MADRID

FLOW-ORIENTED PERTURBATION THEORY

Collaborators: M. Borinsky, Z. Capatti and E. Laenen.

RADCOR 2023, Tuesday $30^{\text {th }}$ May, 2023

Alexandre Salas-Bernárdez

Outline

1 Introduction and motivation.

Outline

1 Introduction and motivation.

2 Derivation of FOPT.

Outline

1 Introduction and motivation.

2 Derivation of FOPT. Examples.

Outline

1 Introduction and motivation.

2 Derivation of FOPT. Examples.

3 Hybrid S-Matrix representation and the Flow polytope.

Outline

11 Introduction and motivation.

2 Derivation of FOPT. Examples.

3 Hybrid S-Matrix representation and the Flow polytope.

4 Unitarity and cut integrals in FOPT.
Based on "Flow-oriented perturbation theory", JHEP 01 (2023), 172 https://arxiv.org/abs/2210.05532.

Introduction

Alexandre Salas-Bernárdez

3D representations of Feynman integrals

Famous non-(manifestly)covariant approaches:

- Time Ordered

Perturbation Theory (TOPT)

3D representations of Feynman integrals

Famous non-(manifestly)covariant approaches:

- Time Ordered

Perturbation Theory (TOPT)

- Loop-tree duality.

Coordinate space formulation of QFTs

Coordinate space treatments:

Unitarity and the Largest Time equation.

- Multi-loop renormalization group invariants.
- Factorization results.
- Axiomatic QFT.
- PDFs.
- ...

Coordinate space scalar QFT

$$
\Delta_{F}(z)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot z} \frac{i}{p^{2}+i \epsilon}=\frac{1}{(2 \pi)^{2}} \frac{1}{-z^{2}+i \epsilon} .
$$

Coordinate space scalar QFT

$$
\Delta_{F}(z)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot z} \frac{i}{p^{2}+i \epsilon}=\frac{1}{(2 \pi)^{2}} \frac{1}{-z^{2}+i \epsilon} .
$$

- Scalar n-point Green's function

$$
\begin{aligned}
\Gamma\left(x_{1}, \ldots, x_{\left|V^{\text {ext }}\right|}\right) & =\langle 0| T\left(\varphi\left(x_{1}\right) \cdots \varphi\left(x_{\left|V^{\text {ext }}\right|}\right)\right)|0\rangle \\
& =\sum_{G} \frac{1}{\operatorname{Sym} G} A_{G}\left(x_{1}, \ldots, x_{\left|V^{\text {ext }}\right|}\right),
\end{aligned}
$$

Coordinate space scalar QFT

$$
\Delta_{F}(z)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot z} \frac{i}{p^{2}+i \epsilon}=\frac{1}{(2 \pi)^{2}} \frac{1}{-z^{2}+i \epsilon} .
$$

- Scalar n-point Green's function

$$
\begin{aligned}
\Gamma\left(x_{1}, \ldots, x_{\mid V \text { ext } \mid}\right) & =\langle 0| T\left(\varphi\left(x_{1}\right) \cdots \varphi\left(x_{\mid V \text { ext } \mid}\right)\right)|0\rangle \\
& =\sum_{G} \frac{1}{\operatorname{Sym} G} A_{G}\left(x_{1}, \ldots, x_{\mid V \text { ext } \mid}\right),
\end{aligned}
$$

- A graph G contributing to the Green's function

$$
A_{G}\left(x_{1}, \ldots, x_{|V \operatorname{ext}|}\right)=\frac{(-i g)^{\left|{ }^{\text {int }}\right|}}{(2 \pi)^{2|E|}}\left[\prod_{v \in V^{\text {int }}} \int \mathrm{d}^{4} y_{v}\right] \prod_{e \in E} \frac{1}{-z_{e}^{2}+i \varepsilon}
$$

Coordinate space triangle diagram

Flow-oriented perturbation theory

Performing time integrations

In the spirit of TOPT we perform $\left[\int d y_{v}^{0}\right]$ integrations to obtain a 3D representation of coordinate space diagrams:

- In doing so we introduce auxiliary energy variables.
- Perform Cauchy integrations.

