NNLO QCD corrections to event-shapes at the LHC

Rene Poncelet

LEVERHULME TRUST \qquad

UNIVERSITY OF CAMBRIDGE

Precision era of the LHC

Standard Model of Elementary Particles

- Collider data constrains the various interactions in the Standard Model.
- At the LHC QCD is part of any process!

1) The limiting factor in many analyses is QCD and associated uncertainties.
\rightarrow Radiative corrections indispensable
2) How well we do know QCD? Coupling constant, running, PDFs, ...

- The production of high energy jets allow to probe pQCD at high energies directly
$\mathcal{L}_{\mathrm{QCD}}=\bar{q}_{i}\left(\gamma^{\mu} \mathcal{D}_{\mu}-m_{i}\right) q_{i}-\frac{1}{4} F_{a}^{\mu \nu} F_{\mu \nu}^{a}$

1) Testing the predicted dynamics
2) Extract the coupling constant

Multi-jet observables

NLO theory unc. > experimental unc.

- NNLO QCD needed for precise theory-data comparisons
\rightarrow Restricted to two-jet data
[Currie'17+later][Czakon'19]
- New NNLO QCD three-jet \rightarrow access to more observables
- Jet ratios

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet [2106.05331]

$$
R^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)=\frac{\mathrm{d} \sigma_{3}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}{\mathrm{d} \sigma_{2}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}
$$

- Event shapes

NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet 2301.01086

NNLO QCD prediction beyond $2 \rightarrow 2$

Two-loop amplitudes

- (Non-) planar 5 point massless [Chawdry'19'20'21,Abreu'20'21'23,Agarwal'21, Badger'21'23] \rightarrow triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]
- For three-jets \rightarrow LC [Abreu'20'21] (checked against NJET [Badger'12'21])

One-loop amplitudes \rightarrow OpenLoops [Buccioni'19]

- Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes \rightarrow AvHlib[Bury'15]

- IR finite cross-sections \rightarrow NNLO subtraction schemes
qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17],
Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of QCD event evolution:

- Thrust \& Thrust-Minor $T_{\perp}=\frac{\sum_{i}\left|\vec{p}_{T, i} \cdot \hat{n}_{\perp}\right|}{\sum_{i}\left|\vec{p}_{T, i}\right|}, \quad$ and $\quad T_{m}=\frac{\sum_{i}\left|\vec{p}_{T, i} \times \hat{n}_{\perp}\right|}{\sum_{i}\left|\vec{p}_{T, i}\right|}$
- Energy-energy correlators $\frac{1}{\sigma_{2} \mathrm{~d} \cos \Delta \phi}=\frac{1}{\sigma_{2}} \sum_{i j} \int \frac{\mathrm{~d} \sigma x_{\perp, j} x_{\perp j}}{\mathrm{~d} x_{i, j} \mathrm{~d} x_{1, j} \cos \Delta \phi_{i j}} \delta\left(\cos \Delta \phi-\cos \Delta \phi_{i j}\right) \mathrm{d} x_{\perp i} \mathrm{~d} x_{\perp, j} \operatorname{dos} \Delta \phi_{i,}$,
- \rightarrow more computed

Separation of energy scales: $\quad H_{T, 2}=p_{T, 1}+p_{T, 2}$
Ratio to 2-jet: $\quad R^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)=\frac{\mathrm{d} \sigma_{3}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}{\mathrm{d} \sigma_{2}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}$
Here: use jets as input \rightarrow experimentally advantageous (better calibrated, smaller non-pert.)

