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Motivating question

1/18

Why bother with elliptic1 Feynman integrals?

1Family of integrals in which elliptic curve(s) is(are) lurking



Perturbative QFT

2/18

Elliptic integrals appear in the early stages of pQFT
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Already rich literature at two-loop!

[Sabry ; 61, Broadhurst ; 90, Laporta, Remiddi; 05, Adams, Bogner, Schweitzer,
Weinzierl; 16, Broedel, Duhr, Dulat, Penante, Tancredi; 19, Duhr, Dulat, Mistlberger;
20, Frellesvig; 21, Duhr, Smirnov, Tancredi; 21, Wilhelm, Zhang; 22 andmanymore]

⇓

An essential step in opening a gateway to more precise
perturbative calculations of cross-sections



Themissing piece we are after: canonical bases

3/18

A canonical basis I satisfies a differential equation we “know”
how to solve order-by-order in the dim-reg ε [Henn; 13]

dI = εΩ ¨ I

For many processes (e.g., massless), such basis is systematically
derived by normalizing a naive basis with leading singularities

(Gram determinant)#

Introducing internal masses usually changes the story...

In fullymassive examples, the definition of leading singularities
is somewhat ambiguous, and so is the path to canonical form...
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Themissing piece we are after: canonical bases

3/18

A canonical basis I satisfies a differential equation we “know”
how to solve order-by-order in the dim-reg ε [Henn; 13]

dI = εΩ ¨ I

For many processes (e.g., massless), such basis is systematically
derived by normalizing a naive basis with leading singularities

(Gram determinant)#

Introducing internal masses usually changes the story...

In fullymassive examples, the definition of leading singularities
is somewhat ambiguous, and so is the path to canonical form...

This talk’s query:
Can we systematically derive canonical bases formulti-loop

integrals with genericmass scales?



Honest answer...

4/18

Not quite systematically, but
(I think) our community is

slowly getting there!
[Talks by Wang and Weinzierl]



Ourmodest tool box

5/18

Unitarity and geometry: innately enclosed into the
framework of dual forms [Caron-Huot, Pokraka; 21]

Looping loops: to first approximation, a multi-loop
problem is a bunch of (coupled) one-loop problems

Modular (SL(2,Z)) symmetry: focus on elliptic classes
of Feynman integrals



The dual paradigm 5/18

The dual paradigm



The inevitable “Feynman integrals” slide

The dual paradigm 6/18

A loop diagram + Feynman rules ùñ A Feynman integral

In dimensional regularisation, they correspond to twisted periods

Space of loop
momenta invariants

Multivalued twist

Algebraic differential
n-form

I =
ż

X
u(ε) φ

p

m1

m2

m3
„

ż

dDℓ1
πD/2

dDℓ2
πD/2

dDℓ3
πD/2

δD (ℓ3´ℓ1+ℓ2´p)(
ℓ2

1+m2
1

)(
ℓ2

2+m2
2

)(
ℓ2

3+m2
3

)
„

ż

b

ℓ2
1,K

+p2(x1 +1)2
(
ℓ2

1,K

)1/2´ε(
ℓ2

2,K

)1/2´ε
φ

(
x1, x2,ℓ2

1,K,ℓ2
2,K

)
For each topology, there exists a finite set of spanning integrals

[Smirnov, Petukhov; 10]

⇓
This set forms a vector space closed under differentiation

[Frellesvig, Gasparotto, Mandal, Mastrolia, Mattiazzi, Mizera; 19]
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The dual technology

The dual paradigm 7/18

The space of dual forms { qφ} is defined s.t. the intersection pairing

〈qφ|φ〉„

ż

Cn
(quˆu) qφ^φ

[Caron-Huot, Pokraka; 21]
[See Hjalte’s talk]

“makes sense”

