Two-loop master integrals and form-factors for pseudo-scalar quarkonia

Melih A. Ozcelik

IJCLab, CNRS, Université Paris-Saclay
melih.ozcelik@ijclab.in2p3.fr
based on JHEP09(2022)194 \& JHEP02(2023)250
S. Abreu, M. Becchetti, C. Duhr, M.A. Ozcelik

RADCOR 2023, Crieff, Scotland, 29 May 2023

Introduction: What is a Quarkonium?

- similar to positronium bound state $\mathrm{e}^{+} \mathrm{e}^{-}$in QED
- bound state of heavy quark and its anti-quark in QCD, e.g. Charmonium (charm quark) and Bottomonium (bottom quark)

- Toponium $(t \bar{t})$ bound state: high mass of top quark \rightarrow decays via weak interaction before formation of bound state
- for light quarks: mixing between ($u, \mathrm{~d}, \mathrm{~s}$) quarks due to low mass difference $\rightarrow \pi$-meson, the ρ-meson and the η-meson

Motivation: Why study Quarkonia?

- charmonium production allows us to probe QCD at its interplay between the perturbative and non-perturbative regimes
- deeper understanding of confinement (production mechanism)
- access to spin/momentum distribution of gluons in protons
\rightarrow use quarkonia to constrain the gluon PDFs in the proton
- it is interesting to assess the convergence of perturbative expansion in α_{s} where $\alpha_{s}\left(m_{c}\right) \sim 0.34$ and $\alpha_{s}\left(m_{b}\right) \sim 0.22$

the $\eta_{c}-$ a good gluon probe

- η_{c} is a gluon probe at low scales at $M_{\eta_{c}}=3 \mathrm{GeV}$
- is a pseudo-scalar particle and simplest of all quarkonia as far as computation of hadro-production
- η_{c} cross section computation known
- at NLO since 1992 in collinear factorisation
[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- at LO since 2012 and at NLO since 2013 in TMD factorisation
[D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007] [J.P. Ma, J.X. Wang, S. Zhao, Phys.Rev. D88 (2013) no.1, 014027]

scale variations and negative cross-sections

- large scale uncertainties

scale variations and negative cross-sections

- large scale uncertainties
- issue of negative cross-sections

scale variations and negative cross-sections

- large scale uncertainties
- issue of negative cross-sections
- due to over-subtraction of initial-state collinear singularities into PDFs

scale variations and negative cross-sections

- large scale uncertainties
- issue of negative cross-sections
- due to over-subtraction of initial-state collinear singularities into PDFs
- resolved with new scale prescription for μ_{F} (green curve)
[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

scale variations and negative cross-sections

- large scale uncertainties
- issue of negative cross-sections
- due to over-subtraction of initial-state collinear singularities into PDFs
- resolved with new scale prescription for μ_{F} (green curve)
[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]
- for general scale reduction need NNLO calculation

scale variations and negative cross-sections

- large scale uncertainties
- issue of negative cross-sections
- due to over-subtraction of initial-state collinear singularities into PDFs
- resolved with new scale prescription for μ_{F} (green curve)
[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]
- for general scale reduction need NNLO calculation \rightarrow need two-loop form-factors

Form-factors

- compute two-loop form-factors analytically in different channels that contribute at NNLO accuracy
- $\gamma \gamma \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ exclusive/inclusive decay
- $g g \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ hadro-production and hadronic decay width
- $\gamma g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $g g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $\gamma \gamma \leftrightarrow$ para-Positronium

Form-factors

- compute two-loop form-factors analytically in different channels that contribute at NNLO accuracy
- $\gamma \gamma \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ exclusive/inclusive decay
- $g g \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ hadro-production and hadronic decay width
- $\gamma g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $g g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $\gamma \gamma \leftrightarrow$ para-Positronium
- form-factors applicable to both production and decay