Transverse Thrust @ NNLO QCD

NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet 2301.01086
ATLAS [2007.12600]

The transverse energy-energy correlator

$$
\frac{1}{\sigma_{2}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \Delta \phi}=\frac{1}{\sigma_{2}} \sum_{i j} \int \frac{\mathrm{~d} \sigma x_{\perp, i} x_{\perp, j}}{\mathrm{~d} x_{\perp, i} \mathrm{~d} x_{\perp, j} \mathrm{~d} \cos \Delta \phi_{i j}} \delta\left(\cos \Delta \phi-\cos \Delta \phi_{i j}\right) \mathrm{d} x_{\perp, i} \mathrm{~d} x_{\perp, j} \mathrm{~d} \cos \Delta \phi_{i j}
$$

- Insensitive to soft radiation through energy weighting $x_{T, i}=E_{T, i} / \sum_{j} E_{T, j}$
- Event topology separation:
- Central plateau contain isotropic events
- To the right: self-correlations, collinear and in-plane splitting
- To the left: back-to-back

ATLAS

[ATLAS 2301.09351]

Systematic Uncertainties TEEC

Experimental uncertainties

Theory uncertainties

Scale dependence is the dominating uncertainty \rightarrow NNLO QCD required to match exp.

Double differential TEEC

ATLAS

Particle-level TEEC
$\sqrt{\mathrm{s}}=13 \mathrm{TeV} ; 139 \mathrm{fb}^{-1}$
anti- $\mathrm{k}_{\mathrm{t}} \mathrm{R}=0.4$
$\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}$
$|\eta|<2.4$
$\mu_{\mathrm{R}, \mathrm{F}}=\mathrm{A}_{\mathrm{T}}$
$\alpha_{s}\left(m_{z}\right)=0.1180$
NNPDF 3.0 (NNLO)
\rightarrow Data
--- LO
..- NLO

- NNLO

Strong coupling dependence

TEEC

$$
R^{\mathrm{NNLO}, \mathrm{fit}}\left(\mu, \alpha_{S, 0}\right)=c_{0}+c_{1}\left(\alpha_{S, 0}-0.118\right)+c_{2}\left(\alpha_{S, 0}-0.118\right)^{2}+c_{3}\left(\alpha_{S, 0}-0.118\right)^{3}
$$

mostly linear dependence
Visualisation of α_{S} dependence

$$
\tilde{c}_{1}=\frac{c_{1}}{R^{\mathrm{NNLO}}\left(\alpha_{S, 0}=0.118\right)}
$$

For comparison:
scale dependence (dominant theory uncertainty)

- TEEC ($H_{T, 2}>1 \mathrm{TeV}$) : ~2\%
- Thrust:~3-5 \%

α_{S} from TEEC @ NNLO by ATLAS

[ATLAS 2301.09351]

- NNLO QCD extraction from multi-jets \rightarrow will contribute to PDG for the first time
- Significant improvement to 8 TeV \rightarrow driven by NNLO QCD corrections
- Individual precision large but comparable to top or jets-data.
- However: extraction at high energy scales

Running of α_{S}

Using the running of α_{S} to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

$$
\beta_{0}=\frac{1}{4 \pi}\left(11-\frac{2}{3} n_{f}-\frac{4}{3} n_{X} T_{X}\right)
$$

$$
\alpha_{s}(Q)=\frac{1}{\beta_{0} \log z}\left[1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log (\log z)}{\log z}\right] ; \quad z=\frac{Q^{2}}{\Lambda_{\mathrm{QCD}}^{2}}
$$

$$
\beta_{1}=\frac{1}{(4 \pi)^{2}}\left[102-\frac{38}{3} n_{f}-20 n_{X} T_{X}\left(1+\frac{C_{X}}{5}\right)\right]
$$

Rene Poncelet - Cambridge

Update with TEEC@13 TeV
\rightarrow much improved bounds

or 'new' SM dynamics

Systematic slope
\rightarrow New physics?

Possible SM explanations

- Residual PDF effects \rightarrow very high Q^{2} ?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$
\begin{aligned}
\mathcal{R}^{(2)}\left(\mu_{R}^{2}\right)= & 2 \operatorname{Re}\left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)}\right]\left(\mu_{R}^{2}\right)+\left|\mathcal{F}^{(1)}\right|^{2}\left(\mu_{R}^{2}\right) \\
\equiv & \mathcal{R}^{(2)}\left(s_{12}\right)+\sum_{i=1}^{4} c_{i} \ln ^{i}\left(\frac{\mu_{R}^{2}}{s_{12}}\right) \\
& \mathcal{R}^{(2)}\left(s_{12}\right) \approx \mathcal{R}^{(2) l . c . c}\left(s_{12}\right)
\end{aligned}
$$

- Experimental systematics?
- Resummation?