1. Single-valuedness of intersection pairing
qu ˆ u is an algebraic function

2. Finiteness of intersection pairing
qφ supported away from φ’s unregulated poles (propagators = 0)

θi = θ (Di )
supp
⇝ dθi = dθ (Di )

supp
⇝

1
0

2. Finiteness of intersection pairing
For a given Feynman graph, the rule of thumb is
qφ come with a dθi for each internal propagator Di

θi = θ (Di )
supp
⇝ dθi = dθ (Di )

supp
⇝

1
0
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Looping the loops



A simple idea

Looping the loops 8/18

A multiloop problem is a ‘bunch’ of
easier (but coupled) 1-loop problems

True for differential equations too!
Construct differential equations one loop at a time
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Mathematical setup and differential equations

Looping the loops 9/18

If our total space X locally looks like F ˆ B then [Serre, 51]

qφ j = qφF ,i ^ qφB ,i j

q-form on F

p-form on B(p +q)-form on X

The goal is to obtain DEs on X from the ones on F and B

q∇qφ=
(1)

q∇
(
qφF

qφ
B

)

» qφF

(2)

q∇∇ qφ
B

» qφ qΩB

Loop-by-loop comes with strong constraints on bases choices!

Loop-by-loop constraints

1. The fibre basis chosen s.t.
qωĂ q∇∇ is in ε-form

2. The base basis chosen s.t.
qφ j = qφF ,i ^ qφB ,i j

is single-valued (algebraic)
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Schematic splitting of the sunrise basis

Example: The 3-scale sunrise 10/18
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Step 1: fibre basis and canonical differential equation

Example: The 3-scale sunrise 11/18

The normalized basis in [Caron-Huot, Pokraka; 21]

qφF ,1 = 2ε

q
b

ℓ2
1K

dθ2 ^dℓ2∥
ℓ2

2K

∣∣∣
2

qφF ,2 = 2ε

q
b

ℓ2
1K

dθ3 ^dℓ2∥
ℓ2

2K

∣∣∣
3

qφF ,3 = 1

q
b

ℓ2
1K

dθ2 ^dθ3
c

ℓ2
2K

∣∣∣
23

ℓ2
1K

= Gram determinant on the 2nd loop

q =
b

(p+ℓ1)2 (fibre external momentum)

satisfies a dlog-form differential equation qΩF such that

q∇∇Ą qω( qΩF ) =O (ε)

Bubble denominator on last cut is the sunrise elliptic curve Y

Y 2 ´
[
ℓ2

1K(ℓ1 +p)2ℓ2
2K

]∣∣
123 = 0
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Step 2: base basis and pre-canonical differential equation

Example: The 3-scale sunrise 12/18

1. As close as possible to uniformly “transcendental”
2. Second loop-by-loop constraint : qφ j = qφF ,i ^ qφB ,i j is algebraic

3. Linear differential equation: Θ=Θ(0) +ε Θ(1), with Θ(0) lower triangular
4. Θ is independent of a and b under SL(2,Z)

Tadpoles: Maximal-cut:

qφB ,1 = d log

 1´ i x
b

r 2
1 ´x2

1+ i x
b

r 2
1 ´x2

^dθ1

(
1

0

0

)
qφB ,4 = ψ2

1
π ε W0

q∇0 qφB ,7

qφB ,2 = d log

 1´ i x
b

r 2
1 ´x2

1+ i x
b

r 2
1 ´x2

^dθ1

(
0

1

0

)
qφB ,5 = m´4ε

1 dθ1 ^
(x´r1)dx

Y

(
0

0

1

)

qφB ,3 = i ε θ1 d log

 p (x+1)+
b

´ℓ2
1K

p (x+1)´
b

´ℓ2
1K

^d log
( q+´q´

q++q´

)(
0

0

1

)
qφB ,6 = m´4ε

1 dθ1 ^
Y (c)dx
(x´c)Y

(
0

0

1

)

