Relative Cohomology and Feynman Integrals

Hjalte Frellesvig

Niels Bohr International Academy (NBIA), University of Copenhagen.

May 29, 2023

,
 1IIIII The Niels Bohr 1110111 International Academy CARISBERG FOUNDATION

Introduction

For state-of-the art two-loop scattering amplitude calculations $\mathcal{O}(1000)$ Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

$$
I_{a_{1}, \ldots, a_{n}}=\int \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)} \prod_{i} \frac{\mathrm{~d}^{d} k_{i}}{\pi^{d / 2}}
$$

Linear relations bring this down to $\mathcal{O}(100)$ master integrals

Introduction

For state-of-the art two-loop scattering amplitude calculations $\mathcal{O}(1000)$ Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

$$
I_{a_{1}, \ldots, a_{n}}=\int \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)} \prod_{i} \frac{\mathrm{~d}^{d} k_{i}}{\pi^{d / 2}}
$$

Linear relations bring this down to $\mathcal{O}(100)$ master integrals
Linear relations may be derived using IBP (integration by part) identities

$$
\int \frac{\mathrm{d}^{d} k}{\pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu} N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=0
$$

Systematic by Laporta's algorithm \Rightarrow Solve a huge linear system.

Theory

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{array}{rlrl}
\langle v| & =\sum_{i}\left\langle v v_{j}^{*}\right\rangle\left(\boldsymbol{C}^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad \boldsymbol{C}_{i j}=\left\langle v_{i} v_{j}^{*}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right| \quad\left(c_{i}=\left\langle v v_{i}^{*}\right\rangle\right. & \text { if } \left.\boldsymbol{C}_{i j}=\delta_{i j}\right)
\end{array}
$$

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{array}{rlrl}
\langle v| & =\sum_{i}\left\langle v v_{j}^{*}\right\rangle\left(\boldsymbol{C}^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad \boldsymbol{C}_{i j}=\left\langle v_{i} v_{j}^{*}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right| \quad\left(c_{i}=\left\langle v v_{i}^{*}\right\rangle\right. & \text { if } \left.\boldsymbol{C}_{i j}=\delta_{i j}\right)
\end{array}
$$

If only there were a way to define an inner product for Feynman integrals...

Theory

$$
\begin{aligned}
I & =\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form }}
\end{aligned}
$$

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle (\mathcal{C}) and a twisted cocycle (ϕ) (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139 dim of the set of ϕs, is the number of master integrals.

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle (\mathcal{C}) and a twisted cocycle (ϕ) (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139
dim of the set of ϕs, is the number of master integrals.
We also need the dual Feynman integral:

$$
I_{\text {dual }}=\int_{\mathcal{C}} u^{-1} \xi=\left[\mathcal{C}|\xi\rangle_{\omega}\right.
$$

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ

Lives up to all criteria for being a scalar product.

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.

$$
\langle\phi \mid \xi\rangle:=\int(u \phi)\left(u^{-1} \xi\right)
$$

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.

$$
\langle\phi \mid \xi\rangle:=\int(u \phi)_{\mathrm{reg}}\left(u^{-1} \xi\right)
$$

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.

$$
\langle\phi \mid \xi\rangle:=\int(u \phi)_{\mathrm{reg}}\left(u^{-1} \xi\right)=\ldots
$$

$$
\langle\phi \mid \xi\rangle=\sum \operatorname{Res}(\psi \xi) \quad \text { with } \quad(d+d \log (u)) \psi=\phi
$$

ψ can be found with a series expansion $\psi=\sum \psi_{i} z^{i}$, a recursive formula, or sometimes a closed expression
[Chestnov, HF, Gasparotto, Mandal, Mastrolia (2022)]

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.

$$
\langle\phi \mid \xi\rangle:=\int(u \phi)_{\mathrm{reg}}\left(u^{-1} \xi\right)=\ldots
$$

$$
\langle\phi \mid \xi\rangle=\sum \operatorname{Res}(\psi \xi) \quad \text { with } \quad(d+d \log (u)) \psi=\phi
$$

ψ can be found with a series expansion $\psi=\sum \psi_{i} z^{i}$, a recursive formula, or sometimes a closed expression
[Chestnov, HF, Gasparotto, Mandal, Mastrolia (2022)]
Summary:

$$
I=\sum_{i} c_{i} I_{i} \quad \Rightarrow \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\boldsymbol{C}^{-1}\right)_{j i} \quad \text { with } \quad \boldsymbol{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

