Associated production of a W boson and massive bottom quarks in NNLO QCD

Luca Buonocore
University of Zurich

in collaboration with S. Devoto, S. Kallweit, J. Mazzitelli, L. Rottoli and C. Savoini
[Phys.Rev.D 107 (2023) 7, 074032, arXiv:2212.04954]
RADCOR 2023
Crieff - 29th May 2023

Introduction

Motivations

$\mathbf{W}+\mathbf{1 b j}$ and $\mathbf{W}+\mathbf{2 b j}$ interesting signatures

- tests of QCD at LHC
- background to $W H(H \rightarrow b \bar{b})$ and single top $\bar{b} t(t \rightarrow W b)$
- bottom quarks modelling: massive effects, bottom in the PDF, flavour tagging

$$
\text { from VH(} \rightarrow \text { bb) analysis [CMS:arXiv:1808.08242] }
$$

Postfit normalisation corrections

Large normalisation corrections

 with respect to SM simulation| Process | $\mathrm{Z}(v v) \mathrm{H}$ | $\mathrm{W}(\ell v) \mathrm{H}$ | $\mathrm{Z}(\ell \ell) \mathrm{H}$ low $-p_{\mathrm{T}}$ | $\mathrm{Z}(\ell \ell) \mathrm{H}$ high- p_{T} |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{W}+$ udscg | 1.04 ± 0.07 | 1.04 ± 0.07 | - | - |
| $\mathrm{W}+\mathrm{b}$ | 2.09 ± 0.16 | 2.09 ± 0.16 | - | - |
| $\mathrm{W}+\mathrm{b} \overline{\mathrm{b}}$ | 1.74 ± 0.21 | 1.74 ± 0.21 | - | - |
| $\mathrm{Z}+\mathrm{udscg}$ | 0.95 ± 0.09 | - | 0.89 ± 0.06 | 0.81 ± 0.05 |
| $\mathrm{Z}+\mathrm{b}$ | 1.02 ± 0.17 | - | 0.94 ± 0.12 | 1.17 ± 0.10 |
| $\mathrm{Z}+\mathrm{b} \overline{\mathrm{b}}$ | 1.20 ± 0.11 | - | 0.81 ± 0.07 | 0.88 ± 0.08 |
| $\mathrm{t} \overline{\mathrm{t}}$ | 0.99 ± 0.07 | 0.93 ± 0.07 | 0.89 ± 0.07 | 0.91 ± 0.07 |

State of the art

NLO corrections (massless bottom quarks)
[Ellis, Veseli, 1999]
NLO corrections (massive bottom quarks)
[Febres Cordero, Reina, Wackeroth, 2006, 2009]
NLO corrections (4FS+5FS)
[Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenbrock, 2009] [Camplbell, Caola, Febres Cordero, Reina, Wackeroth,2011]
NLO + PS
[Oleari, Reina,2011] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, 2011]
POWHEG+MiNLO
[Luisoni, Oleari, Tramontano, 2015]
$\mathbf{W b b}+\mathrm{up}$ to 3 jets
[Anger, Febres Cordero, Ita, Sotnikov, 2018]

State of the art

NLO corrections (massless bottom quarks)
[Ellis, Veseli, 1999]
NLO corrections (massive bottom quarks)
[Febres Cordero, Reina, Wackeroth, 2006, 2009]
NLO corrections (4FS+5FS)
[Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenbrock, 2009] [Camplbell, Caola, Febres Cordero, Reina, Wackeroth,2011]
NLO+PS
[Oleari, Reina,2011] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, 2011]
POWHEG+MiNLO
[Luisoni, Oleari, Tramontano, 2015]
$\mathbf{W b b}+\mathrm{up}$ to 3 jets
[Anger, Febres Cordero, Ita, Sotnikov, 2018]
see lalks by S. Zoia, G. Gambuki
Analytical Two-loop W+4 partons amplitude in Leading Colour Approximation (LCA)
[Badger, Hartanto, Zoia, 2021] [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, 2021]
NNLO corrections (massless bottom quarks)
[Hartanto, Poncelet, Popescu, Zoia, 2022]
Firse NNLO QCD calculation for massless bottom quarks!

$W b \bar{b} @$ NNLO with massless b quarks

First computation for $\mathrm{Wbb} @$ NNLO with massless b quarks recently performed

But, massless calculation is subject to ambiguilies related to jel-sensitive jek algorilhm

Jet algorithm	$\sigma_{\mathrm{NNLO}}[\mathrm{fb}]$	K_{NNLO}
flavour- k_{T}	$445(5)_{-7.0 \%}^{+6.7 \%}$	1.23
flavour anti $-k_{\mathrm{T}}$ $(a=0.05)$	$690(7)_{-9.7 \%}^{+0.9 \%}$	1.38
	when using flavour	
flavour anti $-k_{\mathrm{T}}$ $(a=0.1)$	$677(7)_{-9.4 \%}^{+10.4 \%}$	1.36
k_{T} algorithm		

$W b \bar{b} @$ NNLO with massless b quarks

First computation for $\mathrm{Wbb} @$ NNLO with massless b quarks recently performed

But, massless calculation is subject to ambiguilies related to jet-sensitive jel algorilhm

Jet algorithm	$\sigma_{\text {NNLO }}[\mathrm{fb}]$	$K_{\text {NNLO }}$	Uncerbainties relaked to the ambiguities reduced when using flavour-aware anti-k
flavour- $k_{\text {T }}$	$445(5)_{-7.0 \%}^{+6.7 \%}$	1.23	
flavour anti- k_{T} $(a=0.05)$	$690(7)_{-9.7 \%}^{+10.9 \%}$	1.38	
flavour anti- k_{T} $(a=0.1)$	$677(7)_{-9.4 \%}^{+10.4 \%}$	1.36	
flavour anti- k_{T} $(a=0.2)$	$647(7)_{-8.9 \%}^{+9.5 \%}$	1.33	