Either case interesting!

HighTEA

= ~100 MCPUh

https://www.precision.hep.phy.cam.ac.uk/hightea

HighTEA: High energy Theory Event Analyser [2304.05993]

How to make this more efficient/environment-friendly/ accessible/faster?

Michał Czakon, ${ }^{a}$ Zahari Kassabov, ${ }^{b}$ Alexander Mitov, ${ }^{c}$ Rene Poncelet, ${ }^{c}$ Andrei Popescu ${ }^{c}$

 ${ }^{a}$ Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany${ }^{b}$ DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom ${ }^{c}$ Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom E-mail: mczakon@physik.rwth-aachen.de, zk261@cam.ac.uk, adm74@cam.ac.uk, poncelet@hep.phy.cam.ac.uk, andrei.popescu@cantab.net

Basic idea

\rightarrow Database of precomputed "Theory Events" Not so new idea:
\rightarrow Equivalent to a full fledged computation LHE [Alwall et al '06], Ntuple [BlackHat '08'13],
\rightarrow Currently this means partonic fixed order events
\rightarrow Extensions to included showered/resummed/hadronized events is feasible
\rightarrow Analysis of the data through an user interface
\rightarrow Easy-to-use
\rightarrow Fast
\rightarrow Flexible:

- Observables from basic 4-momenta
- Free specification of bins
- Renormalization/Factorization Scale variation
- PDF (member) variation
- Specify phase space cuts

(Partially) Unweighting

The hadronic cross section in collinear factorization:

$$
\begin{array}{r}
\mathrm{d} \sigma\left(P_{1}, P_{2}\right)=\sum_{a b} \iint_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{a}\left(x_{1}, \mu_{F}^{2}\right) f_{b}\left(x_{2}, \mu_{F}^{2}\right) \mathrm{d} \hat{\sigma}_{a b}\left(x_{1} P_{1}, x_{2} P_{2}\right) \\
\hat{\sigma}_{a b \rightarrow X}=\hat{\sigma}_{a b \rightarrow X}^{(0)}+\hat{\sigma}_{a b \rightarrow X}^{(1)}+\hat{\sigma}_{a b \rightarrow X}^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right)
\end{array}
$$

Using MC method for integration:

Hit-And-Miss Algorithm:

$$
\sigma_{\mathrm{tot}}=\frac{1}{n} \sum_{i}^{n}\left(\sum_{j}^{m_{i}} w_{s}^{i, j}\right) \begin{aligned}
& \text { Beyond LO events might } \\
& \text { correspond to more than } \\
& \text { one kinematic: } \\
& \text { Subtraction events! }
\end{aligned}
$$

Accept each event i with probability: $\left(\sum_{j}^{m_{i}} w_{s}^{i, j}\right) / w_{\max }$

Factorizations

Factorizing renormalization and factorization scale dependence:

$$
w_{s}^{i, j}=w_{\mathrm{PDF}}\left(\mu_{F}, x_{1}, x_{2}\right) w_{\alpha_{s}}\left(\mu_{R}\right)\left(\sum_{i, j} c_{i, j} \ln \left(\mu_{R}^{2}\right)^{i} \ln \left(\mu_{F}^{2}\right)^{j}\right)
$$

PDF dependence:

$$
w_{\mathrm{PDF}}\left(\mu, x_{1}, x_{2}\right)=\sum_{a b \in \text { channel }} f_{a}\left(x_{1}, \mu\right) f_{b}\left(x_{2}, \mu\right)
$$