Form-factors

- compute two-loop form-factors analytically in different channels that contribute at NNLO accuracy
- $\gamma \gamma \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ exclusive/inclusive decay
- $g g \leftrightarrow \eta_{Q}\left({ }^{1} S_{0}^{[1]}\right) \rightarrow$ hadro-production and hadronic decay width
- $\gamma g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $g g \leftrightarrow{ }^{1} S_{0}^{[8]} \rightarrow$ colour-octet contribution
- $\gamma \gamma \leftrightarrow$ para-Positronium
- form-factors applicable to both production and decay
- in the past form-factors have been computed only in numerical form
$\eta_{Q} \rightarrow \gamma \gamma \quad$ [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.-L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]
- para-Positronium $\rightarrow \gamma \gamma \quad$ [A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]

Amplitude generation \& partial fraction

$$
\begin{equation*}
\gamma\left(k_{1}\right)+\gamma\left(k_{2}\right) \rightarrow Q\left(p_{1}\right) \bar{Q}\left(p_{2}\right) \tag{1}
\end{equation*}
$$

Amplitude generation \& partial fraction

$$
\begin{equation*}
\gamma\left(k_{1}\right)+\gamma\left(k_{2}\right) \rightarrow Q\left(p_{1}\right) \bar{Q}\left(p_{2}\right) \tag{1}
\end{equation*}
$$

- $p^{2}=m_{Q}^{2}$ for final-state heavy quarks with $p=p_{1}=p_{2}$
- $k_{1}^{2}=k_{2}^{2}=0$ for initial-state photons
- threshold kinematics with $\hat{s}=M_{\mathcal{Q}}^{2}=4 m_{Q}^{2}$ where $M_{\mathcal{Q}}=2 m_{Q}$

Amplitude generation \& partial fraction

$$
\begin{equation*}
\gamma\left(k_{1}\right)+\gamma\left(k_{2}\right) \rightarrow Q\left(p_{1}\right) \bar{Q}\left(p_{2}\right) \tag{1}
\end{equation*}
$$

- $p^{2}=m_{Q}^{2}$ for final-state heavy quarks with $p=p_{1}=p_{2}$
- $k_{1}^{2}=k_{2}^{2}=0$ for initial-state photons
- threshold kinematics with $\hat{s}=M_{\mathcal{Q}}^{2}=4 m_{Q}^{2}$ where $M_{\mathcal{Q}}=2 m_{Q}$
- generate Feynman diagram with FeynArts (~ 450 diagrams for $g g \leftrightarrow \eta_{Q}$ case)

Amplitude generation \& partial fraction

The fact that the two heavy-quark momenta are equal allows us to simplify some integrals beforehand via the procedure of partial fractioning

Example

Feynman diagram:

Amplitude generation \& partial fraction

The fact that the two heavy-quark momenta are equal allows us to simplify some integrals beforehand via the procedure of partial fractioning

Example

Feynman diagram:

Amplitude generation \& partial fraction

The fact that the two heavy-quark momenta are equal allows us to simplify some integrals beforehand via the procedure of partial fractioning

Example

Feynman diagram:

$$
\begin{equation*}
I_{\text {Coul. }}=\int d^{D} q_{1} \frac{1}{D_{1} D_{2} D_{3} D_{4}}=\underbrace{D_{2}}_{D_{2}} \tag{2}
\end{equation*}
$$

Denominators are linearly dependent: $D_{4}=\frac{1}{2}\left(D_{1}+D_{3}\right)$

Amplitude generation \& partial fraction

Example

Feynman diagram:

$$
\begin{equation*}
I_{\text {Coul. }}=\int d^{D} q_{1} \frac{1}{D_{1} D_{2} D_{3} D_{4}}=\int d^{D} q_{1} \frac{2}{D_{1} D_{2} D_{3}^{2}}-\int d^{D} q_{1} \frac{1}{D_{2} D_{3}^{2} D_{4}} \tag{3}
\end{equation*}
$$

Amplitude generation \& partial fraction

- partial fraction allows us to simplify integrals, 4-point function \rightarrow 3-point function

Amplitude generation \& partial fraction

- partial fraction allows us to simplify integrals, 4-point function \rightarrow 3-point function
- at higher loop orders, many denominators are involved
\rightarrow linearly dependent denominators can be systematically detected