[Czakon, Mitov, Poncelet, 2022]

Infrared safety and flavour tagging

Jet clustering algorithms consist in a sequence of two-to-one recombination steps. They are then completely defined once the binary distance $d_{i j}$ and the beam distance $d_{i B}$ are given. For the family of k_{T} algorithms

$$
d_{i j}=\min \left(k_{T, i}^{2 \alpha}, k_{T, j}^{2 \alpha}\right) R_{i j}^{2}, \quad d_{i B}=k_{T, i}^{2 \alpha} \quad \quad R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
$$

For parton level calculation (fixed order), infrared safety is a crucial requirement
For observable sensitive to the flavour assignment, infrared safety can be an issue, usually associated to gluon splitting to quarks in the double soft limit (the problem starts at NNLO)

this may lead to a flavour configuration different from the corresponding virtual one, spoiling KLN cancellation

Flavour aware jet algorithms: flavour k_{T}

Theoretically sounded but problematic for data/theory comparison

- experimentally, jet reconstruction and flavour assignment are performed at the particle level (not at the parton level)
- anti- k_{T} is de-facto the jet algorithm used in all analysed for its properties

Flavour aware jet algorithms: flavour k_{T}

Theoretically sounded but problematic for data/theory comparison

- requires to unfold the experimental data to the theory calculation performed with the flavour k_{T} algorithm
- unfolding corrections can be sizeable: $\sim 12 \% \mathrm{Z}+\mathrm{b}$ jet as estimated at NLO +PS accuracy
[Gauld, Gehrmann-De Ridder, Glover, Huss, Majer, 2020]

Standard anti- k_{T} algorithm

$$
d_{i j}=\min \left(k_{T, i}^{-2}, k_{T, j}^{-2}\right) R_{i j}^{2}, \quad d_{i B}=k_{T, i}^{-2}
$$

Flavour anki- k_{T} algorichm

$$
\begin{gathered}
d_{i j}^{(F)}=d_{i j} \times \begin{cases}\mathcal{S}_{i j}, & \text { if both } i \text { and } j \text { have non-zero flavour of opposite sign } \\
1, & \text { otherwise }\end{cases} \\
\qquad \begin{array}{l}
\mathcal{S}_{i j}=1-\theta(1-\kappa) \cos \left(\frac{\pi}{2} \kappa\right), \quad \kappa=\frac{1}{a} \frac{k_{T, i}^{2}+k_{T, j}^{2}}{2 k_{T, \max }^{2}} \\
\\
\longrightarrow \mathcal{S}_{i j} \sim E^{4} \Longrightarrow d_{i j}^{(F)} \sim E^{2}
\end{array}
\end{gathered}
$$

the suppression factor overcompensates the divergent behaviour of $d_{i j}$ in the double soft limit:
in this way, both conditions 1 and 2 hold

Standard anti- k_{T} algorithm

$$
d_{i j}=\min \left(k_{T, i}^{-2}, k_{T, j}^{-2}\right) R_{i j}^{2}, \quad d_{i B}=k_{T, i}^{-2}
$$

Flavour anki- k_{T} algorilhm

$$
\begin{gathered}
d_{i j}^{(F)}=d_{i j} \times \begin{cases}\mathcal{S}_{i j}, & \text { if both } i \text { and } j \text { have non-zero flavour of opposite sign } \\
1, & \text { otherwise }\end{cases} \\
\qquad \mathcal{S}_{i j}=1-\theta(1-\kappa) \cos \left(\frac{\pi}{2} \kappa\right), \quad \kappa=\frac{1}{a} \frac{k_{T, i}^{2}+k_{T, j}^{2}}{2 k_{T, \max }^{2}}
\end{gathered}
$$

Parameter a control the turning on of the suppression factor: in the limit $a \rightarrow 0$, the standard anti- k_{T} algorithm is recovered. Best choice of the parameter a from comparison at NLO + PS (aiming at minimising unfolding)
Flavour-dependent metric, still needs some (possibly small) unfolding

Recently, the problem has triggered a lot of activity in the theoretical community!

Use Soft Drop to remove soft quarks
No unfolding needed
Requires reclustering with JADE (issue with IRC safety beyond NNLO)

[Caletti, Larkoski, Marzani, Reichelt, 2022]

Assign a flavour dressing to jets reconstructed with any IRC flavourblind jet algorithms

Requires flavour information of many particles in the event

[Gauld, Huss, Stagnitto, 2022]

Recluster using the flavour aware Winner-Take-All (WTA)
recombination scheme (soft-safe)
Requires fully perturbative WTA flavour fragmentation function (for collinear safety)

[Caletti, Larkoski, Marzani, Reichelt, 2022]

Flavour aware jet algorithms: massive calculation

Massive bottom quarks

- quark mass is the physical IR regulator: physical suppression in the double-soft limit
- No requirement for flavour-aware jet algorithms: any flavour-blind algorithm can be used, in particular anti k_{T}

Direct comparison with experimental data possible
(unfolding corrections limited to non-perturbative modelling and hadronisation)

Caveal

- left over IR sensitivity in the form of logarithms of the heavy quark mass at each order in perturbative theory
- Calculation with massive quarks is challenging

Outline

- Methodology: slicing formalism
- Methodology: two-loop virtual amplitude
- Phenomenological results
- Conclusions

Outline

- Methodology: slicing formalism
- Methodology: two-loop virtual amplitude

Infrared singularities

Class of contributions entering the NNLO corrections

Virtual

Real-Virtual

Real

KLN theorem and collinear factorisation ensure the cancellation of singularities for any infrared safe observables, but virtuals, real-virtual and reals live on different phase spaces and are separately divergent ...
Subtraction/Slicing scheme required!

q_{T}-subtraction formalism

Cross section for the production of a triggered final state F at $\mathrm{N}^{k} \mathrm{LO}$

All emission unresolved; approximate the cross section with its singular part in the soft and/or collinear limits
q_{T} resummation

- expand to fixed order
- $\mathcal{O}\left(\alpha_{s}^{k}\right)$ ingredient required

1 emission always resolved
$F+j @ \mathrm{~N}^{k-1} \mathrm{LO}$
complexity of the calculation reduced by one order!

