

tītji – NLO QCD corrections to top-quark pair production and decays at the LHC

Daniel Stremmer

In collaboration with: Giuseppe Bevilacqua, Michele Lupattelli, Malgorzata Worek

Based on arXiv:2212.04722

RADCOR 2023, Crieff, Scotland, 30 May 2023

Motivation

Observation of $pp \rightarrow t\bar{t}H$ in 2018 by ATLAS and CMS

Phys.Lett.B 784 (2018) 173-191 Phys.Rev.Lett. 120 (2018) 23, 231801

g

 W^+

W

Direct probe of Y_t at tree level

0000

0000

g

g

- $H \rightarrow b\bar{b}$ largest branching ratio with $\sim 58\%$
- Large irreducible background from $pp \rightarrow t\bar{t}bb$ & reducible one from $pp \rightarrow t\bar{t}jj$

 $pp \rightarrow t\bar{t}H(H \rightarrow b\bar{b})$

H

Feynman diagrams created with FeynGame Harlander, Klein, Lipp '20

)(

0000

Motivation

Cross section ratios:

- $R_b = \sigma_{t\bar{t}b\bar{b}} / \sigma_{t\bar{t}LL}$ • $R_c = \sigma_{t\bar{t}c\bar{c}} / \sigma_{t\bar{t}LL}$
- Playground for c and b jet tagging
- Better understanding of separation in different processes
- Differences between theoretical predictions and measurements up to 2.5σ for R_b

LL=light flavours and gluon jets

State of the art: NLO QCD

- Stable top quarks
 - $pp \rightarrow t\bar{t}jj$

Bevilacqua, Czakon, Papadopoulos, Worek '10'11

• $pp \rightarrow t\bar{t}jjj$ (NLO & MINLO)

Höche, Maierhöfer, Moretti, Pozzorini, Siegert '17

- Parton Shower (Multi-jet merging with MEPS@NLO in Sherpa)
 - $t\bar{t} + 0,1,2$ jets

Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, Siegert '15

• $t\bar{t}$ + 0,1 jet (NLO QCD + EW_{virt}), $t\bar{t}$ + 2,3,4 jets (LO)

Gütschow, Lindert, Schönherr '18

Setup

$pp ightarrow tar{t}(jj) ightarrow W^+W^-bar{b}jj ightarrow \ell^+\ell^- \, u_\ellar{ u}_\ell\,bar{b}\,jj$

- LHC with $\sqrt{s} = 13$ TeV
- Calculation performed in Narrow Width Approximation preserving spin correlations
- Jet radiation and NLO QCD corrections included in tt production and decay
- Diagonal CKM matrix
- 5 flavour scheme ($m_b = 0$)
- Top-quark width treated as fixed parameter

Process definition

Computational framework

- Theoretical prediction are stored in modified Les Houches Event Files (LHEFs) and ROOT Ntuples
- Reweighting to different renormalisation/factorisation scales and PDF sets

Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre '14

Validation

Virtual Corrections

- Recomputed with Recola (Actis, Denner, Hofer, Lang, Scharf, Uccirati '17) + Collier (Denner, Hofer, Dittmaier, Hofer '17)
- Improved performance by random polarisation method: $\sum_{\lambda} |\mathcal{M}_{\lambda}|^2 = \frac{1}{2\pi} \int_0^{2\pi} d\phi |\mathcal{M}_{\phi}|^2$

Real Corrections in Helac-Dipoles

Catani-Seymour subtraction Catani, Seymour '97
 Catani, Dittmaier, Seymour, Trocsanyi '02

 $\mathcal{A}_{\mathrm{CS}}^{D}(\{p\}_{m+1}) = \sum_{i,j,k=1}^{m+1} \mathcal{A}^{B}(\{\tilde{p}\}_{m}^{(ijk)}) \otimes \mathcal{D}_{\mathrm{CS}}^{(ijk)}(\{\tilde{p}\}_{m}^{(ijk)}, \{p\}_{m+1})$

- Number of subtraction terms $\sim m^3$
- Additional (polarised) subtraction terms
- $t \rightarrow W^+ bg$ Campbell, Ellis, Tramontano '04
- $t \rightarrow W^+ bgg$ Melnikov, Scharf, Schulze '12
- $t \rightarrow W^+ b q \bar{q}$

Nagy-Soper subtraction *Bevilacqua*, *Czakon*, *Kubocz*, *Worek* '13

$$\mathcal{A}_{\rm NS}^{D}(\{p\}_{m+1}) = \sum_{i,j,k=1}^{m+1} \mathcal{A}^{B}(\{\tilde{p}\}_{m}^{(ij)}) \otimes \mathcal{D}_{\rm NS}^{(ijk)}(\{\tilde{p}\}_{m}^{(ij)}, \{p\}_{m+1})$$
$$= \sum_{i,j} \mathcal{A}^{B}(\{\tilde{p}\}_{m}^{(ij)}) \otimes \left(\sum_{k} \mathcal{D}_{\rm NS}^{(ijk)}(\{\tilde{p}\}_{m}^{(ij)}, \{p\}_{m+1})\right)$$