Amplitude generation \& partial fraction

- partial fraction allows us to simplify integrals, 4-point function \rightarrow 3-point function
- at higher loop orders, many denominators are involved
\rightarrow linearly dependent denominators can be systematically detected
- partial fractioning can be performed with \$Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

Amplitude generation \& partial fraction

- partial fraction allows us to simplify integrals, 4-point function \rightarrow 3-point function
- at higher loop orders, many denominators are involved
\rightarrow linearly dependent denominators can be systematically detected
- partial fractioning can be performed with \$Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]
- perform tensor integral decomposition in new basis

Amplitude generation \& partial fraction

- partial fraction allows us to simplify integrals, 4-point function \rightarrow 3-point function
- at higher loop orders, many denominators are involved
\rightarrow linearly dependent denominators can be systematically detected
- partial fractioning can be performed with \$Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]
- perform tensor integral decomposition in new basis
- reduce integrals to master integrals via IBP with FIRE
[A.V. Smirnov, Comput.Phys.Commun. 189 (2015) 182-191]

Amplitude

- two-loop Amplitude $\mathcal{A}^{(2)}$:

$$
\begin{equation*}
\mathcal{A}^{(2)}=\mathcal{A}^{(0)} \sum_{i=1}^{n_{\text {master }}} c_{i}(\epsilon) \mathrm{MI}[i] \tag{5}
\end{equation*}
$$

- tree-level Amplitude $\mathcal{A}^{(0)}$
- coefficient c_{i} contains information on:
- rational factor depending on dimensional regulator ϵ
- colour factor $\left(C_{A}, C_{F}, T_{F}\right)$
- number of massive (n_{h}) and massless (n_{l}) closed fermion loops (vacuum \& light-by-light)
- need to compute master integrals MI[i]

Topologies and master integrals

Some examples of topologies:

Topologies and master integrals

- Appearance of 76 master integrals in total

Topologies and master integrals

- Appearance of 76 master integrals in total
- some are known in general kinematics but not usable at special kinematics

Topologies and master integrals

- Appearance of 76 master integrals in total
- some are known in general kinematics but not usable at special kinematics
- Master integrals are seemingly independent, however we find some interesting equivalence relations beyond IBP

Topologies and master integrals

- Appearance of 76 master integrals in total
- some are known in general kinematics but not usable at special kinematics
- Master integrals are seemingly independent, however we find some interesting equivalence relations beyond IBP
- Partial Fraction Relations

Topologies and master integrals

- Appearance of 76 master integrals in total
- some are known in general kinematics but not usable at special kinematics
- Master integrals are seemingly independent, however we find some interesting equivalence relations beyond IBP
- Partial Fraction Relations
- Triangle Relations

Partial Fraction Identities

Identity

relation at integrand level:

$$
\underbrace{\frac{1}{\left[(q+p)^{2}-m^{2}\right]} \underbrace{\left[(q-p)^{2}-m^{2}\right]}_{D_{3}}}_{D_{1}}=\frac{1}{2} \underbrace{\left[(q+p)^{2}-m^{2}\right]}_{D_{1}} \underbrace{q^{2}}_{D_{2}}+\frac{1}{2} \underbrace{q^{2}}_{D_{2}} \underbrace{\left[(q-p)^{2}-m^{2}\right]}_{D_{3}}
$$

Partial Fraction Identities

Identity

$$
\begin{equation*}
{ }^{4 m^{2}}\left\|_{D_{3}}^{D_{1}}=\frac{1}{2}\right\|_{m^{2}}^{D_{2}} D_{D_{1}}^{D_{2}}\left\|+\frac{1}{2}\right\| m^{m_{2}} m^{m^{2}} \| \tag{6}
\end{equation*}
$$

Example

Partial Fraction Identities

- linear relations between integrals in different topology families

Partial Fraction Identities

- linear relations between integrals in different topology families
- not detected during IBP reduction (e.g. Kira, ...)

Partial Fraction Identities

- linear relations between integrals in different topology families
- not detected during IBP reduction (e.g. Kira, ...)
- need to find these relations manually,

Partial Fraction Identities

- linear relations between integrals in different topology families
- not detected during IBP reduction (e.g. Kira, ...)
- need to find these relations manually,
\rightarrow can find additional relations by combining with IBP reduction, e.g.