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\text {qut }}}+\mathcal{O}\left(\left(q_{T}^{\text {cut }}\right)^{\ell}\right)
$$

q_{T}-subtraction formalism: extension to massive final states

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{L} L O}^{C T}\right]_{q_{T}>q_{T}^{\text {ait }}}+\mathcal{O}\left(\left(q_{T}^{\text {cut }}\right)^{\theta}\right)
$$

All ingredients for $W b \bar{b}+j @$ NLO available:

Required matrix elements implemented in public libraries such as OpenLoops2
[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller '19]
Local subtraction scheme available, for example dipole subtraction
[Catani, Seymour, '98] [Catani, Dittmaier, Seymour, Trocsanyi '02]
Automatised implementation in the MATRIX framework, which relies on the efficient multi-channel Monte Carlo integrator MUNICH
[Grazzini, Kallweit, Wiesemann '17] [Kallweit in preparation]

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\mathrm{qut}}}+\mathcal{O}\left(\left(q_{T}^{\mathrm{cut}}\right)^{\ell}\right)
$$

\mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft / collinear origin

- Beam functions
[Catani, Cieri, de Florian, Ferrera, Grazzini '12]
[Gehrmann, Luebbert, Yang 14]
[Echevarria, Scimemi, Vladimirov '16]
[Luo, Wang, Xu, Yang, Yang, Zhu '19]
[Ebert, Mistlberger, Vita]
see lalks by B. Mislberger, G. Viba

q_{T}-subtraction formalism: extension to massive final states

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\mathrm{qut}}}+\mathcal{O}\left(\left(q_{T}^{\mathrm{cut}}\right)^{\ell}\right)
$$

\mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin
The resummation formula shows a richer structure

- Soft function because of additional soft singularities
- Soft logarithms controlled by the transverse momentum anomalous dimension Γ_{t} known up to NNLO [Mitov, Sterman, Sung, 2009], [Neubert, et al 2009]
- Hard coefficient gets a non-trivial colour structure (matrix in colour-space)
- Non trivial azimuthal correlations

q_{T}-subtraction formalism: extension to massive final states

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\mathrm{qut}}}+\mathcal{O}\left(\left(q_{T}^{\mathrm{cut}}\right)^{\ell}\right)
$$

\mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

- Soft function

The resummation formula shows a richer structure because of additional soft singularities
q_{T} subtraction formalism extended to the case of heavy quarks production [Catani, Grazzini, Torre, 2014]

Successful employed for the computation of NNLO QCD corrections to the production of

- a top pair [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan 2019]
- a bottom pair production [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, 2021]

q_{T}-subtraction formalism: extension to massive final states

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\mathrm{qut}}}+\mathcal{O}\left(\left(q_{T}^{\mathrm{cut}}\right)^{\ell}\right)
$$

\mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

- Soft function

The resummation formula shows a richer structure because of additional soft singularities

Non trivial ingredient

- Two-loop soft function for heavy-quark (back-toback Born kinematic) [Catani, Devoto, Grazzini, Mazzitelli,2023]
- Recently generalised to arbitrary kinematics [Devoto, Mazzitelli in preparation]

q_{T}-subtraction formalism: extension to massive final states

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{T}>q_{T}^{\mathrm{qut}}}+\mathcal{O}\left(\left(q_{T}^{\mathrm{cut}}\right)^{\ell}\right)
$$

\mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

- Soft function

The resummation formula shows a richer structure because of additional soft singularities

Once the corresponding two-loop amplitude is available, the framework allows the calculation of the NNLO correction to the production of a massive heavy-quark pair and a generic color singlet process

- First application: $t \bar{t} H$
[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini, 2023]
see calk by c. Savoini

Outline

- Methodology: slicing formalism
- Methodology: two-loop virtual amplitude
- Phenomenological results
- Conclusions

Two-loop virtual amplitude

s-point amplitude with 1 massive particle current state of the art, more massive legs out of reach!

Two-loop virtual amplitude

s-point amplitude with 1 massive particle current state of the art, more massive legs out of reach!

But mb is the smallest scate in the game, exploit the hierarchy!

Use MASSIFICATION to relate the massive amplitude to the masstess one up to power corrections of the mass

Massification procedure in a nutshell

Amplitude factorisation in massless QCD
[Catani, 1998][Sterman, Tejeda-Yeomans, 2003]
$\left|\cdot M^{[p]}>=\mathscr{F}^{[p]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times \mathcal{S}^{[p]}\left(\left\{k_{i}\right\} \frac{Q^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times\right| \mathscr{H}^{[p]}>$

Jet function: collinear
contributions

Soft function: coherent
soft radiation

Hard function: short-
distance dynamics

Amplitude factorisation in massless QCD
[Catani, 1998][Sterman, Tejeda-Yeomans, 2003]

$$
\left|\mathscr{M}^{[p]}>=\mathscr{J}^{[p]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times \mathcal{S}^{[p]}\left(\left\{k_{i}\right\} \frac{Q^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times\right| \mathscr{H}^{[p]}>
$$

