Tropical Feynman Integration in the Physical Region

Henrik J. Munch

University of Padova

RADCOR 2023

Università degli Studi di Padova

Page 1 / 21

Work in collaboration with

Michael Borinsky

Felix Tellander

 This talk is based on Tropical Feynman integration in the Minkowski regime [2302.08955]

Continuation of research program started by M. Borinsky in *Tropical Monte Carlo quadrature for Feynman integrals* [2008.12310]

Motivation

- Projective Feynman integrals
- Tropical integration
- 🛛 feyntrop package
- **5** Conclusion and outlook

Analytic approach:

Express via special functions (MPLs, elliptics, modular forms...)

Preferably know:

- Algebraic relations
- Analytic continuation
- Rapidly converging power series

■ Issue: "Good" space of functions unknown for 2 loops and beyond!

- 🔳 🖬 Input: Diagram 🕂 numerical phase space point
- Output: Numerical value for Feynman integral

Analytic approach:

Express via special functions (MPLs, elliptics, modular forms...)

Preferably know:

- Algebraic relations
- Analytic continuation
- Rapidly converging power series
- Issue: "Good" space of functions unknown for 2 loops and beyond!

- Input: Diagram + numerical phase space point
- Output: Numerical value for Feynman integral

Analytic approach:

- Express via special functions (MPLs, elliptics, modular forms...)
- Preferably know:
 - Algebraic relations
 - Analytic continuation
 - Rapidly converging power series

■ Issue: "Good" space of functions unknown for 2 loops and beyond!

Numerical approach:

Input: Diagram + numerical phase space point

Output: Numerical value for Feynman integral

Analytic approach:

- Express via special functions (MPLs, elliptics, modular forms...)
- Preferably know:
 - Algebraic relations
 - Analytic continuation
 - Rapidly converging power series
- Issue: "Good" space of functions unknown for 2 loops and beyond!

- Input: Diagram + numerical phase space point
- Output: Numerical value for Feynman integral

Analytic approach:

- Express via special functions (MPLs, elliptics, modular forms...)
- Preferably know:
 - Algebraic relations
 - Analytic continuation
 - Rapidly converging power series
- Issue: "Good" space of functions unknown for 2 loops and beyond!

Analytic approach:

- Express via special functions (MPLs, elliptics, modular forms...)
- Preferably know:
 - Algebraic relations
 - Analytic continuation
 - Rapidly converging power series
- Issue: "Good" space of functions unknown for 2 loops and beyond!

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- (Causal) loop-tree duality [Capatti et al.]

This talk: New software feyntrop based on tropical integration

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- (Causal) loop-tree duality [Capatti et al.]

This talk: New software feyntrop based on tropical integration

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- 🔳 (Causal) loop-tree duality [Capatti et al.]

territion the software feyntrop based on tropical integration

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- (Causal) loop-tree duality [Capatti et al.]

feyntrop based on tropical integration

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- (Causal) loop-tree duality [Capatti et al.]

This talk: New software feyntrop based on tropical integration

Existing, powerful software for numerical integration of Feynman integrals:

- Sector decomposition + Monte Carlo:
 - pySecDec [Borowka et al.]
 - FIESTA [Smirnov]
- Integration-by-parts and DEQs:
 - AMFlow [Liu, Ma]
 - DiffExp [Hidding]
 - SeaSyde [Armadillo et al.]
- (Causal) loop-tree duality [Capatti et al.]

This talk: New software feyntrop based on tropical integration

Can swiftly get better than % accuracy for integrals at high loop-order involving many scales

Page 6 / 21

Feynman loop diagram G = (V, E):

- Vertices: $V = \{1, 2, \dots, |V|\}$
- Edges: $E = \{(u_1, v_1), \dots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$

Kinematic data:

Can then build the two Symanzik polynomials associated to $G_{\rm c}$

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - Edges: $E = \{(u_1, v_1), \dots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$

Kinematic data:

Can then build the two Symanzik polynomials associated to $G_{\rm c}$

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - \blacksquare Edges: $E = \{(u_1, v_1), \ldots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$

Kinematic data:

Minkowski scalar products of momenta: $p_u \circ p_v$

Can then build the two Symanzik polynomials associated to G

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - \blacksquare Edges: $E = \{(u_1, v_1), \ldots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$

Kinematic data:

- Minkowski scalar products of momenta: $p_u \cdot p_v$
- Internal masses: $m_e, e \in E$

Can then build the two Symanzik polynomials associated to G

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - Edges: $E = \{(u_1, v_1), \ldots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$
- Kinematic data:
 - Minkowski scalar products of momenta: $p_u \cdot p_v$
 - Internal masses: $m_e, e \in E$

Can then build the two Symanzik polynomials associated to G

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - \blacksquare Edges: $E = \{(u_1, v_1), \ldots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$
- Kinematic data:
 - \blacksquare Minkowski scalar products of momenta: $p_u \cdot p_v$
 - Internal masses: $m_e, e \in E$

Can then build the two Symanzik polynomials associated to G

 $\mathcal{U}(x)\,,\quad \mathcal{F}(x)$

- Feynman loop diagram G = (V, E):
 - Vertices: $V = \{1, 2, \dots, |V|\}$
 - \blacksquare Edges: $E = \{(u_1, v_1), \ldots, (u_{|E|}, v_{|E|})\}$ with $u, v \in V$
- Kinematic data:
 - Minkowski scalar products of momenta: $p_u \cdot p_v$
 - Internal masses: $m_e, e \in E$

Can then build the two Symanzik polynomials associated to G

 $\mathcal{U}(x), \quad \mathcal{F}(x)$

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

$$\begin{split} \mathcal{I} &= \Gamma(\omega) \int_{\mathbb{P}_+} \phi \\ \mathbb{P}_+ &= \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \, \big| \, x_e > 0 \} \end{split}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• ν_e = edge weight = propagator power

Feynman's is prescription

$$\begin{aligned} \mathcal{I} &= \Gamma(\omega) \int_{\mathbb{P}_+} \phi \\ \mathbb{P}_+ &= \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \, \big| \, x_e > 0 \} \end{aligned}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• $\nu_e = edge weight = propagator power$

- D = spacetime dimension
- Feynman's is prescription

$$\mathcal{I} = \Gamma(\boldsymbol{\omega}) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• $\nu_e = edge weight = propagator power$

 \blacksquare D = spacetime dimension

• $\omega = \sum_{e \in E} \nu_e - DL/2 =$ superficial degree of divergence (L loops) • Feynman's prescription

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• $\nu_e = edge weight = propagator power$

 \blacksquare D = spacetime dimension

• $\omega = \sum_{e \in E} \nu_e - DL/2$ = superficial degree of divergence (L loops) • $\mathcal{V}(x) = \mathcal{F}(x)/\mathcal{U}(x)$

Feynman's ie prescription

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• $\nu_e = edge weight = propagator power$

 \blacksquare D = spacetime dimension

• $\omega = \sum_{e \in E} \nu_e - DL/2$ = superficial degree of divergence (L loops) • $\mathcal{V}(x) = \mathcal{F}(x)/\mathcal{U}(x)$

$$\Omega = \sum_{e=1}^{|E|} (-1)^{|E|-e} \frac{\mathrm{d}x_1}{x_1} \cdots \frac{\mathrm{d}x_e}{x_e} \cdots \frac{\mathrm{d}x_{|E|}}{x_{|E|}}$$

■ Feynman's i∈ prescription

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$
$$\mathbb{P}_+ = \{ x = [x_1 : \ldots : x_{|E|}] \in \mathbb{RP}^{|E|-1} \mid x_e > 0 \}$$

$$\phi = \left(\prod_{e \in E} \frac{x_e^{\nu_e}}{\Gamma(\nu_e)}\right) \frac{1}{\mathcal{U}(x)^{D/2}} \left(\frac{1}{\mathcal{V}(x) - i\varepsilon \sum_{e \in E} x_e}\right)^{\omega} \Omega$$

• $\nu_e = edge weight = propagator power$

 \blacksquare D = spacetime dimension

• $\omega = \sum_{e \in E} \nu_e - DL/2 = \text{superficial degree of divergence } (L \text{ loops})$ • $\mathcal{V}(x) = \mathcal{F}(x)/\mathcal{U}(x)$ • $\Omega = \sum_{e=1}^{|E|} (-1)^{|E|-e} \frac{\mathrm{d}x_1}{x_1} \cdots \frac{\widehat{\mathrm{d}x_e}}{x_e} \cdots \frac{\mathrm{d}x_{|E|}}{x_{|E|}}$ • Feynman's *ie* prescription
Main goal

• Want fast numerical evaluation of the projective Feynman integral

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$

in the physical (not only Euclidean) region of kinematic space.