The result is a sum over the different energy flows (orientations $\boldsymbol{\sigma}$) in the diagram, with energies being conserved at each vertex.

$$
\left.\frac{A_{G}\left(x_{1}, \ldots, x_{\left|V^{\text {ext }}\right|}\right)}{\operatorname{Sym} G}=\sum_{\langle\sigma\rangle} \frac{A_{G, \sigma}\left(x_{1}, \ldots, x_{\mid} V^{\text {ext }} \mid\right.}{}\right)
$$

It is possible to resolve the energy integrations and conservation conditions for each orientation σ on a graph G in terms of "cycle" energy variables

Energy cycles

It is possible to resolve the energy integrations and conservation conditions for each orientation σ on a graph G in terms of "cycle" energy variables

Energy cycles

It is possible to resolve the energy integrations and conservation conditions for each orientation σ on a graph G in terms of "cycle" energy variables

External cycle or route

Energy conservation in $(G, \sigma) \Rightarrow$ Strongly connected closed graph $\left(G^{\circ}, \sigma\right)$

Energy cycles

It is possible to resolve the energy integrations and conservation conditions for each orientation σ on a graph G in terms of "cycle" energy variables:

$$
\begin{aligned}
A_{G, \sigma}\left(x_{1}, \ldots, x_{\left|V^{\mathrm{ext}}\right|}\right) & \propto\left(\prod_{v \in V^{\text {int }}} \int \mathrm{d}^{3} \vec{y}_{v}\right) \times \\
& \times\left(\prod_{e \in E} \frac{1}{2\left|\vec{z}_{e}\right|}\right) \prod_{p \in \text { cycles }} \frac{1}{\gamma_{p}+\tau_{p}+i \varepsilon} .
\end{aligned}
$$

τ_{p} is the time difference and γ_{p} the sum of the lengths of the edges passed in the cycle.

One loop self energy graph

$$
A_{G}\left(x_{1}, x_{2}\right)=\frac{(-i g)^{2}}{\left(4 \pi^{2}\right)^{4}} \int \mathrm{~d}^{4} y_{1} \mathrm{~d}^{4} y_{2} \frac{1}{-z_{1}^{2}+i \varepsilon} \frac{1}{-z_{2}^{2}+i \varepsilon} \frac{1}{-z_{3}^{2}+i \varepsilon} \frac{1}{-z_{4}^{2}+i \varepsilon}
$$

One loop self energy closed graph

One loop self energy closed graph

Next, draw all possible energy flows.

Energy flows through the closed bubble

Energy flows through the closed bubble

Energy must be conserved at each vertex.

Energy flows (= orientations) through the closed bubble

Energy flows (= orientations) through the closed bubble

(1)

(2)

(3)

(11)

(12)
(1) is equal to (8) and (2) to (9)

$$
\text { (under } \tau \equiv x_{2}^{0}-x_{1}^{0} \rightarrow-\tau \text {) }
$$

3D representation of the bubble

(2)

(8)

(9)

3D representation of the bubble

(8)

By collecting the overall and individual symmetry factors, we have that

$$
\frac{1}{2} A\left(x_{1}, x_{2}\right)=\frac{1}{2} A_{G, \sigma_{(1)}}+A_{G, \sigma_{(2)}}+A_{G, \sigma_{(8)}}+\frac{1}{2} A_{G, \sigma_{(9)}} .
$$

Decomposition of an orientation into cycles

Decomposition of an orientation into cycles

$$
\begin{aligned}
& A_{G, \sigma_{(1)}}\left(x_{1}, x_{2}\right)=\frac{(2 \pi g)^{2}}{\left(8 \pi^{2}\right)^{4}} \int \frac{\mathrm{~d}^{3} \vec{y}_{1} \mathrm{~d}^{3} \vec{y}_{2}}{\left|\vec{z}_{1}\right|\left|\vec{z}_{2}\right|\left|\vec{z}_{3}\right|\left|\vec{z}_{4}\right|} \times \\
& \times \frac{1}{\left|\vec{z}_{3}\right|+\left|\vec{z}_{1}\right|+\left|\vec{z}_{4}\right|+\tau+i \varepsilon} \frac{1}{\left|\vec{z}_{3}\right|+\left|\vec{z}_{2}\right|+\left|\vec{z}_{4}\right|+\tau+i \varepsilon},
\end{aligned}
$$

