

 are form factors, functions of kinematic invariants, masses, and dimension , where 

Use projection operators to obtain  from 

• Can also consider explicit parameterisation of external momenta/polarisation tensors for specific 
helicities to obtain helicity amplitudes  in terms of 

Only 18 helicity amplitudes; redundancy in  due to the use of CDR

ℳ = ℳμνρσ ϵμ
λ1

(p1) ϵν
λ2

(p2) ϵ*ρ
λ3

(p3) ϵ*σ
λ4

(p4) = (Σ AiTi,μνρσ) ϵμ
λ1

(p1) ϵν
λ2

(p2) ϵ*ρ
λ3

(p3) ϵ*σ
λ4

(p4)

Ti

Ai (s, t, m2
Z, m2

t , d)
s = (p1 + p2)2, t = (p1 − p3)2

Ai ℳμνρσ

ℳλ1λ2λ3λ4
Ai

Ai
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Integration-By-Parts reduction using Syzygies
General scalar Feynman integral with L-loops and N-edges (propagators in integral family) :

Integration-by-parts identity [Chetyrkin & Tkachov (1981)] :

 is in general a linear combination of loop and external momenta.

Generate a linear system of equations and systematically reduce using Laporta’s algorithm [Laporta (2000)] to arrive 
at a set of basis integrals. Many public codes available AIR, FIRE6, Kira, LiteRed, Reduze 2, FiniteFlow(+..) etc.

vμ
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I(ν1, . . . , νN) = ∫ dDk1 . . . dDkL ΠN
i=1

1

(q2
i − m2

i + iϵ)νi

0 = ∫ dDk1 . . . dDkL
∂

∂kμ
vμ (ΠN

i=1
1

(q2
i − m2

i + iϵ)νi )

k1, . . . kL : Loop momenta

qi : Momentum of edge i

mi : Mass of edge i

νi : Exponent of edge i

But, leads to equations with integrals not needed for the amplitude  very large systems to reduce⟹

https://www.sciencedirect.com/science/article/abs/pii/0550321381901991?via=ihub
https://inspirehep.net/literature/552763
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Integration-By-Parts reduction using Syzygies (Fix)

It is desirable to avoid such doubled propagators i.e. propagators with exponents higher than 1:

• Such integrals do not frequently appear in scattering amplitudes, hence reductions are not required

• IBP systems become much larger in size e.g. ~  equations for 

How to avoid these doubled propagators? 

• Multiple approaches:  [Gluza, Kajda, Kosower (2010)] [Schabinger (2011)]

• Compute module intersection of two syzygy modules [Zhang (2014)] [Larsen, Zhang (2015)] [Boehm, Georgoudis, Larsen, Schoenemann, 
Zhang (2018)]

• Use of computer algebra packages such as Singular for this task.

We use a linear algebra approach based on finite fields [BA, Jones, von Manteuffel (2020)]

• Map the problem of module intersection to row reduction of a matrix; use Finred - IBP solver based on finite field 
methods [von Manteuffel, Schabinger (2014)], [Peraro (2016)] for the linear algebra

• Linear systems generated from syzygies are much smaller than those from conventional approaches. E.g. for , 
only ~   equations compared to ~  before

108 gg → ZZ

gg → ZZ
3 ⋅ 105 108
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Numerical evaluation using finite integrals
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k2 − m2
t

Divergent integral in d = 4 − 2ϵ

Finite integral in d = 6 − 2ϵ Finite integral in  with a dotd = 6 − 2ϵ

Divergent integral in  with a numeratord = 4 − 2ϵ

• Sector decomposition standard method to resolve IR 
poles [Binoth, Heinrich (2000)] [Bogner, Weinzierl (2007)]

• Public codes: Fiesta5, pySecDec, etc.

Why use finite integrals?

• Much more stable numerics [Borowka et al (2016)] [von 
Manteuffel, Schabinger (2017)]

• Require fewer orders in epsilon expansion in general

• Poles drop out into the coefficients => Easier to take 
 limit, after partial fractioning

Constructing finite integrals:

• Dimension shifted integrals [Bern, Dixon, Kosower (1992)]

• Existence of a finite basis [Panzer (2014)] [von Manteuffel, Panzer, 
Schabinger (2014)]

• Reduze 2 to find such integrals, usually involving 
higher propagator powers (dots) and dimension shifts

d → 4

https://inspirehep.net/literature/525717
https://inspirehep.net/literature/761982
https://inspirehep.net/literature/1481820
https://inspirehep.net/literature/1510446
https://inspirehep.net/literature/1510446
https://inspirehep.net/literature/341276
https://inspirehep.net/literature/1278088
https://inspirehep.net/literature/1331424
https://inspirehep.net/literature/1331424
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Numerical evaluation using finite integrals
Alternate approach - combining divergent integrals into 
finite linear combinations.