ℓ
µ
1 =ℓµ1∥+ℓ

µ
1,K

=x pµ+ℓµ
1K

, ψ1„K

q˘=
b

(p+ℓ1)2+m2
˘

, m˘=m2˘m3

c,8 = twisted singularities in D = 4

qφB ,7 = m´4ε
1 dθ1 ^ πdx

ψ1Y

(
0

0

1

)
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b

r 2
1 ´x2

^dθ1

(
0

1

0

)
qφB ,5 = m´4ε

1 dθ1 ^
(x´r1)dx

Y

(
0

0

1

)

qφB ,3 = i ε θ1 d log

 p (x+1)+
b

´ℓ2
1K

p (x+1)´
b

´ℓ2
1K

^d log
( q+´q´

q++q´

)(
0

0

1

)
qφB ,6 = m´4ε

1 dθ1 ^
Y (c)dx
(x´c)Y

(
0

0

1

)

ℓ
µ
1 =ℓµ1∥+ℓ

µ
1,K

=x pµ+ℓµ
1K

, ψ1„K

q˘=
b

(p+ℓ1)2+m2
˘

, m˘=m2˘m3

c,8 = twisted singularities in D = 4

qφB ,7 = m´4ε
1 dθ1 ^ πdx

ψ1Y

(
0

0

1

)





Step 3: modular symmetry and canonical form

Example: The 3-scale sunrise 13/18

Suppose I satisfies a linear differential equation2

Γ=Γ(0) +εΓ(1)

where Γ(0) is lower-triangular and free of a and b under SL(2,Z)

Proposal A gauge transformation G =U ¨ I such that

U ¨Γ ¨U ´1 +dU ¨U ´1 = εΓ̃
is fixed by modular symmetry

Empirical observation:
Γ̃ only has simple poles

✓Non-trivial step toward systematization By symmetry
linear ðñ canonical form

Puzzle Systematic algorithm to pullback canonical form into
a “ready to integrate” modular form in genericmass examples

Yet, the sunrise is simple enough todo so fromeducated ansätze!

2I being a vector of Feynman integrals or dual forms is irrelevant
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Differential equation: result

Example: The 3-scale sunrise 14/18

qΩB = ε



Ω(1,2)
2

[
´2

0
2

]
0 0 0 0 0 0

0

Ω(1,2)
2

[ 0
´2

2

]
0 0 0 0 0

0 0

Ω(1,2)
2

[
´2
´2

4

]
0 0 0 0

0 0 0 ω(1)
2

[
0
0
4

]
+ ω(2)

2

[ 2
2

´6

]

ω(1)
1

 1
2i
1
2i
0

 ω(1)
1

´ 1
2i

1
2i
0

 1
4 ω

Kr
0 (τ)

Ω(1,2)
2

[ 4i
´4i
´8i

]
Ω(1,2)

2

[´4i
4i

´8i

]
Ω(1,2)

2

[
´2
´2
´4

]
ω(1)

3

[´6i
´6i
12i

]
ω(1)

2

[
´1
´1

0

]
+ ω(2)

2

[ 2
2

´6

]
ω(1)

2

[ 3
´3

0

]
ω(1)

1

 3
4i
3
4i
0


Ω(1,2)

2

[
´4i
´4i

0

]

Ω(1,2)
2

[
4i
4i
0

]

Ω(1,2)
2

[ 2
´2

0

]

ω(1)
3

[
´6i

6i
0

]

ω(1)
2

[ 1
´1

0

]

ω(1)
2

[
´3
´3

4

]
+ ω(2)

2

[ 2
2

´6

]

ω(1)
1

´ 1
4i

1
4i
0



Ω(1,4)
3

[ 16i
´16i

16i

]

Ω(1,4)
3

[
´16i

16i
16i

]

Ω(1,4)
3

[´8i
´8i

8i

]

ω(1)
4

[
48
48
48

]

ω(1)
3

[´4i
´4i

8i

]