Decomposition of an orientation into cycles

$$
\begin{aligned}
& A_{G, \sigma_{(1)}}\left(x_{1}, x_{2}\right)=\frac{(2 \pi g)^{2}}{\left(8 \pi^{2}\right)^{4}} \int \frac{\mathrm{~d}^{3} \vec{y}_{1} \mathrm{~d}^{3} \vec{y}_{2}}{\left|\vec{z}_{1}\right|\left|\vec{z}_{2}\right|\left|\vec{z}_{3}\right|\left|\vec{z}_{4}\right|} \times \\
& \times \frac{1}{\left|\vec{z}_{3}\right|+\left|\vec{z}_{1}\right|+\left|\vec{z}_{4}\right|+\tau+i \varepsilon} \frac{1}{\left|\vec{z}_{3}\right|+\left|\vec{z}_{2}\right|+\left|\vec{z}_{4}\right|+\tau+i \varepsilon},
\end{aligned}
$$

Decomposition of an orientation into cycles

Decomposition of an orientation into cycles

Decomposition of an orientation into cycles

(2)

p_{1}

p_{2}

$$
\begin{aligned}
& A_{G, \sigma_{(2)}}\left(x_{1}, x_{2}\right)=\frac{(2 \pi g)^{2}}{\left(8 \pi^{2}\right)^{4}} \int \frac{\mathrm{~d}^{3}{\overrightarrow{y_{1}}}^{3} \mathrm{~d}^{3} \vec{y}_{2}}{\left|\vec{z}_{1}\right|\left|\vec{z}_{2}\right|\left|\overrightarrow{z_{3}}\right|\left|\overrightarrow{z_{4}}\right|} \times \\
& \times \frac{1}{\left|\overrightarrow{z_{3}}\right|+\left|\vec{z}_{1}\right|+\left|\vec{z}_{4}\right|+\tau+i \varepsilon} \frac{1}{\left|\overrightarrow{z_{1}}\right|+\left|\overrightarrow{z_{2}}\right|}
\end{aligned}
$$

UV divergent if y1->y2

Routes and cycles: UV singularities in FOPT

Two types of paths:

(a) Route, $r \in \Gamma^{\mathrm{ext}}$.

(b) Cycle, $\mathrm{c} \in \Gamma^{\text {int }}$.

Routes and cycles: UV singularities in FOPT

Two types of paths:

(a) Route, $r \in \Gamma^{\mathrm{ext}}$.

(b) Cycle, $\mathrm{c} \in \Gamma^{\text {int }}$.

Routes and cycles: UV singularities in FOPT

Two types of paths:

(a) Route, $r \in \Gamma^{\mathrm{ext}}$.

(b) Cycle, $\mathrm{c} \in \Gamma^{\mathrm{int}}$.

UV singularities of cycles match those of the covariant Feynman diagrams.
\Rightarrow Amplitudes can be regularised as "usual"

Routes and cycles: UV singularities in FOPT

Two types of paths:

(a) Route, $r \in \Gamma^{\mathrm{ext}}$.

(b) Cycle, $\mathrm{c} \in \Gamma^{\mathrm{int}}$.

UV singularities of cycles match those of the covariant Feynman diagrams.
\Rightarrow Amplitudes can be regularised as "usual"(it is coordinate space).

Long and finite distance singularities in FOPT

Diagrams in FOPT fail to reproduce the finite distance (collinear) and long distance (soft) divergent behaviour expected from momentum space results.

Long and finite distance singularities in FOPT

Diagrams in FOPT fail to reproduce the finite distance (collinear) and long distance (soft) divergent behaviour expected from momentum space results.
\Rightarrow We shift our attention to the S-matrix and construct an FOPT representation of it.

The $p-x$ representation of the S-matrix

Alexandre Salas-Bernárdez

Hybrid representation of the S-matrix

We construct a representation of the S-matrix where external data is given in momentum space whereas the internal integrals are in coordinate space (FOPT).

