New tools towards fast evaluation of Feynman integrals

Xiao Liu

University of Oxford

Mainly based on 1711.09572, 1912.09294, 2201.11669 and work in progress In collaboration with Xin Guan, Yan-Qing Ma, Chen-Yu Wang and Wen-hao Wu

RADCOR 2023 - 16th International Symposium on Radiative Corrections: Applications of
Quantum Field Theory to Phenomenology
28 May 2023 ~ 2 June 2023, Crieff, Scotland

Outline

I. Introduction

II. Block-triangular system and Blade
III. Auxiliary mass flow and AMFIow
IV. Applications
V. Summary and outlook

Feynman integrals

Feynman integrals in dimensional regularization

$$
I(\vec{\nu})=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0\right)^{\nu_{K}}}
$$

- interesting in physics
- key objects for fixed order computation
- Standard Model \& New Physics
- challenging in mathematics
- algebraic complexity (integrals reduction)
- function space (master integrals computation)
- state of the art
- massive two-loop five-point integrals
- massive three-loop four-point integrals

Feynman integrals

> Methods and tools

- Reduction:
- integration-by-parts reduction [Chetyrkin and Tkachov, Nucl. Phys. B, 1981] [Laporta, Int. J. Mod. Phys. A, 2000]
- AIR [Anastasiou and Lazopoulos, JHEP, 2004] FIRE [Smirnov, JHEP, 2008] [Smirnov, Smirnov, Comput. Phys. Commun., 2013] [Smirnov, Comput. Phys. Commun., 2015] [Smirnov and Chuharev, Comput. Phys. Commun., 2020]

Reduze [Studerys, Comput. Phys. Commun., 2010] [Manteuffel and Studerus, e-Print: 1201.4330] Kira
[Maierhofer, Usovitsch and Uwer, Comput. Phys. Commun., 2018] [Klappert, Lange, Maierhofer and Usovitsch, Comput. Phys. Commun., 2021]

- Syzygy equations [Gluza, Kajda and Kosower, Phys. Rev. D, 2011] [Larsen and Zhang, Phys. Rev. D, 2016]
- NeatIBP [Wu, Boehm, Ma et al, e-Print: 2305.08783]
- finite field reconstruction [Manteuffel and Schabinger, Phys. Lett. B, 2015] [Peraro, JHEP, 2016]
- FiniteFlow [Peraro, JHEP, 2019] FireFly [Klappert and Lange, Comput. Phys. Commun., 2020] RATRACER [Magerya, e-Print: 2211.03572]
- block-triangular system and Blade

Feynman integrals

- Computation:

- canonical differential equations [Kotikov, Phys. Lett. B, 1991] [Henn, Phys. Rev. Lett., 2013]
- CANONICA [Meyer, 2018] epsilon [Prausa, 2017] Fuchsia [Gituliar and Magerya, 2017] Libra [Lee, 2020] DLogBasis [Henn, Mistlberger, Smirnov and Wasser, JHEP 2020]
- numerical differential equations [Caffo, Czyz, Gunia and Remiddi, Comput. Phys. Commun., 2009] [Czakon, Phys. Lett. B, 2008]
- DiffExp [Hidding, Comput.Phys.Commun., 2021] SeaSyde [Armadillo, Bonciani, Devoto, Rana and Vicini, Comput.Phys.Commun., 2023]
- sector decomposition [Binoth and Heinrich, Nucl. Phys. B, 2000]
- FIESTA [Smirnov and Tentyukov, 2009] [Smirnov, Smirnov and Tentyukov, 2011] [Smirnov, 2014] [Smirnov, 2015] SecDec [Carter and Heinrich, 2011] [Borowka, Carter and Heinrich, 2013] [Borowka, Heinrich, Jones, et al, 2015] pySecDec [Borowka, Heinrich, Jahn, et al, 2018]
- tropical geometry [Borinsky, 2008.12310] [Borinsky, Munch and Tellander, 2302.08955]
- feyntrop [Borinsky, Munch and Tellander, 2302.08955]
- auxiliary mass flow and AMFlow

Feynman integrals

$>$ Other good methods

- Intersection theory [Mastralia and Mizera, JHEP, 2019] [Frellesvig, Gasparotto, Laporta, et al, JHEP 2019]
- Partial fraction decomposition [Boehm, Wittmann, Wu, et al, JHEP, 2020]
- Method of region [Beneke and Smirnov, Nucl. Phys. B, 1998] [Smirnov, Phys. Lett. B, 1999]
- Mellin-Barnes representation [Boos and Davydychev, Theor.Math.Phys., 1991][Smirnov, Phys. Lett. B, 1999]
- Dimensional recurrence and Analyticity [Tarasov, Phys. Rev. D, 1996] [Lee, Nucl. Phys. B, 2010]
- Positivity constraints [Zeng, 2303.15624]