In particular, using dimensional regularization

$$D = D_0 - 2\epsilon$$

we seek \mathcal{I}_k in

$$\mathcal{I} = \sum_k \mathcal{I}_k \, \epsilon^k$$

Our approach: Tropical integration $+ i \varepsilon$ via analytic continuation

Main goal

• Want fast numerical evaluation of the projective Feynman integral

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$

in the physical (not only Euclidean) region of kinematic space.

In particular, using dimensional regularization

$$D = D_0 - 2\epsilon$$

we seek \mathcal{I}_k in

$$\mathcal{I} = \sum_k \mathcal{I}_k \, \epsilon^k$$

Our approach: Tropical integration + i\varepsilon via analytic continuation

Main goal

• Want fast numerical evaluation of the projective Feynman integral

$$\mathcal{I} = \Gamma(\omega) \int_{\mathbb{P}_+} \phi$$

in the physical (not only Euclidean) region of kinematic space.

In particular, using dimensional regularization

$$D = D_0 - 2\epsilon$$

we seek \mathcal{I}_k in

$$\mathcal{I} = \sum_k \mathcal{I}_k \, \epsilon^k$$

• Our approach: Tropical integration $+ i\varepsilon$ via analytic continuation

Tropical integration

Tropical geometry

Idea: Deform "smooth" geometries into "flat" pieces

Tropicalized polynomials

Polynomial

$$p(x) = \sum_{a \in \text{support}(p)} c_a x^a, \quad x^a = x_1^{a_1} \cdots x_n^{a_n}$$

Tropicalized version ignores coefficients and only cares about the largest monomial:

$$p^{\rm tr}(x) = \max_{a \in {\rm support}(p)} \{x^a\}$$

Theorem [Borinsky]: There exist constants $C_1, C_2 > 0$ such that

$$C_1 \leq rac{|p(x)|}{p^{ ext{tr}}(x)} \leq C_2 \quad ext{for all} \quad x \in \mathbb{P}_+.$$

assuming a technical condition (p(x) is completely non-vanishing)

Tropicalized polynomials

Polynomial

$$p(x) = \sum_{a \in \text{support}(p)} c_a x^a, \quad x^a = x_1^{a_1} \cdots x_n^{a_n}$$

Tropicalized version ignores coefficients and only cares about the largest monomial:

$$p^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(p)} \{x^a\}$$

Theorem [Borinsky]: There exist constants $C_1, C_2 > 0$ such that

$$C_1 \leq rac{|p(x)|}{p^{ ext{tr}}(x)} \leq C_2 \quad ext{for all} \quad x \in \mathbb{P}_+.$$

assuming a technical condition (p(x)) is completely non-vanishing)

Tropicalized polynomials

Polynomial

$$p(x) = \sum_{a \in \text{support}(p)} c_a x^a, \quad x^a = x_1^{a_1} \cdots x_n^{a_n}$$

Tropicalized version ignores coefficients and only cares about the largest monomial:

$$p^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(p)} \{x^a\}$$

• Theorem [Borinsky]: There exist constants $C_1, C_2 > 0$ such that

$$C_1 \leq rac{|p(x)|}{p^{ ext{tr}}(x)} \leq C_2 \quad ext{for all} \quad x \in \mathbb{P}_+$$

assuming a technical condition (p(x) is completely non-vanishing)

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

Monte Carlo sampling from the tropical probability measure

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

Take the projective Feynman integral

$$\mathcal{I} = \int rac{\Omega \prod_{e \in E} x_e^{
u_e}}{\mathcal{U}(x)^{D/2} \ \mathcal{V}(x)^{\omega}}$$

Monte Carlo sampling from the tropical probability measure.