• Integrals often already appearing in the amplitude => 
avoid computing extra reductions

• More “natural”  representation

• Algorithmically construct finite linear combinations in 
 from a list of seed integrals (arbitrary integrals with 

numerators, dots, dimension shifts, subsector integrals)  
[BA, Jones, von Manteuffel (2020)]

• Numerical performance is very competitive with the 
conventional finite integrals (naively expected to be much 
worse)

• We use a combination of two approaches for performance 
reasons: basis of master integrals contains both integrals 
with dots/dimension-shifts and finite linear 
combinations of divergent integrals

d = 4

d = 4
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Results
• Write the UV and IR finite amplitudes (after renormalisation and IR subtraction respectively) 

as:

• Define 1-loop squared and interference between 1-loop and 2-loop amplitudes:

• Note that in the following results, only the pure top-quark contributions are included (i.e. no 
Higgs mediated diagrams or massless internal quarks)

ℳfin
λ1λ2λ3λ4

= ( αS

2π ) ℳ(1)
λ1λ2λ3λ4

+ ( αS

2π )
2

ℳ(2)
λ1λ2λ3λ4

+ O (αS)3

𝒱(1)
λ1λ2λ3λ4

= |ℳ(1)
λ1λ2λ3λ4

|2

𝒱(2)
λ1λ2λ3λ4

= 2 Re (ℳ*(1)
λ1λ2λ3λ4

ℳ(2)
λ1λ2λ3λ4)
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Results
• Integration strategy:

• Helicity amplitudes  written as a linear combination of  integrals after 
sector decomposition i.e. each sector of a master integral is considered and evaluated 
separately

• Number of evaluations for each integral set dynamically to minimise the evaluation time 
for   instead of each integral [Borowka et al (2016)]

• Quasi-Monte Carlo algorithm for quadrature [Li, Wang, Zhao (2015)] [Borowka et al (2017)]

• Request per-cent precision on each helicity amplitude (and ~10% on form factors ); much 
better precision obtained usually

ℳ(2)
λ1λ2λ3λ4

∼ O(104)

ℳ(2)
λ1λ2λ3λ4

T = Σ ti + λ (σ2 − Σi σ2
i )

Ai
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T : Total integration time
tj : Integration time for integral j

σ : Required precision
σi : Estimated precision for integral i
λ : Lagrange Multiplier

https://inspirehep.net/literature/1481820
https://inspirehep.net/literature/1387521
https://inspirehep.net/literature/1519856
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Results: Comparison to expansions
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Comparison of  dependence of the unpolarised interference with expansion results at fixed . 
Exact results from [Agarwal, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, 

Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]). Error bars for the exact 
result are plotted but they are too small to be visible.

s cos θ = − 0.1286
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Results: Comparison to expansions
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Mishima, Schönwald, Steinhauser (2023)]).
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Comparison of  dependence of the unpolarised interference with 
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Results: Comparison to expansions
• For previous results, “ ” subtraction scheme

• Transformation between Catani’s original scheme and  scheme
                                

                                                

• For interference terms, 1-loop result multiplied by   => Leads to a very 
different qualitative behaviour 

• Relative comparisons highly dependent on IR scheme

qT

qT

A(2),fin,Catani
i = A(2),fin,qT

i + ΔI1A
(1),fin
i

ΔI1 = −
1
2

π2CA + iπβ0 ∼ 15

∼ 30
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Results: Comparison to expansions
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• Use the born calculation (with only top quarks) to generate unweighted events to sample the virtual corrections (~3000 points)

• Good numerical stability in most regions of phase space, in particular around the top-quark threshold

• Runtimes in  min for large part of the phase space with expected difficulties for  (very small )

• Better than per-mille precision for most of the phase-space

O(10) |cosθ | ∼ 1 pT

Results: Virtual corrections
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• Good numerical stability in most regions of phase space, in particular around the top-quark threshold (except for small )

• Runtimes in  min for large part of the phase space with expected difficulties for very small 

• Can access high energy and high  region without much difficulty, but very high energy  challenging

• Better than per-mille precision for most of the phase-space

pT

O(10) pT

pT ( s > 2 TeV)

Results: Virtual corrections
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• NLO Virtual corrections compared to Born (only top-quark contribution; does not include reals)

• Significant contribution, especially close to the top-quark production threshold

Results: Virtual corrections
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• NLO Virtual corrections compared to Born (only top-quark contribution; does not include 
reals)

Results: Virtual corrections
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Conclusions and Outlook
• Use of syzygies and finite integrals to facilitate the calculation of the amplitudes

• Efficient integration strategy using sector decomposition to minimise the total integration time 
(see Vitaly’s talk for latest pySecDec developments)

• Numerically very stable in most regions of phase-space, even close to top-quark pair 
production threshold, at high invariant mass and forward scattering

• Able to get good statistics for distributions; full impact of NLO corrections clearer after the 
addition of real emission contributions

• All the other ingredients available for full NLO cross-section
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