Outline

I. Introduction
II. Block-triangular system and Blade
III. Auxiliary mass flow and AMFlow
IV. Applications
V. Summary and outlook

Block-triangular system

Motivation

- IBP system
- large: many equations and integrals, typically $10^{5} \sim$
- coupled: the systems usually become denser during the solutions
- time- and resource-consuming
- How to improve?
- small: as few equations as possible
- decoupled or semi-decoupled: the system should never become denser
- A possible solution: block-triangular system
- A simple example:
- 2 equations reducing I_{6}, I_{7} to I_{8}
- 2 equations reducing I_{4}, I_{5} to I_{8}
- 3 equations reducing I_{1}, I_{2}, I_{3} to I_{8}

$$
\begin{array}{r}
2 I_{1}+3 s I_{2}+t I_{3}+5 I_{4}+D I_{5}-I_{6}+D I_{7}+s I_{8}=0 \\
2 s I_{1}+t I_{2}+D I_{3}+s t I_{4}+I_{5}-6 I_{6}+s I_{7}+D I_{8}=0 \\
2 t I_{1}+D I_{2}-I_{3}-2 s I_{4}-8 I_{5}+t I_{6}-I_{7}+s I_{8}=0 \\
I_{4}+I_{5}-s I_{6}+t I_{7}-D I_{8}=0 \\
I_{4}-I_{5}-D I_{6}+s t I_{7}+D^{2} I_{8}=0 \\
s I_{6}+t I_{7}-I_{8}=0 \\
s t I_{6}-I_{7}+I_{8}=0
\end{array}
$$

Relations among Feynman integrals

Feynman integrals are vectors

- $\vec{s}=\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}\right\}$
- 108 master integrals: $\left\{M_{1}, \ldots, M_{108}\right\}$
- each integral can be written as a linear combination
- $I=c_{1} M_{1}+\cdots+c_{108} M_{108} \Leftrightarrow\left(c_{1} \ldots c_{108}\right)^{\mathrm{T}}$
- c_{1}, \ldots, c_{108} are numerically computable from IBP system over finite fields

Relations among Feynman integrals

Relations among $G \equiv\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$

$$
Q_{1} I_{1}+Q_{2} I_{2}+\cdots Q_{n} I_{n}=0
$$

- $\quad Q_{i}:$ polynomials of \vec{s} and D
- ansatz: $Q_{1}=a+b D, Q_{2}=c s_{23}+d s_{34}, Q_{3}=e s_{45}+f s_{15}, \cdots$
- a, b, c, d, e, f, \ldots : unknown rational numbers to be determined (The total number of unknowns is finite!)
- For a given ansatz (search algorithm)
- compute the numerical reduction coefficients of I_{1}, \ldots, I_{n} at $D=D_{0}$ and $\vec{s}=\vec{s}_{0}$
- this can provide at most 108 linear constraints for the unknowns

$$
a\left(\begin{array}{c}
c_{1,1} \\
\vdots \\
c_{1,108}
\end{array}\right)+b D_{0}\left(\begin{array}{c}
c_{1,1} \\
\vdots \\
c_{1,108}
\end{array}\right)+c s_{23,0}\left(\begin{array}{c}
c_{2,1} \\
\vdots \\
c_{2,108}
\end{array}\right)+\cdots=0
$$

- repeat the above process until there are enough constraints

Reduction

$>$ Reducing $G_{1}=\left\{I_{1}, \ldots, I_{m}\right\}$ to $G_{2}=\left\{I_{m+1}, \ldots, I_{n}\right\}$

1. Set $G=G_{1} \cup G_{2}=\left\{I_{1}, \ldots, I_{n}\right\}$;
2. for a given ansatz of Q_{1}, \ldots, Q_{n}, use the search algorithm to determine all the relations;
3. if the obtained relations are sufficient to reduce G_{1}, stop; else make another ansatz and go back to step 2.

