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3D representations of Feynman integrals

Famous non-(manifestly)-
covariant approaches:

Time Ordered
Perturbation Theory
(TOPT)
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3D representations of Feynman integrals

Famous non-(manifestly)-
covariant approaches:

Time Ordered
Perturbation Theory
(TOPT)
Loop-tree duality.
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Coordinate space formulation of QFTs

Coordinate space treatments:

Unitarity and the Largest Time equation.
Multi-loop renormalization group invariants.
Factorization results.
Axiomatic QFT.
PDFs.
...
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Coordinate space scalar QFT

�F (z) =

Z
d4p

(2⇡)4
e�ip·z i

p2 + i✏
=

1
(2⇡)2

1
�z2 + i✏

.

Scalar n-point Green’s function

�(x1, ..., x|V ext|) =
⌦
0|T ('(x1) · · ·'(x|V ext|))|0

↵

=
X

G

1
SymG

AG (x1, . . . , x|V ext|),

A graph G contributing to the Green’s function

AG (x1, . . . , x|V ext|) =
(�ig)|V

int|

(2⇡)2|E |

2

4
Y

v2V int

Z
d4yv

3

5
Y

e2E

1
�z2

e + i"
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Coordinate space triangle diagram

AG (x1, x2, x3) =
(�ig)3

(2⇡)12

Z 2

4
Y

v2V int

d4yv

3

5⇥

⇥
1

(x1 � y1)2(x2 � y2)2(x3 � y3)2(y1 � y2)2(y2 � y3)2(y1 � y3)2
,
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Performing time integrations

In the spirit of TOPT we perform
⇥R

dy0
v

⇤
integrations to obtain a

3D representation of coordinate space diagrams:

In doing so we introduce auxiliary energy variables.
Perform Cauchy integrations.

The result is a sum over the different energy flows (orientations �)
in the diagram, with energies being conserved at each vertex.

AG (x1, . . . , x|V ext|)

SymG
=
X

h�i

AG ,�(x1, . . . , x|V ext|)

Sym(G ,�)
,
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Energy cycles

It is possible to resolve the energy integrations and conservation
conditions for each orientation � on a graph G in terms of “cycle”
energy variables

Energy conservation in (G ,�) ) Strongly connected closed graph
(G �,�)
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Energy cycles

It is possible to resolve the energy integrations and conservation
conditions for each orientation � on a graph G in terms of “cycle”
energy variables:

AG ,�(x1, . . . , x|V ext|) /

0

@
Y

v2V int

Z
d3~yv

1

A⇥

⇥

 
Y

e2E

1
2|~ze |

!
Y

p2cycles

1
�p + ⌧p + i"

.

⌧p is the time difference and �p the sum of the lengths of the edges
passed in the cycle.
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One loop self energy graph

AG (x1, x2) =
(�ig)2

(4⇡2)4

Z
d4y1d4y2

1
�z2

1 + i"

1
�z2

2 + i"

1
�z2

3 + i"

1
�z2

4 + i"
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One loop self energy closed graph

Next, draw all possible energy flows.
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Energy flows through the closed bubble

Energy must be conserved at each vertex.
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Energy flows (= orientations) through the closed bubble

(1) is equal to (8) and (2) to (9)

(under ⌧ ⌘ x0
2 � x0

1 ! �⌧)
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3D representation of the bubble

By collecting the overall and individual symmetry factors, we have
that

1
2
A(x1, x2) =

1
2
AG ,�(1) + AG ,�(2) + AG ,�(8) +

1
2
AG ,�(9) .
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Decomposition of an orientation into cycles

AG ,�(1)(x1, x2) =
(2⇡g)2

(8⇡2)4

Z
d3~y1d3~y2

|~z1||~z2||~z3||~z4|
⇥

⇥
1

|~z3|+ |~z1|+ |~z4|+ ⌧ + i"

1
|~z3|+ |~z2|+ |~z4|+ ⌧ + i"

,
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Decomposition of an orientation into cycles

AG ,�(2)(x1, x2) =
(2⇡g)2

(8⇡2)4

Z
d3~y1d3~y2

|~z1||~z2||~z3||~z4|
⇥

⇥
1

|~z3|+ |~z1|+ |~z4|+ ⌧ + i"

1
|~z1|+ |~z2|
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Decomposition of an orientation into cycles
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Routes and cycles: UV singularities in FOPT

Two types of paths:

UV singularities of cycles match those of the covariant Feynman
diagrams.
) Amplitudes can be regularised as “usual”(it is coordinate space).
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Long and finite distance singularities in FOPT

Diagrams in FOPT fail to reproduce the finite distance (collinear)
and long distance (soft) divergent behaviour expected from
momentum space results.

