Two-loop five-particle scattering amplitudes

Simone Zoia

RADCOR 2023, Crieff, 30th May 2023

Outline

Two-loop QCD amplitudes for $\mathrm{pp} \rightarrow \gamma+2 \mathrm{j}$ with full colour dependence (2304.06682) with S. Badger, M. Czakon, H. Bayu Hartanto, R. Moodie, T. Peraro, R. Poncelet

Immediate deployment in NNLO QCD phenomenology in full colour
\rightarrow Michał Czakon’s talk

General methodology for computing 2-loop multi-particle amplitudes

Urgent demand for NNLO QCD for LHC physics

Many observables probed at percent-level precision
We must keep the theoretical uncertainties in line with the experimental ones

Current frontier: NNLO QCD corrections for $2 \rightarrow 3$ processes
Hot topic: talks by Becchetti, Buonocore, Chicherin, Czakon, Gambuti, Poncelet, Savoini...

Bottleneck: 2-loop 5-particle scattering amplitudes

Explosion of results in the last couple of years

\rightarrow Giulio Gambuti's talk

- 3 $\boldsymbol{\text { [Abreu, Page, Pascual, Sotnikov 2020; Chawdhry, Czakon, Mitov, Poncelet 2021; }}$

Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov, yesterday]

- $2 \boldsymbol{\gamma}+\mathbf{j} \quad$ [Agarwal, Buccioni, von Manteuffel, Tancredi 2021; Chawdhry, Czakon, Mitov, Poncelet 2021;

Badger, Brönnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Peraro, SZ 2021]

- $3 j$ (planar) [Abrrue, Febles-COrdero, Ita, Page, Sotrikiov 2021]
- $\mathrm{W}+\mathrm{b} \overline{\mathrm{b}}$ (planar) PBadger, Bay H Hatanto, sz 2021; Bayu Hatanto, Poncelet, Popescu, Sz 2022]
- W +2 j (planar) Abbreu, Febres Cordero, Ita, Kinkert, Page, Sontikov 202z]
- $\mathrm{H}+\mathrm{b} \overline{\mathrm{b}}$ (planar) [Badger, Bayu Hartanto, Kýs, sz 2021]
- $\mathrm{W}+\gamma+\mathrm{j}$ (planar) (Badger, Bay Hatatanto, Knys, sz 2022$]$
- $\gamma+2 \mathrm{j}$ [Badger, CZzakon, Bay Hatatato, Moodie, Peraro, Poncelet, Sz 2023]

Ready for deployment in NNLO QCD phenomenology

Leading colour
@ 2 loops

$$
\mathrm{pp} \rightarrow 3 \gamma \text { [Kallweit, Sotnikov, Wiesemann 2020; Chawdhry, Czakon, Mitov, Poncelet 2020] }
$$

$$
\text { pp } \rightarrow 2 \gamma+\mathrm{j} \text { [Chawdhrr, Czakon, Mitov, Poncelet 2021; Badger, Gehrmann, Marcoli, Moodie 2021] }
$$

pp $\rightarrow 3$ [Czakon, Mitov, Poncelet 2021; Chen, Gehrmann, Glover, Huss, Marcoli 2022]
$\mathrm{pp} \rightarrow \mathrm{W}+\mathrm{b} \overline{\mathrm{b}}$ [Bayu Hartanto, Poncelet, Popescu, sz 2022; Buonocore, Devoto, Kallweit, Mazzitell,
Rottoli, Savoini 2023]
pp $\rightarrow \gamma+2 \mathrm{j}$ [Badger, Czakon, Bayu Hartanto, Moodie, Peraro, Poncelet, sz 2023]
First calculation of a complete $2 \rightarrow 3$ hadron-collider process at NNLO QCD with full colour dependence
\rightarrow Michał Czakon’s talk

All massless $2 \rightarrow 3$ processes now analysed at NNLO QCD $\sqrt{ }$

Algebraic and analytic complexity

Algebraic and analytic complexity

Algebraic and analytic complexity

Helicity partial amplitudes

Amplitude workflow

Integration-by-parts identities

A toy example:

Finite number of basis integrals, called master integrals (Mls)

$$
\mathrm{I}_{i}(\{p\}, \epsilon)=\sum_{j} W_{i j}(\{p\}, \epsilon) \operatorname{MI}_{j}(\{p\}, \epsilon)
$$

Solve a very large linear system of equations (Laporta algorithm) Complicated and bulky solution

Finite-field arithmetic removes the bottleneck

[von Manteuffel, Schabinger 2015; Peraro 2016]

- Evaluate rational functions at numerical integer points $(\{p\}, \epsilon)$ modulo prime number
- Perform all intermediate rational operations numerically
- Reconstruct the analytic expression of the result from multiple numerical evaluations

Mathematica/C++ framework FiniteFlow [Peraro 2019]

Simplification from the ϵ-expansion

Amplitudes needed only up to a certain order in $\epsilon=(4-D) / 2$

- Significantly simpler expressions
- Check IR/UV poles (IR factorisation + UV renormalisation)

The Laurent expansion of the rational coefficients can be performed over finite fields

$$
A^{(2)}(\{p\}, \epsilon)=\sum_{i} d_{i}(\{p\}, \epsilon) \operatorname{MI}_{i}(\{p\}, \epsilon)
$$

We need the ϵ-expansion of the master integrals \Rightarrow Special functions!