Making ansatz

- from simple to complicated, for instance:
- degree-0: $Q_{1}=a_{1}, Q_{2}=a_{2}, Q_{3}=a_{3}, \cdots$
- degree-1: $Q_{1}=a_{1}+b_{1} D+c_{1} s_{23}+d_{1} s_{34}+e_{1} s_{45}+f_{1} s_{15}, Q_{2}=a_{2}+b_{2} D+$ $c_{2} s_{23}+d_{2} s_{34}+e_{2} s_{45}+f_{2} s_{15}, Q_{3}=\cdots, \cdots$
- degree-2: $Q_{1}=a_{1}+b_{1} D+c_{1} s_{23}+d_{1} s_{34}+e_{1} s_{45}+f_{1} s_{15}+g_{1} D^{2}+h_{1} D s_{23}+$ $i_{1} D s_{34}+\cdots$

Block-triangular system

$>$ Constructing G_{1} and G_{2} for each block

- Basic construction
- G_{1} : target integrals from some sector
- G_{2} : integrals in its subsectors
- if G_{1} does not contain dotted integrals, then G_{2} as well
- Example (top-sector):
- G_{1} : top-sector integrals with up to degree-5 numerators
- $\{I(1,1,1,1,1,1,1,1,0,0,0), I(1,1,1,1,1,1,1,1,-1,0,0), I(1,1,1,1,1,1,1,1,0,-1,0), \ldots$, $I(1,1,1,1,1,1,1,1,0,-5,0), I(1,1,1,1,1,1,1,1,0,0,-5)\}$
- G_{2} : integrals in subsectors
- $\{I(0,1,1,1,1,1,1,1,0,0,0), \ldots, I(0,1,1,1,1,1,1,1,0,0,-4), I(1,0,1,1,1,1,1,1,0,0,0), \ldots$, $I(1,0,1,1,1,1,1,1,0,0,-4), \ldots, I(0,0,1,1,1,1,1,1,0,0,0), \ldots\}$

Results

- IBP system
- $\sim 3 \times 10^{5}$ equations
- numerical sampling over finite fields: 7s per phase-space point
- Block-triangular system
- 3806 equations reducing 3914 integrals to 108 master integrals
- 0.17 s per phase-space point
- improvement: 7/0.17 ≈ 40

Blade (in progress)

```
    B Blade@
    Project ID: 42197761 [%
-0-118 Commits & 1 Branch 0 Tags 3.1 MB Project Storage
```

Block-triangular form improved Feynman integral decomposition .

- BLock-triAngular form improved Feynman integral DEcomposition
- Available at https://gitlab.com/multiloop-pku/blade
- Installation
- \$ chmod +x auto_install
- \$./auto_install

Blade (in progress)

- Basic usage

```
family = dbox;
dimension = 4-2*eps;
loop = {l1,l2};
leg = {p1,p2,p3,p4};
conservation = {p4->-p1-p2-p3};
replacement = (p1^2 -> 0, p2^2 -> 0, p3^2 -> msq, p1 p2 -> s/2, p1 p3 -> t/2, p2 p3 -> (-s-t)/2);
```



```
topsector = {1,1,1,1,1,1,1,0,0};
numeric = {s -> 1};
```

BLFamilyDefine[family, dimension, propagator, loop, leg, conservation, replacement, topsector, numeric]
target $=\{\operatorname{BL}[\mathrm{dbox},\{1,1,1,1,1,1,1,0,-3\}], B L[$ dbox,$(1,1,1,1,1,1,1,-1,-2\}]$,
BL [dbox, $\{1,1,1,1,1,1,1,-2,-1\}], \operatorname{BL}[d b o x,\{1,1,1,1,1,1,1,-3,0\}]$,
BL[dbox, $\{2,1,1,1,1,1,0,0,-2\}], \operatorname{BL}[d b o x,\{2,1,1,1,1,1,0,-2,0\}]$,
BL[dbox, $\{0,1,2,2,1,1,0,0,-2\}], \operatorname{BL}[d b o x,(0,1,2,2,1,1,0,-2,0\}]\}$;

```
res = BLReduce[target];
```

de $=$ BLDifferentialEquation [\{t $\}$]

- Define the integral family using "BLFamilyDefine"
- Reduce target integrals using "BLReduce"
- Construct the differential equations using "BLDifferentialEquation"

Outline

I. Introduction
II. Block-triangular system and Blade
III. Auxiliary mass flow and AMFIow
IV. Applications
V. Summary and outlook

Auxiliary mass flow

> Motivation

- Traditional methods
- Analytic: less systematic, case-by-case analysis
- Numerical: less efficient, hard to obtain high precision results
- A possible solution: semi-analytic (semi-numerical) method
- reserve analytic structure as far as possible
- perform quickly-converged numerical computation
- A good candidate: differential equations + power series expansion
- + systematic boundary conditions