Partial Fraction Identities

- linear relations between integrals in different topology families
- not detected during IBP reduction (e.g. Kira, ...)
- need to find these relations manually,
\rightarrow can find additional relations by combining with IBP reduction, e.g.

$$
m_{45}=\frac{2(3 d-11) m^{2}}{(d-3)(3 d-10)} m_{53}-\frac{8 m^{4}}{(d-3)(3 d-10)} m_{54}+\frac{(d-2)^{2}}{4(d-3)(3 d-10) m^{4}} m_{76}
$$

Partial Fraction Identities

- linear relations between integrals in different topology families
- not detected during IBP reduction (e.g. Kira, ...)
- need to find these relations manually,
\rightarrow can find additional relations by combining with IBP reduction, e.g.

$$
m_{45}=\frac{2(3 d-11) m^{2}}{(d-3)(3 d-10)} m_{53}-\frac{8 m^{4}}{(d-3)(3 d-10)} m_{54}+\frac{(d-2)^{2}}{4(d-3)(3 d-10) m^{4}} m_{76}
$$

- question for future: can one systematically incorporate partial fraction relations into IBP reduction system (useful for phase-space integrations)?

Triangle Relations

Identity

relation at integral level:

$$
\int d^{d} q \frac{1}{\left[q^{2}-m_{1}^{2}\right]^{2}\left[\left(q+p_{1}\right)^{2}-m_{2}^{2}\right]\left[\left(q-p_{2}\right)^{2}-m_{2}^{2}\right]}=\int d^{d} q\left(m_{1} \leftrightarrow m_{2}\right)
$$

no constraint for p_{1} and p_{2} (can involve loop momenta), only constraint is that $k_{1}^{2}=0$

Triangle Relations

Identity

Example

Triangle Relations

Identity

Example

questions for future: can we systematically incorporate these relations into IBP? And are there more of these relations (box, pentagon integrals)?

Special functions

- Multiple Polylogarithms - points on the Riemann sphere
- elliptic Multiple Polylogarithms - points on the torus
- iterated integrals of modular forms - rational points on the torus

Multiple Polylogarithms (MPLs)

Multiple Polylogarithms (MPLs)

$$
\begin{align*}
G\left(a_{1}, \ldots, a_{n} ; z\right) & =\int_{0}^{z} d t \frac{1}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \tag{10}\\
G(0 ; t) & =\log t \tag{11}
\end{align*}
$$

- weight of function corresponds to number of indices $w=n$
- m-loop amplitude usually exhibits functions up to weight of $w=2 m \rightarrow$ will be useful as cross-check of amplitude
- numerical evaluation can be achieved with GiNaC-interface

elliptic Multiple Polylogarithms (eMPLs)

$$
\begin{align*}
E_{4}\left(\begin{array}{l}
n_{1} \ldots n_{m} \\
c_{1} \ldots c_{m}
\end{array} x, \vec{q}\right) & =\int_{0}^{x} d t \psi_{n_{1}}\left(c_{1}, t, \vec{q}\right) E_{4}\left(\begin{array}{l}
n_{2} \ldots n_{m} \\
c_{2} \ldots c_{m}
\end{array} ; t, \vec{q}\right) \tag{12}\\
E_{4}\left(\begin{array}{l}
\overrightarrow{1} \\
\vec{c}
\end{array} x, \vec{q}\right) & =G(\vec{c} ; x) \tag{13}
\end{align*}
$$

- \vec{q} are the roots of the elliptic curve defined by

$$
\begin{equation*}
y^{2}=\left(t-q_{1}\right)\left(t-q_{2}\right)\left(t-q_{3}\right)\left(t-q_{4}\right) \tag{14}
\end{equation*}
$$