- Number of subtraction terms $\sim m^2$
- Extended to radiative decays

Setup of the calculation

- Exclusive in $n_b = 2$, inclusive in $n_j \ge 2$
- Anti- k_T jet algorithm (R = 0.4) Cacciari, Salam, Soyez '08
- Event selection: *CMS-PAS-TOP-20-006*

$p_{T,\ell} > 20 \text{ GeV},$	$ y_\ell < 2.4,$	$\Delta R_{\ell\ell} > 0.4 ,$	$M_{\ell\ell} > 20 \mathrm{GeV},$
$p_{T,b} > 30 \mathrm{GeV},$	$ y_b < 2.4,$	$\Delta R_{bb} > 0.4 ,$	
$p_{T,j} > 40 \text{ GeV},$	$ y_j < 2.4 ,$	$\Delta R_{jj} > 0.4 ,$	
$\Delta R_{bl} > 0.4 ,$	$\Delta R_{jl} > 0.4 ,$	$\Delta R_{jb} > 0.8$	

- Renormalisation/Factorisation scale: $\mu_R = \mu_F = \mu_0 = \frac{H_T}{2}$ $H_T = \sum_{i=1}^2 p_{T\ell_i} + \sum_{i=1}^2 p_{Tj_i} + \sum_{i=1}^2 p_{Tb_i} + p_T^{miss}$
- NNPDF3.1 NLO PDF set with $\alpha_s = 0.118$ Ball et. al. '17

Setup of the calculation

- Exclusive in $n_b = 2$, inclusive in $n_i \ge 2$
- Anti- k_T jet algorithm (R = 0.4) Cacciari, Salam, Soyez '08
- Event selection: *CMS-PAS-TOP-20-006*

$p_{T,\ell} > 20 \text{ GeV},$	$ y_\ell < 2.4,$	$\Delta R_{\ell\ell} > 0.4 ,$	$M_{\ell\ell} > 20 \mathrm{GeV},$
$p_{T,b} > 30 \mathrm{GeV},$	$ y_b < 2.4,$	$\Delta R_{bb} > 0.4 ,$	
$p_{T,j} > 40 \text{ GeV},$	$ y_j < 2.4 ,$	$\Delta R_{jj} > 0.4 ,$	
$\Delta R_{bl} > 0.4 ,$	$\Delta R_{jl} > 0.4 ,$	$\Delta R_{jb} > 0.8 (0.4)$	

• Renormalisation/Factorisation scale:
$$\mu_R = \mu_F = \mu_0 = \frac{H_T}{2}$$
 $H_T = \sum_{i=1}^2 p_{T\ell_i} + \sum_{i=1}^2 p_{Tj_i} + \sum_{i=1}^2 p_{Tb_i} + p_T^{miss}$

• NNPDF3.1 NLO PDF set with $\alpha_s = 0.118$ Ball et. al. '17

Integrated Fiducial cross section

 $\Delta R_{ib} > 0.8$

i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\sigma_i^{ m NLO}/\sigma_{ m Full}^{ m NLO}$
Full	$868.8(2)^{+60\%}_{-35\%}$	$1225(1) {}^{+1\%}_{-14\%}$	1.00	1.00
Prod.	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19
Mix	25.465(5)	-236(1)	0.029	-0.19
Decay	0.2099(1)	0.1840(8)	0.0002	0.0002

- $\mathcal{K} = \sigma_{\text{Full}}^{\text{NLO}} / \sigma_{\text{Full}}^{\text{LO}} = 1.41$
- Scale uncertainties reduced from 60% to 14%
- Dominated by Prod.

LO cross section

 $\sigma_{gg}^{\text{LO}} = 561.1(2) \text{ fb} \quad (65\%)$ $\sigma_{gq}^{\text{LO}} = 272.6(1) \text{ fb} \quad (31\%)$ $\sigma_{qq'}^{\text{LO}} = 35.10(1) \text{ fb} \quad (4\%)$

- Internal PDF uncertainties
 - NNPDF3.1: $\sigma^{\text{NLO}} = 1225(1)^{+1.3\%}_{-1.3\%}$ fb
 - MSHT20: $\sigma^{\text{NLO}} = 1212(1)^{+2.1\%}_{-1.8\%}$ fb
 - CT18: $\sigma^{\text{NLO}} = 1197(1)^{+2.9\%}_{-2.7\%}$ fb