"Bases" of special functions

Special functions satisfy functional relations $\quad \mathrm{Li}_{2}(z)+\frac{1}{2} \log ^{2}(-z)+\mathrm{Li}_{2}\left(\frac{1}{z}\right)+\frac{\pi^{2}}{6}=0$
\Rightarrow Redundant representation, missed simplifications

"Bases" of special functions

Special functions satisfy functional relations $\quad \mathrm{Li}_{2}(z)+\frac{1}{2} \log ^{2}(-z)+\mathrm{Li}_{2}\left(\frac{1}{z}\right)+\frac{\pi^{2}}{6}=0$
\Rightarrow Redundant representation, missed simplifications

Solution: map Mls onto a basis of special functions

Massless 2-loop 5-point
[Gehrmann, Henn, Lo Presti 2018] [Chicherin, Sotnikov 2020]
\Rightarrow Unique, simpler expression of the amplitudes

Amplitude workflow

$$
\begin{aligned}
& A^{(2)}(\{p\}, \epsilon)=\sum \text { Feynman diagram }{ }_{i} \\
& \text { IBP reduction } \\
& A^{(2)}(\{p\}, \epsilon)=\sum_{i} d_{i}(\{p\}, \epsilon) \operatorname{MI}_{i}(\{p\}, \epsilon) \\
& \epsilon \text { expansion }
\end{aligned}
$$

Amplitude workflow

$$
\begin{gathered}
A^{(2)}(\{p\}, \epsilon)=\sum_{i} \text { Feynman diagram }_{i} \\
A^{(2)}(\{p\}, \epsilon)=\sum_{i} d_{i}(\{p\}, \epsilon) \operatorname{MII}_{i}(\{p\}, \epsilon) \\
\downarrow \quad \epsilon \text { expansion } \\
A^{(2)}(\{p\}, \epsilon)=\sum_{w=-4}^{\infty} \epsilon^{w} \sum_{i} c_{i}^{(w)}(\{p\}) \operatorname{mon}_{w, i}[f] \\
F^{(2)}(\{p\})=\sum_{i} e_{i}(\{p\}) \operatorname{mon}_{i}[f]
\end{gathered}
$$

Finite-field arithmetic + rational reconstruction with FiniteFlow
[Peraro 2019]

Rational reconstruction

$$
F^{(2)}(\{p\})=\sum_{i} e_{i}(\{p\}) \operatorname{mon}_{i}[f] \quad(\{p\}, \mathrm{P}) \rightarrow
$$

$$
e_{i}(\{p\}) \text { reconstructed in } \frac{\# \text { points } \times \text { eval. time }}{\# \text { CPUs }}=
$$

Rational reconstruction

$$
F^{(2)}(\{p\})=\sum_{i} e_{i}(\{p\}) \operatorname{mon}_{i}[f] \quad(\{p\}, \mathrm{P}) \rightarrow>e_{i}(\{p\}) \bmod \mathrm{P}
$$

Improved IBPs through syzygy equations

[Gluza, Kajda, Kosower 2011; Ita 2016; Larsen, Zhang 2016]
Standard way to generate IBP relations: $\int \mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \frac{\partial}{\partial k_{i}^{\mu}} \frac{q_{j}^{\mu}}{D_{1}^{\nu_{1}} \ldots D_{m}^{\nu_{m}}}=0$
The resulting IBPs contain integrals which are not needed for the amplitudes

- Integrals with doubled propagators
- Dimensionally-shifted integrals

We generated optimised IBP systems by solving polynomial "syzygy" equations for all two-loop integral families
[Boehm, Georgoudis, Larsen, Schulze, Zhang 2017; von Manteuffel, Schabinger 2019]
\Rightarrow speed-up in IBP solution + substantial reduction in RAM usage

Guessing the denominators

$$
F^{(2)}(\{p\})=\sum_{i} e_{i}(\{p\}) \operatorname{mon}_{i}[f] \quad e_{i}(s)=\frac{N_{i}(s)}{D_{i}(s)} \quad s:=\{p\}
$$

Ansatz for the denominators informed by singularities of Feynman integrals

[Abreu, Dormans, Febres Cordero, Ita, Page 2018]

Can we use this information to construct an ansatz for the numerators?