Amplitude factorisation in QCD with a massive parton of mass $m^{2} \ll Q^{2}$

$$
\begin{gathered}
\left|\mathscr{M}^{[p],(m)}>=\mathscr{J}^{[p]}\left(\frac{Q^{2}}{\mu^{2}}, \frac{m_{i}^{2}}{\mu^{2}} \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times \mathcal{S}^{[p]}\left(\left\{k_{i}\right\} \frac{Q^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right) \times\right| \mathscr{H}^{[p]}>+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}\right) \\
\mathscr{J}^{[p]}\left(\frac{Q^{2}}{\mu^{2}}, \frac{m_{i}^{2}}{\mu^{2}} \alpha_{S}\left(\mu^{2}\right), \epsilon\right)=\prod_{i} \mathscr{J}^{i}\left(\frac{Q^{2}}{\mu^{2}}, \frac{m_{i}^{2}}{\mu^{2}} \alpha_{S}\left(\mu^{2}\right), \epsilon\right)=\prod_{i}\left(\mathscr{F}^{i}\left(\frac{Q^{2}}{\mu^{2}}, \frac{m_{i}^{2}}{\mu^{2}} \alpha_{S}\left(\mu^{2}\right), \epsilon\right)\right)^{1 / 2}
\end{gathered}
$$

Master formula of "massification"

$$
\begin{aligned}
& \left|\mathscr{M}^{[p],(m)}>=\prod_{i}\left[Z_{[i]}\left(\frac{m^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right)\right]^{1 / 2} \times\right| \mathscr{M}^{[p]}>+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}\right) \\
& Z_{[i]}\left(\frac{m^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right)=\mathscr{F}^{i}\left(\frac{Q^{2}}{\mu^{2}}, \frac{m_{i}^{2}}{\mu^{2}}, \alpha_{S}\left(\mu^{2}\right), \epsilon\right)\left[\mathscr{F}^{i}\left(\frac{Q^{2}}{\mu^{2}}, 0, \alpha_{S}\left(\mu^{2}\right), \epsilon\right)\right]^{-1}
\end{aligned}
$$

History \& Remarks

- The formula retrieves mass logarithms and constant terms !
[Glover, TauskandJ, VanderBij, 2001]
[Penin 2005-2006]
- Consistent with previous results for NNLO QED correction to Bhabha scattering [Czakon, Mitov, Moch, 2007]
- Successfully employed to derive and cross check results for $q \bar{q} \rightarrow Q \bar{Q}$ and $g g \rightarrow Q \bar{Q}$ amplitudes
- Recently extended to the case of two different external masses $(M \gg m)$

Massification procedure for Wbb

The massification procedure is based on the factorisation properties of QCD amplitudes
Basic idea: in the small mass limit, the massive amplitude $\mathscr{M}^{[p],(m)}$ and the massless one $\mathscr{M}^{[p],(m=0)}$ are connected as the mass screens some collinear divergences "trading" poles in the dimensional regulator ϵ for logarithms of the mass

This can be viewed as a change in the renormalisation scheme which leads to a universal "multiplicative renormalization" relation between (ultraviolet renormalised) massive and massless amplitudes

$$
\mathscr{M}^{[p],(m)}=\prod_{i \in\{\text { all legs }\}}\left(Z_{[i]}^{(m \mid 0)}\right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)}+\mathcal{O}\left(m^{k}\right)
$$

- The function $Z_{[i]}^{(m \mid 0)}$ are universal, depend only on the external parton (quark or gluon) and admit a perturbative expansion in α_{s} :

$$
\begin{gathered}
Z_{[i]}=1+\sum_{k}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} Z_{[i]}^{k} \\
\mathscr{M}^{[p],(m)}=\sum_{k=0}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} \mathscr{M}_{(k)}^{[p],(m)}
\end{gathered}
$$

$$
\begin{aligned}
\mathscr{M}_{0}^{W b b,(m)} & =\mathscr{M}_{0}^{W b b,(m=0)} \\
\mathscr{M}_{(1)}^{W b b,(m)} & =\mathscr{M}_{(1)}^{W b b,(m=0)}+Z_{[q]}^{(1)} \mathscr{M}_{(0)}^{W b b,(m=0)} \\
\mathscr{M}_{(2)}^{W b b,(m)} & =\mathscr{M}_{(2)}^{W b b,(m=0)}+Z_{[q]}^{(1)} \mathscr{M}_{(1)}^{W b b,(m=0)}+Z_{[q]}^{(2)} \mathscr{M}_{(0)}^{W b b,(m=0)}
\end{aligned}
$$

Massification procedure for Wbb

$$
\mathscr{M}^{[p],(m)}=\prod_{i \in\{\mathrm{all} \text { legs }\}}\left(Z_{[i]}^{(m \mid 0)}\right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)}+\mathcal{O}\left(m^{k}\right)
$$

- The $Z_{[i]}^{(m \mid 0)}$ are given by the ratio of massive and massless form factors ($\gamma^{*} q q$ for the quark case)

$l l$

$h l$

$l h$

$h h$
- Starting from two loops, contributions from heavy quarks loops ($l h$ and $h h$) arise. Their description requires additional process dependent terms and have been excluded from the definition of the $Z_{[i]}^{(m \mid 0)}$

$$
\mathscr{M}^{[p],(m)}=\prod_{i \in\{\text { all legs }\}}\left(Z_{[i]}^{(m \mid 0)}\right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)}+\mathcal{O}\left(m^{k}\right)
$$

- The $Z_{[i]}^{(m \mid 0)}$ are given by the ratio of massive and massless form factors ($\gamma^{*} q q$ for the quark case)