α_{s} dependence:

$$
w_{\alpha_{s}}(\mu)=\left(\alpha_{s}(\mu)\right)^{m}
$$

Allows full control over scales and PDF

HighTEA interface

The server

Available Processes

Processes currently implemented in our STRIPPER framework through NNLO QCD

The Vision

Summary \& Outlook

Summary

- Three jet NNLO QCD predictions allow for precision phenomenology with multi-jet final states
- First predictions for R32 ratios and event shapes
- Extraction of the strong coupling constant from event shapes by ATLAS \rightarrow will contribute to PDG ave.
- Relatively costly enterprise \rightarrow effective NNLO QCD tools needed
- HighTEA framework to store and reuse calculations

Outlook

- Still improvements to be made on subtractions schemes:

- Better MC integration techniques \rightarrow ML community has developed a plethora of tools
- Technical aspects like form of selector function and phase space mappings
" 3 factors of 2 are also a order of magnitude" \rightarrow difference between "doable" and "not doable"!
- Progressively extending the capabilities of HighTEA

Backup

Hadronic cross section

The NNLO bit: $\quad \hat{\sigma}_{a b}^{(2)}=\hat{\sigma}_{a b}^{\mathrm{RR}}+\hat{\sigma}_{a b}^{\mathrm{RV}}+\hat{\sigma}_{a b}^{\mathrm{VV}}+\hat{\sigma}_{a b}^{\mathrm{C} 2}+\hat{\sigma}_{a b}^{\mathrm{C} 1}$

Double real radiation
$\hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2}$

30.5.23 RADCOR 23

Real/Virtual correction
Double virtual corrections
$\left.\hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1} \right\rvert\, \hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle\right.$

Partonic cross section beyond LO

Perturbative expansion of partonic cross section:

$$
\hat{\sigma}_{a b \rightarrow X}=\hat{\sigma}_{a b \rightarrow X}^{(0)}+\hat{\sigma}_{a b \rightarrow X}^{(1)}+\hat{\sigma}_{a b \rightarrow X}^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

Contributions with different multiplicities and \# convolutions:

$$
\hat{\sigma}_{a b}^{(2)}=\frac{\hat{\sigma}_{a b}^{\mathrm{RR}}+\hat{\sigma}_{a b}^{\mathrm{RV}}+\hat{\sigma}_{a b}^{\mathrm{VV}}+\hat{\sigma}_{a b}^{\mathrm{C} 2}+\hat{\sigma}_{a b}^{\mathrm{C} 1}}{\downarrow}
$$

$$
\begin{aligned}
& \hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2} \\
& \hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1}
\end{aligned}
$$

Each term separately IR divergent. But sum is:
\rightarrow finite

$$
\hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle+\left\langle\mathcal{M}_{n}^{(1)} \mid \mathcal{M}_{n}^{(1)}\right\rangle\right) \mathrm{F}_{n}
$$

\rightarrow regularization scheme independent

$$
\hat{\sigma}_{a b}^{\mathrm{C} 1}=(\text { single convolution }) \mathrm{F}_{n+1}
$$

Considering CDR $(d=4-2 \epsilon)$:
\rightarrow Laurent expansion: $\hat{\sigma}_{a b}^{C}=\sum_{i=-4}^{0} c_{i} \epsilon^{i}+\mathcal{O}(\epsilon)$
$\hat{\sigma}_{a b}^{\mathrm{C} 2}=($ double convolution $) \mathrm{F}_{n}$

Sector decomposition I

Considering working in CDR:
\rightarrow Virtuals are usually done in this regularization
\rightarrow Real radiation:
\rightarrow Very difficult integrals, analytical impractical (except very simple cases)!
\rightarrow Numerics not possible, integrals are divergent: ε-poles!
How to extract these poles? \rightarrow Sector decomposition!