Univariate partial fraction decomposition

[Badger, Bayu Hartanto, SZ 2021; Badger, Brönnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Peraro, SZ 2021]

$$
e(x, y)=\frac{-2 x^{4}-4 x^{3} y+5 x^{2} y^{2}-x y^{3}+4 y^{4}}{(x-y) y^{2}\left(x^{2}+y^{2}\right)}=-\frac{2 x}{y^{2}}-\frac{6}{y}+\frac{1}{x-y}+\frac{3 y}{x^{2}+y^{2}}
$$

Construct ansatz based on the knowledge of degrees and denominators

$$
e(x, y)=\frac{q_{1}(x)}{y^{2}}+\frac{q_{2}(x)}{y}+\frac{q_{3}(x)}{x-y}+\frac{q_{4}(x)+q_{5}(x) y}{x^{2}+y^{2}}
$$

Linear fit to reconstruct the coefficients $q_{i}(x)$

- One fewer variables
- Lower degrees

Substantial drop in the polynomial degrees

Ready for phenomenology!

We reconstructed the minimal set of independent partial helicity amplitudes

Other partial amplitudes for the colour/helicity-summed matrix elements obtained numerically by permutation of the momenta and parity conjugation

Efficient and stable numerical evaluation $\longrightarrow \begin{aligned} & \text { C++ library PentagonFunctions++ } \\ & \text { [Chicherin, Sotnikov 2020] }\end{aligned}$
Amplitudes ready for immediate deployment in phenomenology!

Conclusions

First calculation of a complete $2 \rightarrow 3$ process at NNLO QCD with full colour dependence

Efficient methodology for multi-particle computations based on finite-field arithmetic

All massless $2 \rightarrow 3$ processes now analysed at NNLO QCD (at least at leading colour)

Conclusions

Two-loop amplitudes for $\mathrm{pp} \rightarrow \gamma+2 \mathrm{j}$ in full colour

First calculation of a complete $2 \rightarrow 3$ process at NNLO QCD with full colour dependence
\rightarrow Michał Czakon’s talk

Efficient methodology for multi-particle computations based on finite-field arithmetic

All massless $2 \rightarrow 3$ processes now analysed at NNLO QCD (at least at leading colour)

Amplitudes for $\mathrm{pp} \rightarrow \gamma+2 \mathrm{j}$

Two partonic channels:

Colour decomposition $\boldsymbol{\rightarrow}$ a lot of bookkeeping!

$$
\begin{aligned}
\mathcal{M}^{(L)}\left(1_{\bar{q}}, 2_{q}, 3_{g}, 4_{g}, 5_{\gamma}\right) & =\sqrt{2} e g_{s}^{2} n^{L}\left\{\left(t^{a_{3}} t^{a_{4}}\right)_{i_{2}}^{\bar{i}_{1}} \mathcal{A}_{34}^{(L)}\left(1_{\bar{q}}, 2_{q}, 3_{g}, 4_{g}, 5_{\gamma}\right)\right. \\
& \left.+\left(t^{a_{4}} t^{a_{3}}\right)_{i_{2}}^{\bar{i}_{1}} \mathcal{A}_{43}^{(L)}\left(1_{\bar{q}}, 2_{q}, 3_{g}, 4_{g}, 5_{\gamma}\right)+\delta_{i_{2}}^{\bar{i}_{1}} \delta^{a_{3} a_{4}} \mathcal{A}_{\delta}^{(L)}\left(1_{\bar{q}}, 2_{q}, 4_{g}, 3_{g}, 5_{\gamma}\right)\right\}, \\
\mathcal{A}_{34}^{(2)}= & \mathcal{Q}_{q} N_{c}^{2} A_{34 ; q}^{(2), N_{c}^{2}}+\mathcal{Q}_{q} A_{34 ; q}^{(2), 1}+\mathcal{Q}_{q} \frac{1}{N_{c}^{2}} A_{34 ; q}^{(1), 1 / N_{c}^{2}}+\mathcal{Q}_{q} N_{c} n_{f} A_{34 ; q}^{(2), N_{c} n_{f}}+\mathcal{Q}_{q} \frac{n_{f}}{N_{c}} A_{34 ; q}^{(2), n_{f} / N_{c}} \\
+ & \mathcal{Q}_{q} n_{f}^{2} A_{34 ; q}^{(2), n_{f}^{2}}+\left(\sum_{l} \mathcal{Q}_{l}\right) N_{c} A_{34 ; l}^{(2), N_{c}}+\left(\sum_{l} \mathcal{Q}_{l}\right) \frac{1}{N_{c}} A_{34 ; l}^{(2), 1 / N_{c}}+\left(\sum_{l} \mathcal{Q}_{l}\right) n_{f} A_{34 ; l}^{(2), n_{f}},
\end{aligned}
$$