$l l$

hl

lh

$h h$
- Starting from two loops, contributions from heavy quarks loops (lh and $h h$) arise. Their description requires additional process dependent terms and have been excluded from the definition of the $Z_{[i]}^{(m \mid 0)}$

The massification procedure predicts poles, logarithms of mass and mass independent terms (constants) of $\mathscr{M}^{[p],(m)}$ while power corrections in the mass and the contribution of heavy loops cannot be retrieved using this approach

We have implemented the one-loop and two-loop amplitudes of [Abreu et al, 2022] in a C++ library for the efficient numerical evaluation of the massive amplitudes

We have implemented the one-loop and two-loop amplitudes of [Abreu et al, 2022] in a C++ library for the efficient numerical evaluation of the massive amplitudes

We have recently fixed a bug of the library impacting the finite remainder of the two-loop amplitude. Phenomenological results mildly affected, in the following we will report the updated ones

Outline

- Methodology: slicing formalism
- Methodology: two-1000 wirtual amplitude
- Phenomenological results

Setup

$$
W+2 b_{(\mathrm{jet})}+X @ \sqrt{s}=13.6 \mathrm{TeV}
$$

$\boldsymbol{\alpha}_{\mathrm{s}}$ and PDF scheme EW

Jet clustering algorithm
pdf sets

$$
\begin{gathered}
\text { 4-flavour scheme (4FS), m} \mathrm{m}_{\mathrm{b}}=4.92 \mathrm{GeV} \\
\mathrm{G}_{\mu} \text {-scheme, CKM diagonal } \\
\text { anti- } \mathrm{k}_{\mathrm{T}} \text { (and } \mathrm{k}_{\mathrm{T}} \text {) algorithm with } \mathrm{R}=0.4 \\
\text { NNPDF30_as_0118_nf_4 (LO) } \\
\text { NNPDF31_as_0118_nf_4(NLO, NNLO) }
\end{gathered}
$$

SETUP

- fiducial: inspired by ATLAS $V H(\rightarrow b \bar{b})$ boosted analysis [ATLAS:arXiv:2007.02873]

$$
\begin{gathered}
p_{T, \ell}>25 \mathrm{GeV} \quad\left|\eta_{\ell}\right|<2.5 \quad p_{T}^{W}>150 \mathrm{GeV} \\
\text { Jet selection } \\
p_{T, j}>20 \mathrm{GeV} \quad \text { and } \quad\left|\eta_{\ell}\right|<2.5 \quad \text { or } \\
p_{T, j}>30 \mathrm{GeV} \quad \text { and } 2.5<\left|\eta_{\ell}\right|<4.5
\end{gathered}
$$

Wbb phenomenology (bin I+bin II): scale choice

Behaviour of the perturbative series and scale choice

- A priori, the use of a fixed scale is physically not very well motivated

$$
\sigma\left(p p \rightarrow W\left(\ell^{+} \nu_{e}\right) b \bar{b}\right)[\mathrm{fb}], \sqrt{s}=13.6 \mathrm{TeV}
$$

Wbb phenomenology (bin I+bin II): scale choice

Behaviour of the perturbative series and scale choice

- A priori, the use of a fixed scale is physically not very well motivated
- Naively, a dynamic scale as H_{T} would be a better choice. However, it leads to a poor perturbative convergence with no overlap between NLO and NNLO within their uncertainties bands

$$
\begin{aligned}
& H_{T}=E_{T}(\ell \nu)+p_{T}\left(b_{1}\right)+p_{T}\left(b_{2}\right) \\
& E_{T}(\ell \nu)=\sqrt{M^{2}(\ell \nu)+p_{T}^{2}(\ell \nu)}
\end{aligned}
$$

$$
\sigma\left(p p \rightarrow W\left(\ell^{+} \nu_{e}\right) b \bar{b}\right)[\mathrm{fb}], \sqrt{s}=13.6 \mathrm{TeV}
$$

Wbb phenomenology (bin I+bin II): scale choice

Behaviour of the perturbative series and scale choice

- A priori, the use of a fixed scale is physically not very well motivated
- Naively, a dynamic scale as H_{T} would be a better choice. However, it leads to a poor perturbative convergence with no overlap between NLO and NNLO within their uncertainties bands
- On the contrary, the choice of a fixed scale leads to a better perturbative convergence, suggesting a preference for smaller scales

Wbb phenomenology (bin I+bin II): scale choice

Behaviour of the perturbative series and scale choice

- A priori, the use of a fixed scale is physically not very well motivated
- Naively, a dynamic scale as H_{T} would be a better choice. However, it leads to a poor perturbative convergence with no overlap between NLO and NNLO within their uncertainties bands
- On the contrary, the choice of a fixed scale leads to a better perturbative convergence, suggesting a preference for smaller scales
- A more detailed analysis should take into account the "multi-scale" nature of the process

Wbb phenomenology: fiducial cross sections

Results

- Reference scale: $\sqrt{H_{T} \cdot m_{b b}} / 2$
- Large NLO K-factors $K_{\mathrm{NLO}} \gtrsim 3$
- Relative large positive NNLO corrections, $K_{\mathrm{NNLO}} \sim 1.5$
- More reliable theory uncertainties estimated by scale variations with a reduction to the $15-20 \%$ level

order	$\sigma_{\text {fid }}^{b i n} I[\mathrm{fb}]$	$\sigma_{\text {fid }}^{b i n} I I[\mathrm{fb}]$
LO	$35.49(1)_{-18 \%}^{+25 \%}$	$8.627(1)_{-18 \%}^{+25 \%}$
NLO	$137.20(5)_{-23 \%}^{+34 \%}$	$37.24(1)_{-24 \%}^{+38 \%}$
NNLO	$198.9(8)_{-15 \%}^{+17 \%}$	$55.90(7)_{-17 \%}^{+19 \%}$