Examples

On the maximal cut we did a lot of examples
[HF, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera (2019)]

Examples

Examples of complete reductions:

H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera Decomposition of Feynman Integrals by Multivariate Intersection Numbers

JHEP 03 (2021) 027 arXiv:2008.04823

Examples

Examples of complete reductions:

H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera Decomposition of Feynman Integrals by Multivariate Intersection Numbers

JHEP 03 (2021) 027 arXiv:2008.04823
In twisted (co)homology theory
$I=\int_{\mathcal{C}} u \phi \quad$ with all poles of ϕ being regulated by $u=\mathcal{B}^{\gamma}$
but for Fls $\phi \approx \frac{\mathrm{d}^{n} z}{z_{1} \cdots z_{m}}$ has all poles unregulated

Examples

Examples of complete reductions:

H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera Decomposition of Feynman Integrals by Multivariate Intersection Numbers

JHEP 03 (2021) 027 arXiv:2008.04823
In twisted (co)homology theory

$$
I=\int_{\mathcal{C}} u \phi \quad \text { with all poles of } \phi \text { being regulated by } u=\mathcal{B}^{\gamma}
$$

$$
\begin{aligned}
& J \mathcal{C} \\
& \text { but for Fls } \phi \approx \frac{\mathrm{d}^{n} z}{z_{1} \cdots z_{m}} \text { has all poles unregulated }
\end{aligned}
$$

Solution so far: Introduce regulators

$$
u \rightarrow u_{\mathrm{reg}}=u z_{1}^{\rho_{1}} z_{2}^{\rho_{2}} \cdots z_{m}^{\rho_{m}}
$$

and take the limits $\rho_{i} \rightarrow 0$ at the end

Relative cohomologies

I want to get rid of the regulators. One option: Relative (twisted) cohomology: Forms and contours live in a space defined modulo a different space

$$
I=\int_{\mathcal{C}} u \phi \text { with } \phi=\frac{\mathrm{d}^{n} z}{z_{1} \cdots z_{m}}: \quad \text { Work relative to } \bigcup_{i}\left(z_{i}=0\right)
$$

Relative cohomologies

I want to get rid of the regulators. One option: Relative (twisted) cohomology: Forms and contours live in a space defined modulo a different space

$$
I=\int_{\mathcal{C}} u \phi \text { with } \quad \phi=\frac{\mathrm{d}^{n} z}{z_{1} \cdots z_{m}}: \quad \text { Work relative to } \bigcup_{i}\left(z_{i}=0\right)
$$

In practice this allows for a new kind of dual forms $\delta_{z_{i}, z_{j}, \ldots}$

$$
\left\langle\phi \mid \delta_{z}\right\rangle:=\operatorname{Res}_{z=0}(\phi) \quad \text { (and likewise for multiple variables) }
$$

Relative cohomologies

I want to get rid of the regulators. One option: Relative (twisted) cohomology: Forms and contours live in a space defined modulo a different space

$$
I=\int_{\mathcal{C}} u \phi \text { with } \phi=\frac{\mathrm{d}^{n} z}{z_{1} \cdots z_{m}}: \quad \text { Work relative to } \bigcup_{i}\left(z_{i}=0\right)
$$

In practice this allows for a new kind of dual forms $\delta_{z_{i}, z_{j}, \ldots}$

$$
\left\langle\phi \mid \delta_{z}\right\rangle:=\operatorname{Res}_{z=0}(\phi) \quad \text { (and likewise for multiple variables) }
$$

The intersection numbers become easier to compute, involve fewer variables and many are zero.

$$
\boldsymbol{C}=\left[\begin{array}{cccc}
\boldsymbol{C}_{1,1} & \mathbf{0} & \cdots & \mathbf{0} \\
\boldsymbol{C}_{2,1} & \boldsymbol{C}_{2,2} & \ddots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{C}_{n, 1} & \boldsymbol{C}_{n, 2} & \cdots & \boldsymbol{C}_{n, n}
\end{array}\right]
$$

No regulators needed!

Relative cohomologies

Examples computed using relative cohomologies:

[G. Brunello, V. Chestnov, G. Crisanti, HF, F. Gasparotto, M.K. Mandal, P. Mastrolia (2023?)]