Hybrid representation of the S-matrix

We construct a representation of the S-matrix where external data is given in momentum space whereas the internal integrals are in coordinate space (FOPT).

$$
S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=Z^{\left|V_{\text {ext }}\right| / 2} \widetilde{\Gamma}_{T}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right)
$$

Hybrid representation of the S-matrix

We construct a representation of the S-matrix where external data is given in momentum space whereas the internal integrals are in coordinate space (FOPT).

$$
\begin{gathered}
S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=Z^{\mid V_{\text {ext }} / 2} / \widetilde{\Gamma}_{T}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right), \\
\widetilde{\Gamma}_{T}\left(\left\{p_{a}\right\}_{a \in V_{\text {ext }}}\right)=\left[\prod_{i \in V_{\text {ind }}^{\text {ext }}} \widetilde{\Delta}_{R}\left(p_{i}\right)\right]^{-1}\left[\prod_{f \in V_{\text {out }}^{\text {ext }}} \widetilde{\Delta}_{A}\left(p_{f}\right)\right]^{-1} \widetilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V_{\text {ext }}}\right) .
\end{gathered}
$$

Hybrid representation of the S-matrix

We construct a representation of the S-matrix where external data is given in momentum space whereas the internal integrals are in coordinate space (FOPT).

$$
\begin{gathered}
S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=Z^{\mid V_{\text {ext }} / / 2} \widetilde{\Gamma}_{T}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right), \\
\widetilde{\Gamma}_{T}\left(\left\{p_{a}\right\}_{a \in V_{\text {ext }}}\right)=\left[\prod_{i \in V_{\text {int }}^{\text {ext }}} \widetilde{\Delta}_{R}\left(p_{i}\right)\right]^{-1}\left[\prod_{f \in V_{\text {out }}^{\text {ext }}} \widetilde{\Delta}_{A}\left(p_{f}\right)\right]^{-1} \widetilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V_{\text {ext }}}\right) . \\
\widetilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V_{\text {ext }}}\right)=\int\left[\prod_{a \in V_{\text {ext }}} d^{4} x_{a} e^{i x_{a} \cdot p_{a}}\right] \Gamma\left(\left\{x_{a}\right\}_{a \in V_{\text {ext }}}\right),
\end{gathered}
$$

Hybrid representation of the S-matrix

Next we use FOPT representation of the Green's function

$$
\tilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right)=\int\left[\prod_{a \in V^{\text {ext }}} \mathrm{d}^{4} x_{a} e^{i x_{a} \cdot p_{a}}\right] \Gamma\left(\left\{x_{a}\right\}_{a \in V^{\text {ext }}}\right)
$$

Hybrid representation of the S-matrix

Next we use FOPT representation of the Green's function

$$
\begin{aligned}
& \widetilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right)=\int\left[\prod_{a \in V^{\text {ext }}} \mathrm{d}^{4} x_{a} e^{i x_{a} \cdot p_{a}}\right] \Gamma\left(\left\{x_{a}\right\}_{a \in V^{\mathrm{ext}}}\right), \\
& \widetilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V^{\mathrm{ext}}}\right)=\sum_{(G, \sigma)} \frac{1}{\operatorname{Sym}(G, \sigma)} \widetilde{A}_{G, \sigma}\left(\left\{p_{a}\right\}_{a \in V^{\mathrm{ext}}}\right),
\end{aligned}
$$

Hybrid representation of the S-matrix

Next we use FOPT representation of the Green's function

$$
\begin{aligned}
& \tilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right)=\int\left[\prod_{a \in V^{\text {ext }}} \mathrm{d}^{4} x_{a} e^{i x_{a} \cdot p_{a}}\right] \Gamma\left(\left\{x_{a}\right\}_{a \in V^{\text {ext }}}\right), \\
& \tilde{\Gamma}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right)=\sum_{(G, \sigma)} \frac{1}{\operatorname{Sym}(G, \sigma)} \widetilde{A}_{G, \sigma}\left(\left\{p_{a}\right\}_{a \in V^{\text {ext }}}\right),
\end{aligned}
$$

where the Fourier transform of a FOPT orientation is given by

$$
\widetilde{A}_{G, \sigma}\left(\left\{p_{a}\right\}_{a \in \operatorname{Vext}}\right)=\int\left[\prod_{a \in V^{\text {ext }}} \mathrm{d}^{4} x_{a} e^{i x_{a} \cdot p_{a}}\right] A_{G, \sigma}\left(\left\{x_{a}\right\}_{a \in V^{\text {ext }}}\right) .
$$

$p-x$ representation of the S-matrix

It is possible to perform the Fourier transform explicitly and the final result equals

$$
S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=\sum_{(G, \sigma)} \frac{S_{G, \sigma}\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)}{\operatorname{Sym}(G, \sigma)},
$$