ω(1)
3

[
´12i

12i
0

]

ω(1)
2

[
0
0
4

]
+ ω(2)

2

[ 2
2

´6

]



+ε



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 ´6η2(τ) 0 0 0
0 0 0 0 ´6η2(τ) 0 0
0 0 0 0 0 ´6η2(τ) 0
0 0 0 ´288η4(τ) 0 0 ´6η2(τ)



Compact notation:

ω(K )
n

[c1
c2
c3

]
:=ř3

i=1 ci ω
Kr
n (zi |K τ), K PN

Ω(K ,m)
n

[c1
c2
c3

]
:= ω(K )

n

[c1
c2
c3

]
+ ω(2K )

n

[
´m c1
´m c2
´m c3

]
[See Yu’s talk]



Relation to Feynman integrands

Example: The 3-scale sunrise 15/18

Caveat: to extract the boundary conditions, we still need to
know a basis of Feynman integrals. This requires additional

intersection calculations!



Relation to Feynman integrands

Example: The 3-scale sunrise 15/18

Caveat: to extract the boundary conditions, we still need to
know a basis of Feynman integrals. This requires additional

intersection calculations!

Up to the constant rescaling (R)

diag(1,1, i /2,1/4, i /2,1/2i ,´1/16)

of the ε-formdual basis, ourbasis isdual to thebasis of integrands
presented in [Bogner et al.;19] , meaning that3〈

qφ
(R)
i

∣∣∣φ j

〉
9 δi j

3Details of the calculation in [MG, A. Pokraka;22]
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Soaring with the sunrise,
the kite reached new heights



The 5-mass kite integral

Soaring with the sunrise, the kite reached new heights 16/18

Promising results based on the above ideas!
[WIP with Pokraka, Porkert and Sohnle]

1 2
3

54

p

1

3

5

2

3

4

Most general two-point function
Relevant to O (αsαw)-corrections to g g Ñ t t̄

Mathematically interesting: 30 masters with two elliptic curves
✓ Canonical form in terms of energy and masses!

Missing the “ready to integrate” modular form: stay tuned!
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Closing Thoughts

Wrapping up 17/18

✓ Extended dual forms to a multi-scale 2-loop problem

✓ Refined path to canonical forms in multi-scale examples:
Proposed that having unitarity, geometry, and modular symmetry

within a loop-by-loop model is adequate as a toolkit to build
differential equations

✓ Full modular form for the 3-mass sunrise

✓ ε-form with simple poles for the 5-mass kite

Full modular form for the 5-mass kite



Wrapping up 18/18

Thank you!
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A one-loop example: Bubble

Backup slides 2/8

Using themomentum space parameterization in D = 4 ´ 2ε

ℓµ = ℓµ∥ +ℓ
µ

K
, ℓ∥ ¨ℓK = 0⇝ dDℓ=

(
dΩD´2 ^

(
ℓ2

K

) D´3
2 dℓ2

K

)
^dℓ∥

the bubble integral is a twisted period over a 2-form

„

ż

dDℓ

D1 D2
=

(ż

dΩD´2

)
looooomooooon

= hypersphere
surface area

ż (
ℓ2

K

) D´3
2
dℓ∥ dℓ2

K

D1 D2


Feynman form: φbub = dℓ∥^dℓ2

1K

D1 D2

Gram determinant: G = ℓ2
K

Twist: u =G
D´3

2 [ (D ´ 3)/2 ∉Z ]



Volume form:
dV = (

dφ^ r dr
)
^dz

z

r
φ
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A one-loop example: Dual bubble

Backup slides 3/8

Localization of the intersection number (finiteness)