- $\psi_{n_{1}}\left(c_{1}, t, \vec{q}\right)$ are the elliptic kernels
- e.g. $\psi_{0}(0, t, \vec{q})=\frac{c_{4}}{y}$ where $c_{4}=\frac{1}{2} \sqrt{\left(q_{1}-q_{3}\right)\left(q_{2}-q_{4}\right)}$
- e.g. $\psi_{1}\left(c, t, \overrightarrow{q_{r}}\right)=\frac{1}{t-c}$
- define weight as $w=\sum_{i}^{m}\left|n_{i}\right|$ and length as $I=m$

elliptic Multiple Polylogarithms (eMPLs)

eMPLs in torus representation

$$
\tilde{\Gamma}\left(\begin{array}{l}
n_{1} \ldots n_{m} \tag{15}\\
z_{1} \ldots z_{m}
\end{array} ; z, \tau\right)=\int_{0}^{z} d z^{\prime} g^{\left(n_{1}\right)}\left(z^{\prime}-z_{1}, \tau\right) \tilde{\Gamma}\left(\begin{array}{l}
n_{2} \ldots n_{m} \\
z_{2} \ldots z_{m}
\end{array} z^{\prime}, \tau\right)
$$

- a torus is double-periodic and can be defined as a two-dimensional lattice

$$
\begin{equation*}
\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z} \tau=\{m+n \tau \mid m, n \in \mathbb{Z}\} \tag{16}
\end{equation*}
$$

- τ characterises the shape of the torus
- z are the points on the torus within Λ_{τ}

Iterated integrals of modular forms

if all z_{i} are rational points on the torus of the form

$$
\begin{equation*}
z_{i}=\frac{r}{N}+\frac{s}{N} \tau \text { with } 0 \leq r, s<N \text { and } r, s, N \in \mathbb{N} \tag{17}
\end{equation*}
$$

Iterated integrals of modular forms

if all z_{i} are rational points on the torus of the form

$$
\begin{equation*}
z_{i}=\frac{r}{N}+\frac{s}{N} \tau \text { with } 0 \leq r, s<N \text { and } r, s, N \in \mathbb{N} \tag{17}
\end{equation*}
$$

\rightarrow can rewrite them in terms of iterated integrals of modular forms

$$
\begin{gather*}
I\left(f_{1}, \ldots, f_{n} ; \tau\right)=\int_{i \infty}^{\tau} \frac{d \tau^{\prime}}{2 \pi i} f_{1} I\left(f_{2}, \ldots, f_{n} ; \tau\right) \tag{18}\\
f_{i}=h_{N, r, s}^{(n)}(\tau)=-\sum_{\substack{(a, b) \in \mathbb{Z}^{2} \\
(a, b) \neq(0,0)}} \frac{e^{2 \pi i \frac{(b s-a r)}{N}}}{(a \tau+b)^{n}} \tag{19}
\end{gather*}
$$

Direct Integration

Feynman integral can be represented via two graph polynomials \mathcal{U} and \mathcal{F} which are the first and second Symanzik polynomial respectively.

$$
\begin{align*}
I=(-1)^{a}\left(e^{\epsilon \gamma_{E}}\right)^{h} \Gamma\left(a-h \frac{D}{2}\right) & \int_{0}^{\infty} d x_{1} \ldots \int_{0}^{\infty} d x_{m} \delta\left(1-\Delta_{H}\right) \times \\
& \times \prod_{i=1}^{m}\left(\frac{x_{i}^{a_{i}-1}}{\Gamma\left(a_{i}\right)}\right) \frac{\mathcal{U}^{a-(h+1) \frac{D}{2}}}{\mathcal{F}^{a-h \frac{D}{2}}} \tag{20}
\end{align*}
$$

Direct Integration

Feynman integral can be represented via two graph polynomials \mathcal{U} and \mathcal{F} which are the first and second Symanzik polynomial respectively.

$$
\begin{align*}
I=(-1)^{a}\left(e^{\epsilon \gamma_{E}}\right)^{h} \Gamma\left(a-h \frac{D}{2}\right) & \int_{0}^{\infty} d x_{1} \ldots \int_{0}^{\infty} d x_{m} \delta\left(1-\Delta_{H}\right) \times \\
& \times \prod_{i=1}^{m}\left(\frac{x_{i}^{a_{i}-1}}{\Gamma\left(a_{i}\right)}\right) \frac{\mathcal{U}^{a-(h+1) \frac{D}{2}}}{\mathcal{F}^{a-h \frac{D}{2}}} \tag{20}
\end{align*}
$$