$p-x$ representation of the S-matrix

It is possible to perform the Fourier transform explicitly and the final result equals

$$
\begin{aligned}
& S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=\sum_{(G, \sigma)} \frac{S_{G, \sigma}\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)}{\operatorname{Sym}(G, \sigma)}, \\
& S_{G, \sigma} \propto \delta\left(\sum_{a \in V^{\text {ext }}} p_{a}^{0}\right) \times \\
& \times \int \frac{\left[\prod_{v \in V^{\text {int }}} \mathrm{d}^{3} \vec{y}_{v}\right]\left[\prod_{a \in V^{\text {ext }}} e^{-i \vec{y}_{\vec{a}} \cdot \vec{p}_{\vec{a}}}\right]}{\left[\prod_{e \in E^{\text {int }} 2} 2 \vec{z}_{e} \mid\right]\left[\prod_{c \in \Gamma^{\text {int }}} \gamma_{c}\right]} \mathcal{F}_{G, \sigma}^{\left\{p_{0}^{0}\right\}}\left(\gamma^{t}+i \varepsilon 1\right) .
\end{aligned}
$$

$p-x$ representation of the S-matrix

It is possible to perform the Fourier transform explicitly and the final result equals

$$
\begin{aligned}
& S\left(\left\{p_{i}\right\}_{i \in V_{\text {in }}^{\text {ent }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)=\sum_{(G, \sigma)} \frac{S_{G, \sigma}\left(\left\{p_{i}\right\}_{i \in V_{\text {int }}^{\text {ext }}},\left\{p_{f}\right\}_{f \in V_{\text {out }}^{\text {ext }}}\right)}{\operatorname{Sym}(G, \sigma)}, \\
& S_{G, \sigma} \propto \delta\left(\sum_{a \in V^{\text {ext }}} p_{a}^{0}\right) \times \\
& \text { Fourier Transform of the }
\end{aligned}
$$

The flow polytope

$$
\widehat{\mathcal{F}}_{G, \sigma}^{\left\{p_{a}^{0}\right\}}(\gamma+i \varepsilon 1)=\int_{\mathcal{F}_{G, \sigma}^{\left\{\rho_{,}^{0}\right\}}} \mathrm{d} \boldsymbol{E} e^{i \boldsymbol{E} \cdot(\gamma+i \varepsilon 1)}
$$

The flow polytope

$$
\widehat{\mathcal{F}}_{G, \sigma}^{\left\{\mathcal{P}_{,}^{0}\right\}}(\gamma+i \varepsilon 1)=\int_{\mathcal{F}_{G, \sigma}^{\left\{\rho_{, \sigma}^{0}\right\}}} \mathrm{d} \boldsymbol{E} e^{i \boldsymbol{E} \cdot(\gamma+i \varepsilon 1)}
$$

$\mathcal{F}_{G, \sigma}^{\left\{p_{,}^{0}\right\}}$ is swept out by all tuples $\left(E_{\mathrm{r}}\right)_{\mathrm{r} \in \Gamma^{\text {ext }}}$ which fulfill

$$
\begin{aligned}
E_{\mathrm{r}} & \geq 0 \text { for all } \mathrm{r} \in \Gamma^{\mathrm{ext}}, \\
\sum_{\mathrm{r} \ni i} E_{\mathrm{r}} & =p_{i}^{0} \text { for all } i \in V_{\mathrm{in}}^{\mathrm{ext}} \\
\sum_{\mathrm{r} \ni f} E_{\mathrm{r}} & =-p_{f}^{0} \text { for all } f \in V_{\mathrm{out}}^{\mathrm{ext}} .
\end{aligned}
$$

The flow polytope

$$
\widehat{\mathcal{F}}_{G, \sigma}^{\left\{\mathcal{P}_{,}^{0}\right\}}(\gamma+i \varepsilon 1)=\int_{\mathcal{F}_{G, \sigma}^{\left\{\rho_{, \sigma}^{0}\right\}}} \mathrm{d} \boldsymbol{E} e^{i \boldsymbol{E} \cdot(\gamma+i \varepsilon 1)}
$$

$\mathcal{F}_{G, \sigma}^{\left\{p_{0}^{0}\right\}}$ is swept out by all tuples $\left(E_{\mathrm{r}}\right)_{\mathrm{r} \in \mathrm{r}^{\text {ext }}}$ which fulfill

$$
\begin{aligned}
E_{\mathrm{r}} & \geq 0 \text { for all } \mathrm{r} \in \Gamma^{\text {ext },} \\
\sum_{\mathrm{r} \ni i} E_{\mathrm{r}} & =p_{i}^{0} \text { for all } i \in V_{\mathrm{in}}^{\text {ext }}, \\
\sum_{\mathrm{r} \ni f} E_{\mathrm{r}} & =-p_{f}^{0} \text { for all } f \in V_{\text {out }}^{\text {ext }} .
\end{aligned}
$$

Nice features regarding the cancellation of spurious singularities.