Other theoretical uncertainties are subdominant:

- Variation of bottom mass: $m_{b}=4.2 \mathrm{GeV} \Longrightarrow \delta \sigma_{\mathrm{NNLO}} / \sigma_{\mathrm{NNLO}}=+2 \%$
- Impact of massification estimated at NLO: $\left|\delta\left(\Delta \sigma_{\mathrm{NLO}}\right) / \Delta \sigma_{\mathrm{NLO}}^{\text {exact }}\right|=3 \%$
- The part of the two-loop virtual amplitude computed in LCA contributes at the 2% level of the full NNLO correction

Wbb phenomenology: $m_{b b}$ differential distribution

- Similar pattern of NNLO corrections for the two considered p_{T}^{W} bins
- NNLO corrections not uniform, larger for smaller invariant-mass values
- Reduction of scale uncertainties, partial overlap with the NLO bands

Comparison with HPPZ

$$
W+2 b_{j e t}+X \text { (inclusive) } @ \sqrt{s}=8 \mathrm{TeV}
$$

[CMS:arXiv:1608.07561]

Selection cuts

$$
\begin{array}{cc}
p_{T, \ell}>30 \mathrm{GeV} & \left|\eta_{\ell}\right|<2.1 \\
n_{b}=2: p_{T, b}>25 \mathrm{GeV} & \left|\eta_{\ell}\right|<2.4 \\
p_{T, j}>25 \mathrm{GeV} & \left|\eta_{\ell}\right|<2.4
\end{array}
$$

Reference scale

$$
\begin{aligned}
& H_{T}=E_{T}(\ell \nu)+p_{T}\left(b_{1}\right)+p_{T}\left(b_{2}\right) \\
& E_{T}(\ell \nu)=\sqrt{M^{2}(\ell \nu)+p_{T}^{2}(\ell \nu)}
\end{aligned}
$$

HPPZ

5FS
flavour k_{T} and flavour anti- k_{T} algorithm ($\mathrm{R}=0.5$)

NNPDF31_as_0118 (LO, NLO,

This work

$$
4 \mathrm{FS}
$$

k_{T} and anti- k_{T} algorithm ($\mathrm{R}=0.5$)
NNPDF30_as_0118_nf_4 (LO) NNPDF31_as_0118_nf_4 (NLO, NNLO)

Comparison with HPPZ: fiducial cross sections

order	$\sigma^{4 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.05}^{5 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.1}^{5 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.2}^{5 \mathrm{FS}}[\mathrm{fb}]$
LO	$210.42(2)_{-16.2 \%}^{+21.4 \%}$	$262.52(10)_{-16.1 \%}^{+21.4 \%}$	$262.47(10)_{-16.1 \%}^{+21.4 \%}$	$261.71(10)_{-16.1 \%}^{+21.4 \%}$
NLO	$468.01(5)_{-13.8 \%}^{+17.8 \%}$	$500.9(8)_{-12.8 \%}^{+16.1 \%}$	$497.8(8)_{-12.7 \%}^{+16.0 \%}$	$486.3(8)_{-12.5 \%}^{+15.5 \%}$
NNLO	$649.9(1.6)_{-11.0 \%}^{+12.6 \%}$	$690(7)_{-9.7 \%}^{+10.9 \%}$	$677(7)_{-9.4 \%}^{+10.4 \%}$	$647(7)_{-9.4 \%}^{+9.5 \%}$

Remarks

- The parameter a of the flavour anti k_{T} algorithm plays a role similar to m_{b} in our massive calculation
- Uncertainty estimated by varying $a \in[0.05,0.2]$ amounts to 7%; smaller uncertainty estimated by varying $m_{b} \in[4.2,4.92]$, at the 2% level
- General agreement within scale variations, but the massive calculation performed in the 4FS systematically below due to the different flavour scheme

Comparison with HPPZ: jet clustering algorithms

Sizeable NNLO corrections which lead to a steeper slope at small $\Delta R_{b b}$ (where scale uncertainties are larger)
Good agreement between flavour and standard anti- k_{T} for the largest value $a=0.2$

Conclusions

Thanks to the progress in

- subtraction scheme: the calculation of soft function for arbitrary kinematics allows to use the q_{T} subtraction formalism for the production of a coloured massive final state + a colour singlet system, as ttH and Wbb
- QCD five-point scattering amplitude: calculation of analytical amplitudes one massive +4 partons in the leading colour (non planar topology within the reach in the near future)
we have completed the first calculation of Wbb production in NNLO QCD in the 4FS (massive b-quarks):
- for the missing massive amplitude, we rely on an approximation based on the massification procedure of the corresponding massless amplitude
- NNLO QCD radiative corrections crucial for precision phenomenology
- our calculation minimises ambiguities related to flavour tagging allowing for a more direct comparison to data

Oublooks

- matching to parton shower to reach NNLO+PS accuracy
- extension to other processes

BACKUP

Flavour aware jet algorithms: flavour k_{T}
Standard k_{T} algorithm

$$
d_{i j}=\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right) R_{i j}^{2}, \quad d_{i B}=k_{T, i}^{2}
$$

Flavour aware k_{T} algorithm (usually $\alpha=2$):
condition 1 automatically satisfied
flavour information available at each step of the clustering procedure

$$
d_{i j}^{(F)}=R_{i j}^{2} \times \begin{cases}{\left[\max \left(k_{T, i}^{2}, k_{T, j}^{2}\right)\right]^{\alpha}\left[\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right)\right]^{2-\alpha},} & \text { if softer of } i, j \text { is flavoured } \\ \min \left(k_{T, i}^{2}, k_{T, j}^{2}\right), & \text { if softer of } i, j \text { is flavourless }\end{cases}
$$

this ensures condition 2 among final state protojets, as soft
flavoured quark-anti-quark pair clusters first