Auxiliary mass flow

> Dimensionally regulated Feynman integrals

- integrals with auxiliary mass parameter η

$$
I_{\mathrm{aux}}(\vec{\nu} ; \eta)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}-\eta\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}-\eta\right)^{\nu_{K}}}
$$

- obtain physical integrals through

$$
I(\vec{\nu})=\lim _{\eta \rightarrow \mathrm{i} 0^{-}} I_{\mathrm{aux}}(\vec{\nu} ; \eta)
$$

- method of region [Beneke and Smirnov, Nucl. Phys. B, 1998]
- the only contributing region: $\ell_{i}^{\mu} \sim \sqrt{\eta}$

$$
\frac{1}{\left((\ell+p)^{2}-m^{2}-\eta\right)^{\nu}}=\frac{1}{\left(\ell^{2}-\eta\right)^{\nu}} \sum_{i=0}^{\infty} \frac{(\nu)_{i}}{i!}\left(-\frac{2 \ell \cdot p+p^{2}-m^{2}}{\ell^{2}-\eta}\right)^{i}
$$

- fully massive vacuum integrals [Davydychev and Tausk, Nucl, Phys. B, 1993] [Broadhurst, Eur. Phys. J. C, 1999][Schroder and Vuorinen, JHEP, 2005] [Kniehl, Pikelner and Veretin, JHEP, 2017][Luthe, phdthesis, 2015] [Luthe, Maier, Marquard et al, JHEP, 2017]

Auxiliary mass flow

> Analytic continuation

- differential equations

$$
\frac{\partial}{\partial \eta} \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)=A(\eta) \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)
$$

- boundary conditions at $\eta=\infty$
- define a path: $\left\{\eta_{0}, \eta_{1}, \ldots, \eta_{l}\right\}$
- expand at $\eta=\infty$ to estimate $I\left(\eta_{0}\right)$
- expand at $\eta=\eta_{i}$ to estimate $I\left(\eta_{i+1}\right)$
- expand formally at $\eta=0$ and match at
$\eta=\eta_{l}$
- η_{0} : outside the larger circle
- η_{l} : inside the smaller circle
- $\left|\eta_{i+1}-\eta_{i}\right|<r_{i}$

AMFlow

๑レ \& Star 10 ध Fork
-o 73 Commits $\because 1$ Branch 2 Tags 594 KB Project Storage 1 Release

- available at https://gitlab.com/multiloop-pku/amflow
- basic features
- systematic: works for arbitrary integrals in principle
- one-loop six-point[Henn, Matijasic and Miczajka, JHEP 2023], two-loop five-point[Badger, Becchetti, Chaubey and Marzucca, JHEP 2023], three-loop three-point [Fael, Lange, Schonwald and Steinhauser, 2302.00693] ...
- efficient: easy to reach high precision
- $\mathrm{O}(100)$ digits [Badger, Becchetti, Chaubey and Marzucca, JHEP 2023] ..
- $\mathrm{O}(1000)$ digits [Abreu, Becchetti, Duhr and Ozcelik, JHEP 2022]
- user-friendly: press the button \& wait for the results

AMFlow

- examples/automatic_vs_manual

(*load the package*)
current = If [\$FrontEnd===Null, \$InputFileName, NotebookFileName[]]//DirectoryName; Get[FileNameJoin[\{current, "..", "..", "AMFlow.m"\}]];

```
<*set ibp reducer, could be "FiniteFlow+LiteRed", "Kira" or "FIRE+LiteRed"*
SetReductionOptions["IBPReducer" -> "Kira"];
(*configuration of the integral family *)
AMFlowInfo["Family"] = tt;
AMFlowInfo["Loop"] = {l1, l2};
AMFlowInfo["Leg"] = (p1, p2, p3, p4);
AMFlowInfo["Conservation"] = (p4 -> -p1-p2-p3);
```



```
AMFlowInfo["Propagator"] = (l1^2, (l1+p1)^2, (l1+p1+p2)^2, l2^2, -msq+(l2+p3)^2, (l2+p3+p4)^2, (l1+l2)^2, (l1-p3)^2, (l2+p1)^2);
AMFlowInfo["Numeric"] = {s -> 30, t -> -10/3, msq -> 1};
AMFlowInfo["NThread"] = 4;
```