) We shift our attention to the S-matrix and construct an FOPT
representation of it.
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Hybrid representation of the S-matrix

We construct a representation of the S-matrix where external data
is given in momentum space whereas the internal integrals are in
coordinate space (FOPT).

S({pi}i2V ext
in

, {pf }f 2V ext
out

) = Z |Vext|/2e�T ({pa}a2V ext) ,

e�T ({pa}a2V ext) =

"
Y

i2V ext
in

e�R(pi )

#�1" Y

f 2V ext
out

e�A(pf )

#�1

e�({pa}a2V ext).

e�({pa}a2V ext) =

Z " Y

a2V ext

d4xa e
ixa·pa

#
�({xa}a2V ext),
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Hybrid representation of the S-matrix

Next we use FOPT representation of the Green’s function

e�({pa}a2V ext) =

Z " Y

a2V ext

d4xa e
ixa·pa

#
�({xa}a2V ext),

e�({pa}a2V ext) =
X

(G ,�)

1
Sym(G ,�)

eAG ,�({pa}a2V ext),

where the Fourier transform of a FOPT orientation is given by

eAG ,�({pa}a2V ext) =

Z " Y

a2V ext

d4xa e
ixa·pa

#
AG ,�({xa}a2V ext).
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p-x representation of the S-matrix

It is possible to perform the Fourier transform explicitly and the
final result equals

S({pi}i2V ext
in

, {pf }f 2V ext
out

) =
X

(G ,�)

SG ,�({pi}i2V ext
in

, {pf }f 2V ext
out

)

Sym(G ,�)
,

SG ,� / �

 
X

a2V ext

p0
a

!
⇥

⇥

Z ⇥Q
v2V int d3~yv

⇤ ⇥Q
a2V ext e�i~y a·~pa

⇤
⇥Q

e2E int 2|~ze |
⇤ ⇥Q

c2�int �c
⇤ bF{p0

a }
G ,� (�t + i"1).
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The flow polytope

bF{p0
a }

G ,� (� + i"1) =
Z

F{p0a }
G ,�

dE e iE ·(�+i"1).

F
{p0

a }
G ,� is swept out by all tuples (Er)r2�ext which fulfill

Er � 0 for all r 2 �ext ,
X

r3i
Er = p0

i for all i 2 V ext
in ,

X

r3f
Er = �p0

f for all f 2 V ext
out .

Nice features regarding the cancellation os spurious singularities.
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Example: The p-x representation of the triangle diagram

The flow polytope is cut
out by the conditions:

E1,E2,E3 � 0 ,

E1 + E2 + E3 = p0
1 ,

E1 + E3 = �p0
2 ,

E2 = �p0
3 ,
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IR singularities in the p-x representation

Collinear singularities are studied taking limits as (� ! 1):

~y2 = �~p2/|~p2|
2 +

p
|�|~y?2 , ~y3 = ~y3 ,

We find a per-diagram factorization of collinear and hard
singularities!
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Per-diagram factorization

only two-cut yield collinear singularities
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Per-diagram factorization of the S-matrix IR singularities

sG ,�({p1, . . . , pk}, {pk+1, . . . , pn}) =

= �
2⇡i
4

log
p2
n

Q2

Z 1

0
dx s(G ,�)hards(G ,�)col +Op2

n!0(1) ,
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Soft-collinear singularity in the triangle diagram

We can study in the triangle the overlap of the collinear singularity
with the soft singularity

) appearance of double-log Sudakov logs:

sG ,�({p1}, {p2, p3}) = �i
(2⇡)2

8

log
p2
2

p2
1
log

p2
3

p2
1

p2 · p3
+Op2

2!0
p2
3!0

(1).
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Cuts relating virtual and real processes

Loop Tree Duality puts all virtual and real corrections to a cross
section under the same integral sign.
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FOPT cut integrals

It is possible to extend FOPT to cut integrals.

A remarkable property arises: different sized cuts have the same

integral measure.

) Advantage: IR singularities in numerical evaluations will cancel
locally (no need for Loop Tree Duality).
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Outlook

FOPT offers promising features:
Canonical Feynman rules.

3D representation of the S-matrix and the flow polytope.

Per-diagram factorization of IR singularities in the S-matrix.

,
Next steps are:

Extend FOPT to D dimensions.

Extend it to massive and fermion lines.

Factorization.
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