〈qφbub|φbub〉„

ż

C2

qφbub
dℓ1∥dℓ2

1K

D1 D2
ñ qφbub supported on tubular n.b.h. of unregulated poles

D1 = 0

D2 = 0

D1 XD2dθ1 ^dθ2 = dθ(D1 = 0) ^dθ(D2 = 0)⇝

6 qφbub „ dθ1 ^dθ2⇓

〈qφbub|φbub〉„

ż

C2

dθ1dℓ1∥
D1

dθ2dℓ2
1K

D2
=

¿

D1=0
D2=0

dℓ1∥
D1

dℓ2
1K

D2
„ 1

Rule of thumb for dual forms:
Dual forms come with a dθ for each cut propagator
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Summary: Feynamn vs dual
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Feynman forms: Dual forms:

H n
dR(Cnz{u = 0,8} Ya {Da = 0};∇) H n

alg(Cnz{u = 0,8}, {D= 0}; q∇)

Top dimensional holo forms Top dimensional holo forms

Possible singularities on the locus {u = 0,8}

Possible singularities on the loci {Da = 0} Vanish on the loci {Da = 0}



Differential equations

Backup slides 5/8

Both integrals and forms satisfy the same differential equation Ω

dI

=IBP
Ω ¨ I

=Ω ¨
ş

u φ

= ş

u Ω φ

=

d
ş

u φ

= ş

d(u φ)

= ş

u
(
d+d log(u)^

)
φ

= ş

u ∇ φ

Ω = matrix of
kinematic 1-forms

Exercise Differentiating the intersection pairing yields
qΩ=´ΩJ

In most analytic calculations, solving

∇φ»Ω φ or q∇qφ» qΩ qφ

ismuchmore systematic than brute force integration, provided
Ω has only simple poles and is linear in ε
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The elliptic sunrise integral
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p

m1

m2

m3
„

ż

dDℓ1

πD/2

dDℓ2

πD/2

dDℓ3

πD/2

δD (ℓ3 ´ℓ1 +ℓ2 ´ p)(
ℓ2

1 +m2
1

)(
ℓ2

2 +m2
2

)(
ℓ2

3 +m2
3

)

inmomentum space parameterization

ℓ
µ

i = ℓµi∥+ℓ
µ

iK
, ℓi∥ ¨ℓiK = 0, ℓ

µ
1∥ = x pµ

D1 = ℓ2
1K

+ℓ2
2∥+m2

1

D2 = ℓ2
2K

+x2 ℓ2
1K

+x2
(
ℓ2∥/p +1

)2 p2 +m2
2

D3 = ℓ2
2K

+ (x +1)2ℓ2
1K

+ (x +1)2
(
ℓ2∥/p +1

)2 p2 +m2
3

Maximal-cut ðñ residue around Di = 0 @ i

In D = 4, get an integral in x over Y

E(C) : Y 2 ´ (x ´ r1)(x ´ r2)(x ´ r3)(x ´ r4) = 0
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A useful* isomorphism
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x

E(C)

Y =+
b

ś4
i=1(x ´ ri )

Y =´

b

ś4
i=1(x ´ r i )

x

»

»

CP1+

CP1
´

Gluing along
branch locus:

Torus!
C/Λ(1,τ)

A B

E(C) ãÑÑC/Λ(1,τ)

z =
ż x=λ(z) dx

Y
mod Λ(1,τ)

*We will see soon that torus variables are the natural ones for our problem



DOFs on the torus
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C/Λ(1,τ) comes withmarked points inherited from
(3

2

)= three
special configurations of the sunrise graph

ℓ
µ
i

ℓ
µ

k

ℓ
µ
j

ℓ

ℓ0 ℓ+
ℓ´

ℓ
+

i
Ñ

+8

ℓ
+

j
Ñ

´
8

ℓ
µ

k

ℓ
µ

k

Moduli space4:

Torus with three marked points: {zi = F (ui )/K }3
i=1

4One marked point is fixed by translational symmetry


	The dual paradigm
	Looping the loops
	Example: The 3-scale sunrise
	Soaring with the sunrise, the kite reached new heights
	Wrapping up
	Apêndice
	Backup slides