- each x_{i} corresponds to a edge/propagator in a graph

Direct Integration

Feynman integral can be represented via two graph polynomials \mathcal{U} and \mathcal{F} which are the first and second Symanzik polynomial respectively.

$$
\begin{align*}
I=(-1)^{a}\left(e^{\epsilon \gamma_{E}}\right)^{h} \Gamma\left(a-h \frac{D}{2}\right) & \int_{0}^{\infty} d x_{1} \ldots \int_{0}^{\infty} d x_{m} \delta\left(1-\Delta_{H}\right) \times \\
& \times \prod_{i=1}^{m}\left(\frac{x_{i}^{a_{i}-1}}{\Gamma\left(a_{i}\right)}\right) \frac{\mathcal{U}^{a-(h+1) \frac{D}{2}}}{\mathcal{F}^{a-h \frac{D}{2}}} \tag{20}
\end{align*}
$$

- each x_{i} corresponds to a edge/propagator in a graph
- the second Symanzik polynomial \mathcal{F} distinguishes between massive and massless propagators
- each massless propagator/edge contributes linearly to \mathcal{F}
- each massive propagator/edge contributes quadratically to \mathcal{F}

Direct Integration

Feynman integral can be represented via two graph polynomials \mathcal{U} and \mathcal{F} which are the first and second Symanzik polynomial respectively.

$$
\begin{align*}
I=(-1)^{a}\left(e^{\epsilon \gamma_{E}}\right)^{h} \Gamma\left(a-h \frac{D}{2}\right) & \int_{0}^{\infty} d x_{1} \ldots \int_{0}^{\infty} d x_{m} \delta\left(1-\Delta_{H}\right) \times \\
& \times \prod_{i=1}^{m}\left(\frac{x_{i}^{a_{i}-1}}{\Gamma\left(a_{i}\right)}\right) \frac{\mathcal{U}^{a-(h+1) \frac{D}{2}}}{\mathcal{F}^{a-h \frac{D}{2}}} \tag{20}
\end{align*}
$$

- each x_{i} corresponds to a edge/propagator in a graph
- the second Symanzik polynomial \mathcal{F} distinguishes between massive and massless propagators
- each massless propagator/edge contributes linearly to \mathcal{F}
- each massive propagator/edge contributes quadratically to \mathcal{F}
- need to integrate out each single edge x_{i}; one done via Cheng-Wu delta function $\delta\left(1-\Delta_{H}\right)$.

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs
- elliptic linear reducibility: an order of integration variables which is linear reducible excluding the last integration which introduces a square-root

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs
- elliptic linear reducibility: an order of integration variables which is linear reducible excluding the last integration which introduces a square-root
\rightarrow master integral expressible in terms of eMPLs

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs
- elliptic linear reducibility: an order of integration variables which is linear reducible excluding the last integration which introduces a square-root
\rightarrow master integral expressible in terms of eMPLs
- elliptic next-to-linear reducibility: an order of integration variables which is linear reducible excluding the second-last integration which introduces a square-root

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs
- elliptic linear reducibility: an order of integration variables which is linear reducible excluding the last integration which introduces a square-root
\rightarrow master integral expressible in terms of eMPLs
- elliptic next-to-linear reducibility: an order of integration variables which is linear reducible excluding the second-last integration which introduces a square-root
\rightarrow requires rationalisation, e.g. RationalizeRoots,

Direct Integration

We now briefly discuss different cases that we have to consider,

- linear reducibility: an order of integration variables can be found where the integration kernels are all linear
\rightarrow master integral expressible in terms of MPLs
- elliptic linear reducibility: an order of integration variables which is linear reducible excluding the last integration which introduces a square-root
\rightarrow master integral expressible in terms of eMPLs
- elliptic next-to-linear reducibility: an order of integration variables which is linear reducible excluding the second-last integration which introduces a square-root
\rightarrow requires rationalisation, e.g. RationalizeRoots,
[Besier, Wasser, Weinzierl]
\rightarrow master integral expressible in terms of eMPLs