Flavour aware jet algorithms: flavour k_{T}
Standard k_{T} algorithm

$$
d_{i j}=\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right) R_{i j}^{2}, \quad d_{i B}=k_{T, i}^{2}
$$

Flavour aware k_{T} algorithm (usually $\alpha=2$):
flavour information available at each step of the clustering procedure

Also beam distance problemakic:

a soft flavoured parton can be identified as a protojet and removed from the list)

$$
\begin{gathered}
d_{i B(\bar{B})}^{(F)}=R_{i j}^{2} \times \begin{cases}{\left[\max \left(k_{T, i}^{2} k_{T, B(\bar{B})}^{2}\right)\right]^{\alpha}\left[\min \left(k_{T, i}^{2} k_{T, B(\bar{B})}^{2}\right)\right]^{2-\alpha},} & \text { if } i \text { is flavoured } \\
\min \left(k_{T, i}^{2} k_{T, B(\bar{B})}^{2}\right), & \text { if } i \text { is flavourless }\end{cases} \\
k_{T, B}(y)=\sum_{i} k_{T, i}\left(\Theta\left(y_{i}-y\right)+\Theta\left(y-y_{i}\right)^{e^{y-y}}\right) \quad k_{T, \bar{B}}(y)=\sum_{i} k_{T, i}\left(\Theta\left(y-y_{i}\right)+\Theta\left(y_{i}-y\right) e^{y-y_{i}}\right)
\end{gathered}
$$

Intro: slicing methods: q_{T} subtraction formalism for massive final states

Resolution variable (for example in Drell-Yan)
$q_{T}:=$ transverse momentum of the dilepton final state
$Q:=$ invariant mass of the dilepton final state

Final state must be massive!

Initial-state radiation

For $q_{T} / Q>0$ one emission is always resolved

Final-state (collinear) radiation
There are configurations with $q_{T} / Q>0$ and two unresolved emission if leptons are massless

Intro: slicing methods: q_{T} subtraction formalism for massive final states

- Massive final state linear $(m=1)$ power corrections due to final-state emission

- At NNLO: linear $(\mathrm{m}=1)+\log$ enhancement
in general we have to rely on an extrapolation procedure!

Two-loop helicity virtual amplitudes for \mathbf{W} boson and four partons available in the Leading-colour approximation (LCA)

- analytical expressions obtained within the framework of numerical unitary (using numerical samples)
- the results are expressed in terms of a basis of one-mass pentagon functions
[Chicherin, Sotnikov, Zoia 2021]
- off-shell \mathbf{W} boson including its leptonic decay
- publicly available http://www.hep.fsu.edu/~ffebres/W4partons
- analytical expressions of the one-loop amplitudes up to $\mathcal{O}\left(\epsilon^{2}\right)$ available in LCA

Some complications

- Amplitudes provided as analytical expressions that can be processed in Mathematica; this is not suitable for on-the-fly numerical evaluation for Monte Carlo integration
- Rather long algebraic expressions akin to numerical round-off errors
- Reference process is $u \bar{b} \rightarrow \bar{b} d e^{+} \nu_{e}$. Initial-final state crossing involves in
 general analytic continuation

LCA and Massification

- we have carried out the massification procedure in LCA to explicitly check the cancellation of the poles
- however, in this way we are artificially introducing spurious miscancellation between real and virtual contributions
- moreover, the terms introduced with the massification, being enhanced by large logarithms of μ^{2} / m^{2}, are generally the dominant contributions and the difference between Full Colour and Leading Colour can be sizeable $C_{F} /\left(N_{C} / 2\right) \sim 0.89$ and $\left(C_{F} /\left(N_{C} / 2\right)\right)^{2} \sim 0.8$

$$
\begin{aligned}
& \begin{array}{rl}
\mathscr{M}_{(2)}^{W b b,(m)} & =\mathscr{M}_{(2)}^{W b b,(m=0)}+Z_{[q]}^{(1)} \mathscr{M}_{(1)}^{W b b,(m=0)}+\underbrace{Z_{[q)}^{(2)} \mathscr{M}_{(0)}^{W b b,(m=0)}}_{[q]} \\
\underbrace{(1), 2}_{[q]} M_{(1)}^{W b b,(m=0),-2}+Z_{[q]}^{(1), 1} M_{(1)}^{W b b,(m=0),-1}+Z_{[q]}^{(1), 0} M_{(1)}^{W b b,(m=0), 0}
\end{array}+\underbrace{(1),-1}_{[q]} M_{(1)}^{W b b,(m=0), 1}+Z_{[q]}^{(1),-2} M_{(1)}^{W b b,(m=0), 2}) . \\
& \text { with OpenLoops2 } \\
& \text { full colour whenever possible! } \\
& \text { cannot be fully retrieved but it is less } \\
& \text { problematic, at most a single log }
\end{aligned}
$$

Retain massification contributions at

Dealing with the complications

One-Loop amplitudes: $\mathcal{O}(1000)$ source files of small-moderate size ($<100 \mathrm{~Kb}$)

- algebraic expressions (rational function of the invariants) simplified using MultiVariate Apart [Heller, von Manteuffel, 2021] at the level of Mathematica before exporting them
- automatised generation of $\mathrm{C}++$ source files from the Mathematica expressions; very simple optimisation introducing abbreviations (https:// github.com/lecopivo/OptimizeExpressionToC)

Two-Loop amplitudes: \mathcal{O} (3000) source files of moderate size ($<250 \mathrm{~Kb}$)