(*SolveIntegrals: computes given integrals with given precision goal up to given eps order.
(*returned is a list of replacement rules like $(j 1 \rightarrow v 1, j 2 \rightarrow v 2, \ldots)$, where $j 1, j 2, \ldots$ are integrals and $\mathrm{k} 1, \mathrm{v} 2, \ldots$ are their results*) $\operatorname{target}=\{j[t t, 1,1,1,1,1,1,1,-3,0], j[t t, 1,1,1,1,1,1,1,-2,-1], j[t t, 1,1,1,1,1,1,1,-1,-2], j[t t, 1,1,1,1,1,1,1,0,-3]) ;$
precision $=20$;
epsorder $=4$;
auto $=$ SolveIntegrals[target, precision, epsorder];

- SetReductionOptions["IBPReducer" -> "reducer"];
- "reducer": "Blade", "FIRE+LiteRed", "FiniteFlow+LiteRed", "Kira"
- SolveIntegrals[targets, precision, epsorder];

AMFlow

- other features
- compute integrals at any space-time dimension, $D=6-2 \epsilon, 3-2 \epsilon, 11 / 2-2 \epsilon$
- see examples/spacetime_dimension
- compute integrals with complex masses, $m^{2}=100-5 i$
- see examples/complex_kinematics
- compute phase-space integrals based on reverse unitarity [Anastasiou and Melnikov, Nucl. Phys. B, 2002]
- $\delta\left(p_{i}^{2}-m_{i}^{2}\right) \rightarrow \frac{1}{\left[p_{i}^{2}-m_{i}^{2}\right]_{c}}$
- see examples/automatic_phase and examples/feynman_prescription

Outline

I. Introduction
II. Block-triangular system and Blade
III. Auxiliary mass flow and AMFIow
IV. Applications
V. Summary and outlook

Applications

 2209.14259]

- Compute the total cross section as a piecewise function of $x:=4 m^{2} / \mathrm{s}$
- reduce to master integrals using Blade

$$
A=\sum c_{i} M_{i}
$$

- construct differential equations of master integrals with respect to x using Blade

$$
\frac{\partial}{\partial x} M_{i}=\sum A_{i j} M_{j}
$$

- compute the master integrals at a regular point $x=4 / 23$ using AMFlow, which serves as boundary conditions

$$
M_{i}(4 / 23)=\ldots
$$

- solve the differential equations numerically to obtain piecewise functions of master integrals, using the differential equation solver in AMFlow
- substitute the results of master integrals into the cross section

Outline

I. Introduction
II. Block-triangular system and Blade
III. Auxiliary mass flow and AMFIow
IV. Applications
V. Summary and outlook

Summary and Outlook

- Integrals reduction: block-triangular system, Blade
- Master integrals computation: auxiliary mass flow, AMFlow
- Solution of univariate problems? Completely automated.
- Solution of multivariate problems?
- From point to point? OK.
- More efficient methods? Not known yet.

Auxiliary mass flow

$>I(\eta)$ as an analytic function of η

- there should be a maximal threshold $\eta=\eta_{\text {th }}$ on the real axis
- $\quad I(\eta)$ is real-valued for $\eta>\eta_{\text {th }}$ and complex-valued for $\eta<\eta_{\text {th }}$
- branch cut can be chosen as the straight line connecting $\eta=-\infty$ and $\eta=\eta_{\text {th }}$ along the real axis, such that $I\left(\eta^{*}\right)=I^{*}(\eta)$

Auxiliary mass flow

> A simple example: one-loop massless bubble

$$
I\left(\nu_{1}, \nu_{2}\right)=\int \frac{\mathrm{d}^{D} \ell}{\mathrm{i} \pi^{D / 2}} \frac{1}{\left(\ell^{2}\right)^{\nu_{1}}\left((\ell+p)^{2}\right)^{\nu_{2}}}
$$

- master integral: $I(1,1)$

$$
\begin{aligned}
& I(1,1)=\left(-p^{2}-i 0\right)^{D / 2-2} \times \frac{\Gamma(2-D / 2) \Gamma(D / 2-1)^{2}}{\Gamma(D-2)} \\
& \left.I(1,1)\right|_{p^{2}=1, D=4-2 \epsilon}=\frac{1}{\epsilon}+(2-\gamma+i \pi)+O\left(\epsilon^{1}\right) \\
& =\frac{1}{\epsilon}+(1.42278+3.14159 i)+O\left(\epsilon^{1}\right)
\end{aligned}
$$