Master Integrals - Elliptic Curves

We encounter two different types of elliptic curves,

- one is associated to the elliptic sunrise

$$
\begin{equation*}
\vec{q}=\left(\frac{1}{2}(1-\sqrt{1+2 i}), \frac{1}{2}(1-\sqrt{1-2 i}), \frac{1}{2}(1+\sqrt{1+2 i}), \frac{1}{2}(1+\sqrt{1-2 i})\right) \tag{21}
\end{equation*}
$$

- the other is associated to the master integral

$$
\begin{equation*}
\vec{q}=(1-\sqrt{5}, 0,2,1+\sqrt{5}) \tag{22}
\end{equation*}
$$

and appears only in light-by-light scattering contribution

Analytics and Numerics

- computed all integrals analytically via direct integration

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
[Duhr, Tancredi, JHEP 02 (2020) 105]
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
[Duhr, Tancredi, JHEP 02 (2020) 105]
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:
- make use of Auxiliary Mass Flow (AMFlow) technique

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
[Duhr, Tancredi, JHEP 02 (2020) 105]
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:
- make use of Auxiliary Mass Flow (AMFlow) technique
[Liu, Ma, 2201.11669]
- cross-check/alternative: make use of differential equation approach and solve numerically via series expansion approach, e.g. DiffExp
[Hidding, 2006.05510]

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
[Duhr, Tancredi, JHEP 02 (2020) 105]
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:
- make use of Auxiliary Mass Flow (AMFlow) technique
[Liu, Ma, 2201.11669]
- cross-check/alternative: make use of differential equation approach and solve numerically via series expansion approach, e.g. DiffExp
[Hidding, 2006.05510]
\rightarrow produced high-precision numerics (1500 digits)

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
[Vollinga, Weinzierl]
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:
- make use of Auxiliary Mass Flow (AMFlow) technique
[Liu, Ma, 2201.11669]
- cross-check/alternative: make use of differential equation approach and solve numerically via series expansion approach, e.g. DiffExp
[Hidding, 2006.05510]
\rightarrow produced high-precision numerics (1500 digits)
- validation of results numerically with pySecDec (only few digits)

Analytics and Numerics

- computed all integrals analytically via direct integration
- class 1: MPL integrals
\rightarrow high-precision numerics with GiNaC-package
- class 2: iterated integrals of modular forms
\rightarrow high-precision numerics with algorithm
- class 3: eMPLs integrals
\rightarrow numerics: convergence is rather slow \rightarrow need a different method:
- make use of Auxiliary Mass Flow (AMFlow) technique
[Liu, Ma, 2201.11669]
- cross-check/alternative: make use of differential equation approach and solve numerically via series expansion approach, e.g. DiffExp
[Hidding, 2006.05510]
\rightarrow produced high-precision numerics (1500 digits)
- validation of results numerically with pySecDec (only few digits)
- PSLQ procedure: find additional relations between elliptic integrals beyond equivalence relations shown earlier

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

1. standard soft/collinear IR singularities

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

1. standard soft/collinear IR singularities
2. Coulomb singularity related to bound state

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

1. standard soft/collinear IR singularities
2. Coulomb singularity related to bound state

$$
\begin{equation*}
\mathcal{A}^{\text {fin }}=\mathcal{Z}_{\text {Coul. }}^{-1} \mathcal{Z}_{\mathrm{IR}}^{-1} \overline{\mathcal{A}} \tag{23}
\end{equation*}
$$

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

1. standard soft/collinear IR singularities
2. Coulomb singularity related to bound state

$$
\begin{equation*}
\mathcal{A}^{\text {fin }}=\mathcal{Z}_{\text {Coul. }}^{-1} \mathcal{Z}_{\mathrm{IR}}^{-1} \overline{\mathcal{A}} \tag{23}
\end{equation*}
$$

- Coulomb singularity at simple pole only depends on colour of bound state:

$$
\gamma_{\text {Coulomb }}^{1}{ }_{\delta_{S_{0}[c]}^{l}}= \begin{cases}-\pi^{2}\left(C_{F}^{2}+\frac{1}{2} C_{F} C_{A}\right) & c=1, \tag{24}\\ -\pi^{2}\left(C_{F}^{2}-\frac{1}{2} C_{F} C_{A}\right) & c=8 .\end{cases}
$$

Form-factors: UV \& IR pole structure

Now ready to plug in analytics and numerics for the form-factors.