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

• Take the projective Feynman integral and multiply by a "1":

$$\mathcal{I} = \int \frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}(x)^{D/2} \mathcal{V}(x)^{\omega}} \quad \times \quad \left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}^{\mathrm{tr}}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}^{\mathrm{tr}}(x)}\right)^{\omega}$$

Monte Carlo sampling from the tropical probability measure

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

■ Take the projective Feynman integral and multiply by a "1":

$$\mathcal{I} = \int \frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}(x)^{D/2} \mathcal{V}(x)^{\omega}} \times \left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}^{\mathrm{tr}}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}^{\mathrm{tr}}(x)}\right)^{\omega}$$

Rearrange factors:

$$\mathcal{I} = \int \frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}^{\mathrm{tr}}(x)^{D/2} \mathcal{V}^{\mathrm{tr}}(x)^{\omega}} \times \left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}(x)}\right)^{\omega}$$

Monte Carlo sampling from the tropical probability measure

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

• Take the projective Feynman integral and multiply by a "1":

$$\mathcal{I} = \int \frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}(x)^{D/2} \mathcal{V}(x)^{\omega}} \times \left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}^{\mathrm{tr}}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}^{\mathrm{tr}}(x)}\right)^{\omega}$$

Rearrange factors:

$$\mathcal{I} = \int \underbrace{\frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}^{\mathrm{tr}}(x)^{D/2} \mathcal{V}^{\mathrm{tr}}(x)^{\omega}}}_{\text{Tropical probability measure}} \times \underbrace{\left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}(x)}\right)^{\omega}}_{\text{Bounded because } C_1 \leq \frac{|p(x)|}{p^{\mathrm{tr}}(x)} \leq C_2}$$

Monte Carlo sampling from the tropical probability measure.

Tropical Symanzik polynomials (recall $\mathcal{V} = \mathcal{F}/\mathcal{U}$):

$$\mathcal{U}^{\mathrm{tr}}(x) = \max_{a \in \mathrm{support}(\mathcal{U})} \{x^a\}, \quad \mathcal{V}^{\mathrm{tr}}(x)$$

■ Take the projective Feynman integral and multiply by a "1":

$$\mathcal{I} = \int \frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}(x)^{D/2} \mathcal{V}(x)^{\omega}} \times \left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}^{\mathrm{tr}}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}^{\mathrm{tr}}(x)}\right)^{\omega}$$

Rearrange factors:

$$\mathcal{I} = \int \underbrace{\frac{\Omega \prod_{e \in E} x_e^{\nu_e}}{\mathcal{U}^{\mathrm{tr}}(x)^{D/2} \mathcal{V}^{\mathrm{tr}}(x)^{\omega}}}_{\text{Tropical probability measure}} \times \underbrace{\left(\frac{\mathcal{U}^{\mathrm{tr}}(x)}{\mathcal{U}(x)}\right)^{D/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(x)}{\mathcal{V}(x)}\right)^{\omega}}_{\text{Bounded because } C_1 \leq \frac{|p(x)|}{p^{\mathrm{tr}}(x)} \leq C}$$

Monte Carlo sampling from the tropical probability measure

Page 12 / 21

Speeding up tropical Monte Carlo sampling

- **Consider the Newton polytope of** $\mathcal{F}(x)$, Newt[\mathcal{F}]
- Tropical Monte Carlo is vastly sped up when Newt[*F*] is a Generalized Permutahedron
- Requires "sufficiently generic" kinematics

Speeding up tropical Monte Carlo sampling

Consider the Newton polytope of $\mathcal{F}(x)$, Newt[\mathcal{F}]

■ Tropical Monte Carlo is vastly sped up when Newt[*F*] is a Generalized Permutahedron

Requires "sufficiently generic" kinematics

Speeding up tropical Monte Carlo sampling

- **Consider the Newton polytope of** $\mathcal{F}(x)$, Newt[\mathcal{F}]
- Tropical Monte Carlo is vastly sped up when Newt[*F*] is a Generalized Permutahedron
- Requires "sufficiently generic" kinematics

Required for integration in the Minskowski/physical region

Infinitesimal $i\varepsilon$ not suited for numerics

Consider the Schwinger representation:

$$\mathcal{I} = \int_0^\infty \dots \exp\left[i\left(-\mathcal{V}(x) + i\varepsilon \sum_{e \in E} x_e\right)\right]$$

• Can drop $i\varepsilon$ and still have convergence if

 $\operatorname{Im}(-\mathcal{V}(x)) > 0$

Required for integration in the Minskowski/physical region
 Infinitesimal *iε* not suited for numerics

Consider the Schwinger representation:

$$\mathcal{I} = \int_0^\infty \dots \exp\left[i\left(-\mathcal{V}(x) + i\varepsilon \sum_{e \in E} x_e\right)\right]$$