Auxiliary mass flow

- insert auxiliary mass

- master integrals: $\vec{I}_{\text {aux }}(\eta)=\left\{I_{\text {aux }}(1,0 ; \eta), I_{\text {aux }}(1,1 ; \eta)\right\}$
- construct differential equations using IBP reduction

$$
\frac{\partial}{\partial \eta} \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)=\left(\begin{array}{cc}
\frac{1-\epsilon}{\eta} & 0 \\
\frac{2(\epsilon-1)}{\eta(4 \eta-1)} & -\frac{2(2 \epsilon-1)}{4 \eta-1}
\end{array}\right) \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)
$$

- $\eta_{\text {th }}=1 / 4$
- boundary conditions

$$
\begin{aligned}
I_{\mathrm{aux}}(1,0 ; \eta) & =\eta^{1-\epsilon} \times(-\Gamma(\epsilon-1)) \\
I_{\mathrm{aux}}(1,1 ; \eta) & \sim \eta^{-\epsilon} \times\left(\Gamma(\epsilon)+\mathcal{O}\left(\eta^{-1}\right)\right)
\end{aligned}
$$

Auxiliary mass flow

- define a path for analytic continuation
- singularities: $\{0,1 / 4\}$
- $R_{\mathrm{L}}=R_{\mathrm{S}}=1 / 4$
- $\{-i / 2,-i / 4,-i / 8\}$
- expand near $\eta=\infty$
- $\quad I_{\text {aux }}(1,1 ; \eta)=\eta^{-\epsilon} \sum_{n=0}^{\infty} a_{n}(\epsilon) \eta^{-n}$
- $a_{0}(\epsilon)=\epsilon^{-1}-0.577216$
- $a_{1}(\epsilon)=0.166667$
- $a_{100}(\epsilon)=5.49443 \times 10^{-64}$
- estimate at $\eta=\eta_{0}=-i / 2$ to obtain

$$
I_{\mathrm{aux}}(1,1 ;-i / 2)=\epsilon^{-1}+0.0548501+1.88709 i
$$

Auxiliary mass flow

- expand near $\eta=\eta_{0}=-i / 2$
- $\quad I_{\mathrm{aux}}(1,1 ; \eta)=\sum_{n=0}^{\infty} a_{n}(\epsilon)\left(\eta-\eta_{0}\right)^{n}$
- $a_{0}(\epsilon)=\epsilon^{-1}+0.0548501+1.88709 i$
- $a_{1}(\epsilon)=0.5714-1.77538 i$
- $a_{100}(\epsilon)=-1.29958 \times 10^{24}+1.28029 \times 10^{26}$
- estimate at $\eta=\eta_{1}=-i / 4$ to obtain
- $\quad I_{\text {aux }}(1,1 ;-i / 4)=\epsilon^{-1}+0.609168+2.13174 i$
- expand near $\eta=\eta_{1}=-i / 4$ and estimate at $\eta=-i / 8$ to obtain
- $\quad I_{\text {aux }}(1,1 ;-i / 8)=\epsilon^{-1}+0.994236+2.42639 i$

Auxiliary mass flow

- expand near $\eta=0$
- $\quad I_{\mathrm{aux}}(1,1 ; \eta)=\sum_{n=0}^{\infty} a_{n}(\epsilon) \eta^{n}+\eta^{1-\epsilon} \sum_{n=0}^{\infty} b_{n}(\epsilon) \eta^{n}$
- $b_{n}(\epsilon)$ can be totally determined by sub-topology
- $b_{0}(\epsilon)=-2 \Gamma(\epsilon-1)$
- $b_{1}(\epsilon)=4 \Gamma(\epsilon-1) /(\epsilon-2)$
- $a_{n}(\epsilon)$ cannot be totally determined but can be reduced to $a_{0}(\epsilon)$
- $a_{1}(\epsilon)=2(2 \epsilon-1) a_{0}(\epsilon)$
- $a_{2}(\epsilon)=2(2 \epsilon-1)(2 \epsilon+1) a_{0}(\epsilon)$
- match at $\eta=\eta_{2}=-i / 8$ to obtain $a_{0}(\epsilon)=\epsilon^{-1}+1.42278+3.14159 i$
- take the limit $\eta \rightarrow i 0^{-}$
- $\lim _{\eta \rightarrow i 0^{-}} I_{\text {aux }}(1,1 ; \eta)=a_{0}(\epsilon)=\epsilon^{-1}+1.42278+3.14159 i$

