Loop calculations with graphical functions

Oliver Schnetz

Department Mathematik
CauerstraBe 11
91058 Erlangen

RadCor, Crieff UK, May 29, 2023

Oliver Schnetz Loop calculations with graphical functions



@ Graphical functions

@ Generalized single-valued hyperlogarithms

© Non-integer dimensions

@ Results

Oliver Schnetz Loop calculations with graphical functions



Graphical functions

The graphical functions method works for

@ massless,
@ 2pt, 3pt, or convergent (conformal) 4pt amplitudes

@ in even dimensions > 4.
Ideal playground: renormalization functions 3(g), v(g), Ym(g)-
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Graphical functions

@ Massless 2pt amplitudes are scalars (periods).
@ More structure in functions.

@ Massless 3pt amplitudes (or 4pt conformal) are the simplest
functions in QFT (two-scale).

o Generalize 3pt amplitudes by allowing the Feynman graph to
have any number of edges at the three external vertices
(points).

@ Use position space. Three points span a plane in RY.
Consider this plane as C.

@ Study the amplitude as a function on C using the theory of
complex functions.
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Graphical functions

Picture (by M. Borinsky)
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Graphical functions

Definition

Ac(20, 21, 22) = ||z1 — 20]| 2 N6 £ (2),
with A = D/2 — 1, invariants

|22 — 2> |22 — 21|

=(z-1)(z-1),

lzi —2l> "7 |z — =

and the scaling weight (superficial degree of divergence)

Ng = (Zue) - %vglt.
e
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Graphical functions

General properties of graphical functions

o Reflection symmetry fg(z) = f6(2).
e f¢ is a real-analytic single-valued function on C\{0,1} (with
M. Golz, E. Panzer).

@ There exist single-valued log-Laurent expansions for the e
coefficients of fg(z) at the singular points 0, 1, co.

Z Z [Iog z—5)(z—s)|(z—s)"(z—s)" if |z—s| < 1,

£>0 m,n=Mj

Moo
>y czon’,lfn(logzz)ezmz” if |z] > 1.

£>0 m,n=—o0

Oliver Schnetz Loop calculations with graphical functions



Graphical functions

Construction of graphical functions

@ Add edges between external vertices

[{;] _ [{ﬂ Y [@3]

@ Permute external vertices
0 1
z —< =|1-z —< = (zf)_/\NG 1 —(
1 0
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Graphical functions

Construction of graphical functions

@ Invert the effective Laplace equation for an isolated edge of
weight 1 at vertex z,

(oer Z00) [« |-ty

_ 1 _ n(n+1)
_ n+1
with A, = 7(2 — Sy 0,0:(z—2)""" + —

where D =2n+4—e.
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Graphical functions

Picture (by M. Borinsky)
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Graphical functions

The 4 miracles of graphical functions

Proved with M. Borinsky:

@ For e = 0 there exists a closed solution of the effective
Laplace equation by taking single-valued primitives. (This is
trivial in D = 4 dimensions.)

@ For € = 0 the solution is unique in the space of graphical
functions.

@ The inversion of the effective Laplace equation fully
generalizes to non-integer dimensions € # 0.

@ There exists a function space which is closed under inverting
the effective Laplace equation. The inversion is efficient in
this function space.
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Generalized single-valued hyperlogarithms

Definition

Generalized single-valued hyperlogarithms (GSVHs) are iterated
primitives of differential forms

dz

b,c,d e C
azz+ bz+cz+d’ %56 ’

on the punctured (!) Riemann sphere C\{0,si,...,sn}.
Example (C. Duhr et al.).

/ D(z)dz

v 2—Z2
where D(z) is the Bloch-Wigner dilogarithm,

D(z) =Im (Lis(z) + log(1 — z) log |z|).
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Generalized single-valued hyperlogarithms

The commutative hexagon

GSVHs can be constructed with a commutative hexagon:

[ dzy 9 ,\fsv dz
8Y 9zg
oo
8Y 0zG

N
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Non-integer dimensions

2n + 4 — € dimensions

@ Taylor coefficients of convergent graphical functions in
non-integer dimensions are obtained by a straight forward
expansion method.

@ For sinular graphical functions a sophisticated subtraction
method is necessary to obtain the Laurent coefficients.
(Problem: uniqueness of the inversion of the effective Laplace
equation.)

@ There exists a large toolbox for calculating low order Laurent
coefficients of (singular) graphical functions.
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Non-integer dimensions

Comparism with classical techniques

@ Momentum space techniques are more general (masses, Npt
functions).

@ Momentum space techniques can also be applied to graphical
functions (master integrals).

@ The theory of graphical functions performs the integrations.

@ The large set of constructible graphs is always computable
with graphical functions (to sensible orders in €).

@ One always obtains a reduction of complexitiy by integrating
out a subset of the edges of the Feynman graph.
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Results

Finished

e ¢* theory (4 dimensions): 8 loops field anomalous dimension
y.
7 loops S function, mass anomalous dimension vy, self-energy
Y.

o ¢3 theory (6 dimensions): 6 loops field anomalous dimension
v, B function, mass anomalous dimension 7.
5 loops self-energy X.
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Results

Preliminary

s 245045 , 3357 11
- 210 _ 22 05)(3
58 = 200 (0) 4 3703 + 22Te(5,3) - S <(5)3)
81733 , 456443 9 |, 2425
_ _ 7+ - _ o=
2016000" 1152 (1) gog™ () ~ 354 <(3)
L L7645 o ABTEIAT ) 42654751
2612736 34560 74649600
85523425 173655397121

186624 (3) - 3224862720
— —241.455497609497 . . .

(¢(5,3) = S psho>1 ﬁ May 19, 2023, to be checked)
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Results

Future

e ¢* theory: 8 loops 3 function (93% complete), mass
anomalous dimension yp,.

@ Gauge theories: 6 loops QED, QCD, ...
@ Yukawa theory, ...

@ Extensions: odd dimensions, masses, . ..
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