Integrated Fiducial cross section

$\Delta R_{jb} > 0.8$			$\Delta R_{jb} > 0.4$						
i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\sigma_i^{ m NLO}/\sigma_{ m Full}^{ m NLO}$	i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\overline{\sigma_i^{ m NLO}}/\sigma_{ m Full}^{ m NLO}$
Full	$868.8(2)^{+60\%}_{-35\%}$	$1225(1) + 1\% \\ - 14\%$	1.00	1.00	Full	$1074.5(3)^{+60\%}_{-35\%}$	1460(1) + 1% - 13%	1.00	1.00
Prod.	843.2(2) + 60% - 35%	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19	Prod.	$983.1(3)^{+60\%}_{-35\%}$	$1662(1)^{+11\%}_{-18\%}$	0.91	1.14
Mix	25.465(5)	-236(1)	0.029	-0.19	Mix	89.42(3)	-205(1)	0.083	-0.14
Decay	0.2099(1)	0.1840(8)	0.0002	0.0002	Decay	1.909(1)	2.436(6)	0.002	0.002
$\sigma_{ m Pro}^{ m NL0}$	$D_{\rm d.LOdecay} =$	$\left(\frac{\Gamma_t^{\rm NLO}}{\Gamma_t^{\rm LO}}\right)^2 \sigma_{\rm P}^{\rm NLO}$	$_{\rm rod.}^{\rm LO} = 122$	$21(1)^{+12\%}_{-19\%}$	$\sigma_{ m Pro}^{ m NL}$	$_{\rm d.LOdecay}^{\rm O} = 13$	$390(2)^{+11\%}_{-18\%}$		

- LO: Prod. increased by 24%, Mix increased by 250%, Decay increased by 810%
- NLO: Relative size of Mix decreased
- Differences up to 5% for Prod. LOdecay, scale uncertainties reduced by 5%

Differential Fiducial cross section

$\Delta R_{jb} > 0.4$

- 800 Prod. (LOdec) Full (NLO) NNPDF3.1 600 $d\sigma/d\Delta\phi_{j_1j_2}$ [fb] $\mu_0 = H_T/2$ 400 200 1.30 1.15Ratio 1.000.85 $0.70^{
 m L}_{
 m 0}$ $\pi/4$ $3\pi/4$ $\pi/2$ π $\Delta \phi_{j_1 j_2}$
 - Shape distortions up to 15%
 - Scale uncertainties reduced by 5%

- Shape distortions up to 20%
- Scale uncertainties reduced by 5% below 300 GeV

Differential Fiducial cross section

$\Delta R_{jb} > 0.8$

- NLO QCD corrections ~30% 60%
- Scale uncertainties reduced from 60% to 15%

- Mix/Full [-25%, 20%]
- Mix sensitive to ΔR_{jb} at small energies

Differential Fiducial cross section

$\Delta R_{jb} > 0.8$

- NLO QCD corrections ~30% 50%
- Scale uncertainties reduced from 60% to 15%

- Mix/Full [-25%, -7%]
- Larger shape distortions for $\Delta R_{jb} > 0.4$

Fiducial cross section ratios

$\Delta R_{jb} > 0.8$					
\mathcal{R}_n	$\mathcal{R}^{ ext{LO}}$	$\mathcal{R}^{ ext{NLO}}$	$\mathcal{R}_{ ext{exp}}^{ ext{NLO}}$		
$\mathcal{R}_1 = \sigma_{t\bar{t}j} / \sigma_{t\bar{t}}$ $\mathcal{R}_2 = \sigma_{t\bar{t}jj} / \sigma_{t\bar{t}j}$	$\begin{array}{c} 0.3686 {}^{+12\%}_{-10\%} \\ 0.2539 {}^{+11\%}_{-9\%} \end{array}$	$\begin{array}{c} 0.3546^{+0\%}_{-5\%} \\ 0.2660^{+0\%}_{-5\%} \end{array}$	$\begin{array}{c} 0.3522 {}^{+0\%}_{-3\%} \\ 0.2675 {}^{+0\%}_{-2\%} \end{array}$		
$\mathcal{R}_{\mathrm{exp}}^{\mathrm{NLO}} = \frac{\sigma_{t\bar{t}j(j)}^{0}}{\sigma_{t\bar{t}(j)}^{0}} \left(1 + \frac{\sigma_{t\bar{t}j(j)}^{1}}{\sigma_{t\bar{t}j(j)}^{0}} - \frac{\sigma_{t\bar{t}(j)}^{1}}{\sigma_{t\bar{t}j(j)}^{0}} \right)$					

- NLO QCD corrections ~ 4% 5%
- Reduced scale uncertainties by consistent expansion in α_s from 5% to 2% 3%
- PDF uncertainties with NNPDF3.1 ~0.5%

Conclusion

- NLO QCD corrections to $pp \to t\bar{t}(jj) \to W^+W^-b\bar{b}jj \to \ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}jj$
- Jet radiation consistenly included in production and decay of top-quark pair
- LO dominated by Prod., Mix and Decay contributions negligible at LO
- Mixing of different resonant contributions at NLO QCD
- Different sign of Mix contribution at NLO
- Theoretical uncertainties dominated by scale uncertainties

Outlook

- Cross section ratios $R_b = \sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ and $R_c = \sigma_{t\bar{t}c\bar{c}}/\sigma_{t\bar{t}jj}$ in fiducial phase space
- Hadronic W boson decays \rightarrow lepton + jet top-quark decay channel