Example: The $p-x$ representation of the triangle diagram

Example: The $p-x$ representation of the triangle diagram

IR singularities in the p - x representation

Collinear singularities are studied taking limits as $(\underline{\lambda \rightarrow \infty})$:

IR singularities in the p - x representation

Collinear singularities are studied taking limits as $(\underline{\lambda \rightarrow \infty})$:

IR singularities in the p - x representation

Collinear singularities are studied taking limits as $(\lambda \rightarrow \infty)$:

We find a per-diagram factorization of collinear and hard singularities!

Per-diagram factorization

only two-cut yield collinear singularities

Per-diagram factorization of the S-matrix IR singularities

$$
\begin{aligned}
& s_{G, \sigma}\left(\left\{p_{1}, \ldots, p_{k}\right\},\left\{p_{k+1}, \ldots, p_{n}\right\}\right)= \\
& =-\frac{2 \pi i}{4} \log \frac{p_{n}^{2}}{Q^{2}} \int_{0}^{1} \mathrm{dx} s_{(G, \sigma)_{\text {hard }} s^{S}(G, \sigma)_{\mathrm{col}}}+\mathcal{O}_{p_{n}^{2} \rightarrow 0}(1),
\end{aligned}
$$

Soft-collinear singularity in the triangle diagram

We can study in the triangle the overlap of the collinear singularity with the soft singularity

Soft-collinear singularity in the triangle diagram

We can study in the triangle the overlap of the collinear singularity with the soft singularity

Soft-collinear singularity in the triangle diagram

We can study in the triangle the overlap of the collinear singularity with the soft singularity

\Rightarrow appearance of double-log Sudakov logs:

$$
s_{G, \sigma}\left(\left\{p_{1}\right\},\left\{p_{2}, p_{3}\right\}\right)=-i \frac{(2 \pi)^{2}}{8} \frac{\log \frac{p_{2}^{2}}{p_{1}^{2}} \log \frac{p_{3}^{2}}{p_{1}^{2}}}{p_{2} \cdot p_{3}}+\mathcal{O}_{\substack{p_{2}^{2} \rightarrow 0 \\ p_{3}^{2} \rightarrow 0}}(1)
$$

Unitarity and cut integrals

Alexandre Salas-Bernárdez

Cuts relating virtual and real processes

Cuts relating virtual and real processes

Loop Tree Duality puts all virtual and real corrections to a cross section under the same integral sign.

FOPT cut integrals

It is possible to extend FOPT to cut integrals.

A remarkable property arises: different sized cuts have the same integral measure.

FOPT cut integrals

It is possible to extend FOPT to cut integrals.

A remarkable property arises: different sized cuts have the same integral measure.
\Rightarrow Advantage: IR singularities in numerical evaluations will cancel locally (no need for Loop Tree Duality).

Outlook

- FOPT offers promising features:
- Canonical Feynman rules.

Outlook

- FOPT offers promising features:
- Canonical Feynman rules.
- 3D representation of the S-matrix and the flow polytope.

Outlook

- FOPT offers promising features:
- Canonical Feynman rules.
- 3D representation of the S-matrix and the flow polytope.
- Per-diagram factorization of IR singularities in the S-matrix.
- Next steps are:
- Extend FOPT to D dimensions.

Outlook

- FOPT offers promising features:
- Canonical Feynman rules.
- 3D representation of the S-matrix and the flow polytope.
- Per-diagram factorization of IR singularities in the S-matrix.
- Next steps are:
- Extend FOPT to D dimensions.
- Extend it to massive and fermion lines.

Outlook

- FOPT offers promising features:
- Canonical Feynman rules.
- 3D representation of the S-matrix and the flow polytope.
- Per-diagram factorization of IR singularities in the S-matrix.
- Next steps are:
- Extend FOPT to D dimensions.
- Extend it to massive and fermion lines.
- Factorization.