- the bare amplitude \mathcal{A} contains poles in ϵ
- after UV renormalisation, the renormalised amplitude $\overline{\mathcal{A}}$ still contains IR singularities

1. standard soft/collinear IR singularities
2. Coulomb singularity related to bound state

$$
\begin{equation*}
\mathcal{A}^{\text {fin }}=\mathcal{Z}_{\text {Coul. }}^{-1} \mathcal{Z}_{\mathrm{IR}}^{-1} \overline{\mathcal{A}} \tag{23}
\end{equation*}
$$

- Coulomb singularity at simple pole only depends on colour of bound state:

$$
\gamma_{\text {Coulomb }}^{1} S_{0}^{[c]} \quad \begin{cases}-\pi^{2}\left(C_{F}^{2}+\frac{1}{2} C_{F} C_{A}\right) & c=1 \tag{24}\\ -\pi^{2}\left(C_{F}^{2}-\frac{1}{2} C_{F} C_{A}\right) & c=8\end{cases}
$$

\rightarrow the one for colour-singlet $(c=1)$ is in agreement with literature, while the colour-octet $(c=8)$ is new.

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

- compare to known numerical results for $\gamma \gamma \leftrightarrow \eta_{Q}$ case
\rightarrow find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.L.L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

- compare to known numerical results for $\gamma \gamma \leftrightarrow \eta_{Q}$ case
\rightarrow find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.L.L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]
- for the new form-factors, validation is based on universal IR pole structure \rightarrow amplitudes are manifestly finite after UV and IR renormalisation
[Catani; Becher, Neubert]

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

- compare to known numerical results for $\gamma \gamma \leftrightarrow \eta_{Q}$ case
\rightarrow find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.L.L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]
- for the new form-factors, validation is based on universal IR pole structure \rightarrow amplitudes are manifestly finite after UV and IR renormalisation
[Catani; Becher, Neubert]
- all amplitudes contain functions of maximal weight $w=4$ (e.g. $\pi^{4}, \log ^{4} 2, \pi \zeta_{3}$) and maximal length $I=4$ for the elliptic functions.

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

- compare to known numerical results for $\gamma \gamma \leftrightarrow \eta_{Q}$ case
\rightarrow find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.L.L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]
- for the new form-factors, validation is based on universal IR pole structure \rightarrow amplitudes are manifestly finite after UV and IR renormalisation
[Catani; Becher, Neubert]
- all amplitudes contain functions of maximal weight $w=4$ (e.g. $\pi^{4}, \log ^{4} 2, \pi \zeta_{3}$) and maximal length $I=4$ for the elliptic functions.
- regular Abelian corrections $\left(C_{F}^{2}, C_{F} T_{F} n_{h / l}\right)$ are identical for all form-factors \rightarrow further confirmation of the new form-factor results

Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

- compare to known numerical results for $\gamma \gamma \leftrightarrow \eta_{Q}$ case
\rightarrow find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.L. Sang, Phys.Rev.Lett. 115 (2015) 22, 222001]
- for the new form-factors, validation is based on universal IR pole structure \rightarrow amplitudes are manifestly finite after UV and IR renormalisation
[Catani; Becher, Neubert]
- all amplitudes contain functions of maximal weight $w=4$ (e.g. $\pi^{4}, \log ^{4} 2, \pi \zeta_{3}$) and maximal length $I=4$ for the elliptic functions.
- regular Abelian corrections $\left(C_{F}^{2}, C_{F} T_{F} n_{h / l}\right)$ are identical for all form-factors \rightarrow further confirmation of the new form-factor results
- QED corrections to para-Positronium result, agreement with existing numerical results in literature
[A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]

Summary: Form-factors

- computed all two-loop master integrals analytically
- produced high-precision numerics (>1000 digits)
- find some interesting equivalence relations
- have complete analytical results for form-factors available
- form-factors are finite after UV and IR renormalisation
\rightarrow ready for phenomenological applications

Thank you for attention!