- algebraic expressions too long and complex; no pre-simplification step
- breakdown of each expression in small blocks (we found this step to be crucial)
- automatised generation of $\mathrm{C}++$ source files for each block
- handling of numerical instabilities a posteriori with a simple rescue system (at integration stage)

Crossing

- simple permutation of the momenta in the algebraic coefficients
- the action of the permutation transforms the pentagon functions into each others, no need for analytic continuation. All permutations available in a Mathematica script [Chicherin, Sotnikov, Zoia 2021]

Validation and checks

- Ewo-Loop massless amplikudes (skabiliky)
the C++ (double precision) code reproduces the massless results obtained with (quad precision) Mathematica for different phase space points and crossing of the amplitudes within the single floating-precision (7-9 digits), apart for some points where it badly fails (simple rescue system)
- one-loop amplitudes in LCA
we have tested both the massless and massive amplitudes against the independent implementation available in MCFM, which allows to extract the LCA
- Poles cancelled!
the IR singularities of the massive amplitude agree with the ones predicted in [Ferroglia, Neubert, Pecjac, Yang, 2009] (in LCA)

```
WORKFLOW in a NUTSHELL
```


$\mathcal{O}(4 s)$ for phase space

Wbb phenomenology (inclusive): total cross section

Behaviour of the perturbative series

- fixed scale

$$
\begin{aligned}
& \mu_{0}=m_{W}+2 m_{b} \\
& \mu_{0}=m_{W} / 2+m_{b}
\end{aligned}
$$

- dynamic scale

$$
\begin{aligned}
& H_{T}=E_{T}(\ell \nu)+p_{T}\left(b_{1}\right)+p_{T}\left(b_{2}\right) \\
& E_{T}(\ell \nu)=\sqrt{M^{2}(\ell \nu)+p_{T}^{2}(\ell \nu)}
\end{aligned}
$$

- qualitative similar results

Wbb phenomenology (inclusive): total cross section

Behaviour of the perturbative series

- Very large NLO corrections ($K_{\mathrm{NLO}} \sim 5$), due to opening of the quark-gluon channel. LO uncertainties bands completely unreliable
- Starting from NNLO, one start to see the convergence of the perturbative series with a reduction of both Kfactors ($K_{\mathrm{NNLO}} \sim 1.6$) and theoretical uncertainties (scale variations), which are more reliable

$$
\mu_{0}=m_{W} / 2+m_{b}
$$

order	$\sigma_{\text {incl }}[\mathrm{pb}]$
LO	$18.270(2)_{-20 \%}^{+28 \%}$
NLO	$60.851(7)_{-21 \%}^{+31 \%}$
NNLO	$96.91(8)_{-17 \%}^{+21 \%}$

Comparison with HPPZ: fiducial cross sections

order	$\sigma^{4 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.05}^{5 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.1}^{5 \mathrm{FS}}[\mathrm{fb}]$	$\sigma_{a=0.2}^{5 \mathrm{FS}}[\mathrm{fb}]$
LO	$210.42(2)_{-16.2 \%}^{+21.4 \%}$	$262.52(10)_{-16.1 \%}^{+21.4 \%}$	$262.47(10)_{-16.1 \%}^{+21.4 \%}$	$261.71(10)_{-16.1 \%}^{+21.4 \%}$
NLO	$468.01(5)_{-13.8 \%}^{+17.8 \%}$	$500.9(8)_{-12.8 \%}^{+16.1 \%}$	$497.8(8)_{-12.7 \%}^{+16.0 \%}$	$486.3(8)_{-12.5 \%}^{+15.5 \%}$
NNLO	$636.4(1.6)_{-10.5 \%}^{+11.9 \%}$	$690(7)_{-9.7 \%}^{+10.9 \%}$	$677(7)_{-9.4 \%}^{+10.4 \%}$	$647(7)_{-9.4 \%}^{+9.5 \%}$

Remarks

Change of scheme @NLO [Cacciari, Nason, Greco, 1998]

1. Use same running coupling and PDF set of the 5FS calculation
2. Add the extra factor (due to the conversion between $\overline{M S}$ and decoupling schemes) : $-\alpha_{s} \frac{2 T_{R}}{3 \pi} \ln \frac{\mu_{R}^{2}}{m^{2}} \sigma_{q \bar{q}}^{\mathrm{LO}}$ No corrective term for pdfs at this order
3. Take the massless limit $m_{b} \rightarrow 0$

$$
\text { NLO 4FS: } 468 \mathrm{fb} \xrightarrow{1,2} 481 \mathrm{fb} \xrightarrow{3} 493 \mathrm{fb}
$$

Comparison with HPPZ: jet clustering algorithms

Flavour k_{T} favours the clustering of the two bottom quarks in the same jet, leading to a suppression at small $\Delta R_{b b}$ (largely due to the modified definition of beam distances)

- At NLO, flavour anti k_{T} reproduces standard anti k_{T} in the limit $a \rightarrow 0$. At NNLO cannot be arbitrarily small because of the infrared problem
- HPPZ choice: $a \in[0.05,0.2]$

Comparison with HPPZ: additional distributions

Other distributions display similar pattern of the higher-order corrections
The process features two dominant configurations: gluon splitting and \mathbf{t}-channel enhancement (back-to-back bottom quarks and back-to-back leptons)

Comparison with HPPZ: $r_{\text {cut }}$ dependence

$$
d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{q_{r} l Q>r_{\mathrm{cut}}}+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Behaviour of the power corrections compatible with a linear scaling as expected from processes with massive final state

Overall mild power corrections
Control of the NNLO correction at $\mathcal{O}(1 \%)$
$\rightarrow \mathcal{O}(0.2 \%)$ at the level of the total cross section