Relative cohomologies

Examples computed using relative cohomologies:

[G. Brunello, V. Chestnov, G. Crisanti, HF, F. Gasparotto, M.K. Mandal, P. Mastrolia (2023?)]
Other optimizations:

- Get rid of algebraic extensions (e.g. square roots)
[G. Fontana, T. Peraro (2023)]
- Combine with rational reconstruction
[G. Fontana, T. Peraro (2023)]
- Different handling of higher poles
[S. Weinzierl (2020)]
- Systematic approach to magic relations
[S. Caron-Huot, A. Pokraka (2021)]?

Relative cohomologies

Examples computed using relative cohomologies:

[G. Brunello, V. Chestnov, G. Crisanti, HF, F. Gasparotto, M.K. Mandal, P. Mastrolia (2023?)]
Other optimizations:

- Get rid of algebraic extensions (e.g. square roots)
[G. Fontana, T. Peraro (2023)]
- Combine with rational reconstruction
[G. Fontana, T. Peraro (2023)]
- Different handling of higher poles
[S. Weinzierl (2020)]
- Systematic approach to magic relations
[S. Caron-Huot, A. Pokraka (2021)]?
We are quickly approaching the state of the art

References

Integration-By-Parts (IBP) identities for Feynman Integrals:
[Tkachov (1981)], [Chetyrkin and Tkachov (1981)], [Laporta (2000)], ...
Public IBP Codes:
[Anastasiou, Lazopoulos (2004)], [Manteuffel, Studerus (2010, 12)], [Lee (2012)],
[Smirnov (2008, 13, 15)], [Smirnov, Chukharev (2019)], [Peraro (2019)],
[Maierhöfer, Usovitsch, Uwer (2×2018)], [Klappert, Lange, Maierhöfer, Usovitsch (2020, 21)]
Intersection Theory and Twisted cohomologies:
[Cho, Matsumoto (1995)], [Matsumoto (1995)], [Matsumoto, Yoshida (1998)], [Matsumoto (2018)], ...

Intersection Theory and Feynman Integrals:

[Mizera, Mastrolia (2018)], [HF, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera ($2 \times 2019,20$)], [Mizera, Pokraka (2019)], [Weinzierl (2020)], [Caron-Huot, Pokraka (2×2021)], [Giroux, Pokraka (2022)],
[Chen, Jiang, Ma, Xu, Yang (2021, 22)], [Chestnov, HF, Gasparotto, Mandal, Mastrolia (2022)],
[Chestnov, Gasparotto, Mandal, Mastrolia, Matsubara-Heo, Munch, Takayama (2022, 23)]*
[Cacciatori, Conti, Trevisan (2021)], [Fontana, Peraro (2023)], ..
Intersection Theory elsewhere in Physics:
[Mizera (2017)], [Mizera (2019)], [Cacciatori, Mastrolia (2022)], [Weinzierl (2021)],
[Gasparotto, Rapakoulias, Weinzierl (2022)], [Gasparotto, Weinzierl, Xu (2023)]**, ...
Upcoming on Relative Cohomology:
[Brunello, Chestnov, Crisanti, HF, Gasparotto, Mandal, Mastrolia (2023?)]

* See talk by Henrik Munch
** See talk by Federico Gasparotto

Perspectives

Summary:

$$
\begin{aligned}
& I=\sum_{i} c_{i} I_{i} \text { where } \\
& I_{i}=\int_{\mathcal{C}} u \phi \\
& c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\boldsymbol{C}^{-1}\right)_{j i} \text { with }
\end{aligned} \boldsymbol{C}_{i j}:=\left\langle\phi_{i} \mid \xi_{j}\right\rangle .
$$

With relative cohomology: $\left\langle\phi \mid \delta_{z}\right\rangle=\operatorname{Res}_{z=0}(\phi)$

Perspectives

Summary:

$$
\begin{aligned}
& I=\sum_{i} c_{i} I_{i} \text { where } \\
& I_{i}=\int_{\mathcal{C}} u \phi \\
& c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\boldsymbol{C}^{-1}\right)_{j i} \text { with }
\end{aligned} \boldsymbol{C}_{i j}:=\left\langle\phi_{i} \mid \xi_{j}\right\rangle .
$$

With relative cohomology: $\left\langle\phi \mid \delta_{z}\right\rangle=\operatorname{Res}_{z=0}(\phi)$

Thank you for listening!

Hjalte Frellesvig