Can drop $i\varepsilon$ and still have convergence if

 $\operatorname{Im}(-\mathcal{V}(x)) > 0$

Required for integration in the Minskowski/physical region
 Infinitesimal *iε* not suited for numerics

Consider the Schwinger representation:

$$\mathcal{I} = \int_0^\infty \dots \exp\left[i\left(-\mathcal{V}(x) + i\varepsilon \sum_{e \in E} x_e\right)\right]$$

• Can drop $i\varepsilon$ and still have convergence if

 $\operatorname{Im}(-\mathcal{V}(x)) > 0$

Required for integration in the Minskowski/physical region
 Infinitesimal *iε* not suited for numerics

Consider the Schwinger representation:

$$\mathcal{I} = \int_0^\infty \dots \exp\left[i\left(-\mathcal{V}(x) + i\varepsilon \sum_{e \in E} x_e\right)\right]$$

Can drop $i\varepsilon$ and still have convergence if

 $\operatorname{Im}(-\mathcal{V}(x)) > 0$

Required for integration in the Minskowski/physical region
 Infinitesimal *iε* not suited for numerics

Consider the Schwinger representation:

$$\mathcal{I} = \int_0^\infty \dots \exp\left[i\left(-\mathcal{V}(x) + i\varepsilon \sum_{e \in E} x_e\right)\right]$$

 \blacksquare Can drop $i\varepsilon$ and still have convergence if

 $\operatorname{Im}(-\mathcal{V}(x)) > 0$

Analytic continuation [Mizera, Telen] [Hannesdottir, Mizera]

$$X_e = x_e \exp\left[-i\lambda \frac{\partial \mathcal{V}(x)}{\partial x_e}\right]$$

Taylor expand

$$-\mathcal{V}(X) = -\mathcal{V}(X) + i\lambda \sum_{e \in E} x_e \left(\frac{\partial \mathcal{V}(x)}{\partial x_e}\right)^2 + O(\lambda^2)$$

• Then $Im(-\mathcal{V}(X)) > 0$ for λ small enough if

$$\exists e \in E : \quad x_e \frac{\partial \mathcal{V}(x)}{\partial x_e} \neq 0$$

lacksquare X_e also preserves projectivity of ${\cal I}$

Analytic continuation [Mizera, Telen] [Hannesdottir, Mizera]

$$X_e = x_e \exp\left[-i\lambda \frac{\partial \mathcal{V}(x)}{\partial x_e}\right]$$

Taylor expand

$$-\mathcal{V}(X) = -\mathcal{V}(x) + i\lambda \sum_{e \in E} x_e \left(\frac{\partial \mathcal{V}(x)}{\partial x_e}\right)^2 + O(\lambda^2)$$

• Then $Im(-\mathcal{V}(X)) > 0$ for λ small enough if

$$\exists e \in E : \quad x_e \frac{\partial \mathcal{V}(x)}{\partial x_e} \neq 0$$

lacksquar X_e also preserves projectivity of ${\cal I}$

Analytic continuation [Mizera, Telen] [Hannesdottir, Mizera]

$$X_e = x_e \exp\left[-i\lambda \frac{\partial \mathcal{V}(x)}{\partial x_e}\right]$$

Taylor expand

$$-\mathcal{V}(X) = -\mathcal{V}(x) + i\lambda \sum_{e \in E} x_e \left(\frac{\partial \mathcal{V}(x)}{\partial x_e}\right)^2 + O(\lambda^2)$$

• Then $\operatorname{Im}(-\mathcal{V}(X)) > 0$ for λ small enough if

$$\exists e \in E : \quad x_e \frac{\partial \mathcal{V}(x)}{\partial x_e} \neq 0$$

lacksquar X_e also preserves projectivity of ${\cal I}$

Analytic continuation [Mizera, Telen] [Hannesdottir, Mizera]

$$X_e = x_e \exp\left[-i\lambda \frac{\partial \mathcal{V}(x)}{\partial x_e}\right]$$

Taylor expand

$$-\mathcal{V}(X) = -\mathcal{V}(x) + i\lambda \sum_{e \in E} x_e \left(\frac{\partial \mathcal{V}(x)}{\partial x_e}\right)^2 + O(\lambda^2)$$