Divide and conquer the phase space:
$1=\sum_{i, j}\left[\sum_{k} \mathcal{S}_{i j, k}+\sum_{k, l} \mathcal{S}_{i, k ; j, l}\right]$
$\hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2} \sum_{i, j}\left[\sum_{k} \mathcal{S}_{i j, k}+\sum_{k, l} \mathcal{S}_{i, k ; j, l}\right]\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2}$

Sector decomposition II

Divide and conquer the phase space:
\rightarrow Each $\mathcal{S}_{i j, k} / \mathcal{S}_{i, k ; j, l}$ has simpler divergences. appearing as $1 / s_{i j k} \quad 1 / s_{i k} / s_{j l}$
Soft and collinear (w.r.t parton k, l) of partons i and j
\rightarrow Parametrization w.r.t. reference parton:

$$
\hat{\eta}_{i}=\frac{1}{2}\left(1-\cos \theta_{i r}\right) \in[0,1] \quad \hat{\xi}_{i}=\frac{u_{i}^{0}}{u_{\max }^{0}} \in[0,1]
$$

\rightarrow Subdivide to factorize divergences

$$
s_{u_{1} u_{2} k}=\left(p_{k}+u_{1}+u_{2}\right)^{2} \sim \hat{\eta}_{1} u_{1}^{0}+\hat{\eta}_{2} u_{2}^{0}+\hat{\eta}_{3} u_{1}^{0} u_{2}^{0}
$$

\rightarrow double soft factorization:

$$
\theta\left(u_{1}^{0}-u_{2}^{0}\right)+\theta\left(u_{2}^{0}-u_{1}^{0}\right)
$$

\rightarrow triple collinear factorization

[Czakon'10,Caola'17]

Sector decomposition III

Factorized singular limits in each sector:

Regularization of divergences:

$$
x^{-1-b \epsilon}=\underbrace{\frac{-1}{b \epsilon}}_{\text {pole term }}+\underbrace{\left[x^{-1-b \epsilon}\right]}_{\text {reg. }+ \text { sub. }}
$$

$$
\int_{0}^{1} \mathrm{~d} x\left[x^{-1-b \epsilon}\right]_{+} f(x)=\int_{0}^{1} \frac{f(x)-f(0)}{x^{1+b \epsilon}}
$$

Finite NNLO cross section

$$
\begin{aligned}
& \hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2} \\
& \hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1} \\
& \hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle+\left\langle\mathcal{M}_{n}^{(1)} \mid \mathcal{M}_{n}^{(1)}\right\rangle\right) \mathrm{F}_{n} \\
& \hat{\sigma}_{a b}^{\mathrm{C} 1}=(\text { single convolution }) \mathrm{F}_{n+1} \\
& \hat{\sigma}_{a b}^{\mathrm{C} 2}=(\text { double convolution }) \mathrm{F}_{n} \\
& \left(\sigma_{F}^{R R}, \sigma_{S U}^{R R}, \sigma_{D U}^{R R}\right) \quad\left(\sigma_{F}^{R V}, \sigma_{S U}^{R V}, \sigma_{D U}^{R V}\right) \quad\left(\sigma_{F}^{V V}, \sigma_{D U}^{V V}, \sigma_{F R}^{V V}\right) \quad\left(\sigma_{S U}^{C 1}, \sigma_{D U}^{C 1}\right) \quad\left(\sigma_{D U}^{C 2}, \sigma_{F R}^{C 2}\right) \\
& \text { re-arrangement of terms } \rightarrow \text { 4-dim. formulation [Czakon'14, Czakon'19] } \\
& \left(\sigma_{F}^{R R}\right) \quad\left(\sigma_{F}^{R V}\right) \quad\left(\sigma_{F}^{V V}\right) \quad\left(\sigma_{S U}^{R R}, \sigma_{S U}^{R V}, \sigma_{S U}^{C 1}\right) \quad\left(\sigma_{D U}^{R R}, \sigma_{D U}^{R V}, \sigma_{D U}^{V V}, \sigma_{D U}^{C 1}, \sigma_{D U}^{C 2}\right)\left(\sigma_{F R}^{R V}, \sigma_{F R}^{V V}, \sigma_{F R}^{C 2}\right)
\end{aligned}
$$

separately finite: ε poles cancel

More event-shapes I

More event-shapes II

Event shapes as MC tuning tool