• Then $\operatorname{Im}(-\mathcal{V}(X)) > 0$ for λ small enough if

$$\exists e \in E : \quad x_e \frac{\partial \mathcal{V}(x)}{\partial x_e} \neq 0$$

\blacksquare X_e also preserves projectivity of \mathcal{I}

Assume that the Feynman integral is quasi-finite [von Manteuffel, Panzer, Schabinger]:

 $\mathcal{I} = (\epsilon - \text{divergent prefactor}) \quad \times \quad (\epsilon - \text{finite integral})$

Can always find such a representation [Berkesch, Forsgaard, Passare]

Let $D = D_0 - 2\epsilon$ and $\omega_0 = \sum_{e \in E} \nu_e - D_0 L/2$ $\mathcal{J}_{\lambda}(x)$ is the Jacobian

Assume that the Feynman integral is quasi-finite [von Manteuffel, Panzer, Schabinger]:

 $\mathcal{I} = (\epsilon - \text{divergent prefactor}) \quad \times \quad (\epsilon - \text{finite integral})$

Can always find such a representation [Berkesch, Forsgaard, Passare]

Let $D = D_0 - 2\epsilon$ and $\omega_0 = \sum_{e \in E} \nu_e - D_0 L/2$ $\mathcal{J}_{\lambda}(x)$ is the Jacobian

Assume that the Feynman integral is quasi-finite [von Manteuffel, Panzer, Schabinger]:

 $\mathcal{I} = (\epsilon - \text{divergent prefactor}) \times (\epsilon - \overline{\text{finite integral}})$

Can always find such a representation [Berkesch, Forsgaard, Passare]

• Let $D = D_0 - 2\epsilon$ and $\omega_0 = \sum_{e \in E} \nu_e - D_0 L/2$

Assume that the Feynman integral is quasi-finite [von Manteuffel, Panzer, Schabinger]:

 $\mathcal{I} = (\epsilon - \text{divergent prefactor}) \quad \times \quad (\epsilon - \text{finite integral})$

Can always find such a representation [Berkesch, Forsgaard, Passare]

Let $D = D_0 - 2\epsilon$ and $\omega_0 = \sum_{e \in E} \nu_e - D_0 L/2$

• Expanding in ϵ under the integral sign:

$$\mathcal{I} = \frac{\Gamma(\omega_0 + \epsilon L)}{\prod_{e \in E} \Gamma(\nu_e)} \sum_{k=0}^{\infty} \mathcal{I}_k \frac{\epsilon^k}{k!}$$

 $\mathcal{J}_{\lambda}(x)$ is the Jacobian

Assume that the Feynman integral is quasi-finite [von Manteuffel, Panzer, Schabinger]:

 $\mathcal{I} = (\epsilon - \text{divergent prefactor}) \times (\epsilon - \text{finite integral})$

Can always find such a representation [Berkesch, Forsgaard, Passare]

Let
$$D=D_0-2\epsilon$$
 and $\omega_0=\sum_{e\in E}
u_e-D_0L/2$

Expanding in ϵ under the integral sign:

$$\mathcal{I} = \frac{\Gamma(\omega_0 + \epsilon L)}{\prod_{e \in E} \Gamma(\nu_e)} \sum_{k=0}^{\infty} \mathcal{I}_k \frac{\epsilon^k}{k!}$$

$$\mathcal{I}_{k} = \int_{\mathbb{P}_{+}} \frac{\det \mathcal{J}_{\lambda}(x) \times \prod_{e \in E} X_{e}^{\nu_{e}}}{\mathcal{U}(X)^{D_{0}/2} \times \mathcal{V}(X)^{\omega_{0}}} \times \log^{k} \left(\frac{\mathcal{U}(X)}{\mathcal{V}(X)^{L}}\right) \times \Omega$$

• $\mathcal{J}_{\lambda}(x)$ is the Jacobian

feyntrop package

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes 🗸

Limitations >

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
- Physical kinematics
- Limitations >

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - \bullet e-expansion
- Limitations

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - \bullet e-expansion
- Limitations ×
- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - ϵ -expansion
- Limitations >
 - Sewij(Z)(should be a Generalized Fermutahedron ("sufficiently generic kinematics")

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - \bullet e-expansion

Limitations ×

- Newt[F] should be a Generalized Permutahedron ("sufficiently generic kinematics")
- \mathcal{I} should be quasi-finite
- G should be a scalar graph, i.e. no numerators

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - ϵ -expansion
- Limitations ×
 - Newt[*F*] should be a Generalized Permutahedron ("sufficiently generic kinematics")
 - *I* should be quasi-finite
 - G should be a scalar graph, i.e. no numerators

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - ϵ -expansion
- Limitations ×
 - Newt[*F*] should be a Generalized Permutahedron ("sufficiently generic kinematics")
 - $\blacksquare \ \mathcal{I}$ should be quasi-finite
 - G should be a scalar graph, i.e. no numerators

- Tropical Monte Carlo algorithm implemented in feyntrop git clone --recursive git@github.com:michibo/feyntrop.git
- C++ code with python interface
- Includes
 - Physical kinematics
 - ε-expansion
- Limitations ×
 - Newt[*F*] should be a Generalized Permutahedron ("sufficiently generic kinematics")
 - $\blacksquare \ \mathcal{I}$ should be quasi-finite
 - \blacksquare G should be a scalar graph, i.e. no numerators

$gg \rightarrow HHH$ with internal top quark loop

 $(m_H^2, m_t^2) = (1, 1.8995)$ $(s_{12}, s_{13}, s_{14}, s_{23}, s_{24}, s_{34}) = (17.5, -2.3, -2.4, -2.5, -2.6, -2.7)$ N = 10^10.

- * Lambda = 0.29.
- * Finished in 10.2 minutes.

 eps^0:	[0.000469553	+/-	0.00000063]	+	i	*	[-0.000721636	+/-	0.00000062]
 eps^1:	[0.00056055	+/-	0.00000025]	+	i	*	[0.00385763	+/-	0.0000024]
 eps^2:	[-0.00680350	+/-	0.0000054]	+	i	*	[-0.00516286	+/-	0.0000055]
 eps^3:	[0.01194325	+/-	0.00000089]	+	i	*	[-0.00211739	+/-	0.0000089]
 eps^4:	[-0.0064124	+/-	0.0000012]	+	i	*	[0.0109338	+/-	0.0000012

5-loop 2-point graph with 11 different masses

$$p_1^2 = 100, \quad m_1^2 = 1, \, m_1^2 = 2, \dots, m_{11}^2 = 11$$

- * Lambda = 0.02.
- * Finished in 20 hours.

 eps^0:	[0.000196885	+/-	0.00000032	2]	+	i *	[0.000140824	+/-	0.00000034	1]
 eps^1:	[-0.00493791	+/-	0.0000040]	+	i *	[-0.00079691	+/-	0.0000038]
 eps^2:	[0.0491933	+/-	0.0000025]	+	i *	[-0.0154647	+/-	0.0000025]
 eps^3:	[-0.253458	+/-	0.000012]	+	i *	[0.246827	+/-	0.000012]
 eps^4:	[0.587258	+/-	0.000046]	+	i *	[-1.720213	+/-	0.000046]
 eps^5:	[1.05452	+/-	0.00015]	+	i *	[7.38725	+/-	0.00015]
 eps^6:	[-14.66144	+/-	0.00047]	+	i *	[-20.86779	+/-	0.00046]
 eps^7:	[65.8924	+/-	0.0013]	+	i *	[35.0793	+/-	0.0013]
 eps^8:	[-190.9702	+/-	0.0036]	+	i *	[-4.4620	+/-	0.0034]
 eps^9:	[393.2522	+/-	0.0092]	+	i *	[-183.7431	+/-	0.0087]
 eps ¹⁰ :	[-558.202	+/-	0.023]	+	i *	[688.556	+/-	0.021]

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

- **\blacksquare** Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Conclusion:

Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo

• $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$

Implementation in the feyntrop package

- Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

- Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

- Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

- \blacksquare Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

Outlook:

- \blacksquare Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]

Include numerators

Conclusion:

- Efficient numerical evaluation of Feynman integrals via tropical Monte Carlo
- $i\varepsilon$ prescription handled via analytic continuation $x_e \exp\left[-i\lambda \partial_e \mathcal{V}(x)\right]$
- Implementation in the feyntrop package

- \blacksquare Canonical choice of analytic continuation parameter λ
- Remove quasi-finite condition via the analytic continuation protocol of [Berkesch, Forsgaard, Passare]
- Include numerators

Thank you for listening

