

Electroweak and QCD corrections to off-shell tZj production at the LHC

Giovanni Pelliccioli

Max-Planck-Institut für Physik

Introduction

Improving the perturbative description of full off-shell top-quark processes at colliders is a mandatory step for realistic predictions, though not the only one (parton-shower matching, hadronisation, \dots).

Computing NLO QCD and EW corrections is not straightforward:

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. non-resonant effects and spin-correlations must be included,
- 4. mixing of EW and QCD corrections at a given order.

This talk has a focus on

 \rightarrow tZj at the LHC (mostly based on Denner GP Schwan JHEP 10 (2022) 125 [2207.11264])

Rare processes

Rare processes at the LHC: weak boson(s) V in association with

 $\star\,$ a single (anti)top quark: $t \mathit{Vj}/\overline{t} \mathit{Vj} \rightarrow$ EW induced

* a top-antitop pair: $t\bar{t}V \rightarrow QCD$ induced (but large EW contribution)

Rare processes

Rare processes at the LHC: weak boson(s) V in association with

 $\star\,$ a single (anti)top quark: $tVj/\bar{t}Vj\rightarrow$ EW induced

* a top-antitop pair: $t\bar{t}V \rightarrow QCD$ induced (but large EW contribution)

Theory motivations and experimental measurements

Gives access to top-quark-to-Z-boson (more directly than $t\bar{t}Z$), triple-gauge (WWZ) and Wtb couplings to constrain new physics.

EW-induced process: top quark strongly polarised [Mahlon Parke 9912458].

Beyond the Standard Model

Phenomenological studies with vector-like top partners [Reuter Tonini 1409.6962], anomalous couplings [Li et al. 1103.5122, Kidonakis 1712.01144, Liu Moretti 2010.05148].

Broad SMEFT interpretation for tZj and tHj [Degrande et al. 1804.07773].

Owing to embedded $bW^+ \rightarrow tZ$ scattering, high sensitivity to anomalous Z-fermions and triple-gauge couplings, controlling leading energy-growth of amplitude:

$$\mathcal{A}_{(-,0,-,0)} \propto \sqrt{s(s+t)} \left(g_L^{\mathsf{Zb}} - g_L^{\mathsf{Zt}} + g^{\mathsf{WZ}}
ight)$$

So far, SM modelling with on-shell approx., off-shell effects needed in fiducial regions:

NLO QCD: narrow-with approximation (NWA) [Campbell Ellis Röntsch 1302.3856].

NLO QCD+EW, on-shell: on-shell top , off-shell Z [Pagani Tsinikos Vryonidou 2006.10086].

PS matching: NLO QCD + QCD shower, LO decays [Pagani Tsinikos Vryonidou 2006.10086]

NLO, full off-shell: NLO EW + QCD [Denner GP Schwan 2207.11264] in the 3ℓ channel.

Soft-gluon resummation: exact NLO + soft-gluon corr. [Kidonakis Yamanaka 2210.09542].

LO contributions

LO: LO_{QCD} non-resonant, LO_{int} vanishes (CKM unit matrix), single-top in LO_{EW}. Channels with initial states $q\bar{q}$, qb

NLO contributions

NLO QCD and **EW**: genuine corrections to LO EW (no interference). Real channels with initial states $q\bar{q}$, qb, gq, γq , gb, γb .

Not possible to distinguish between *t*-channel and *s*-channel contributions at NLO:

Fiducial-volume for top quark contaminated by hadronically decaying antitop $(\gamma \mathbf{\bar{b}}, \mathbf{g}\mathbf{\bar{b}})$:

The same holds for the charged-conjugated process: very large correction ($\approx +10\%$). Irreducible bkg that can only be treated with jet vetoes/ special cuts.

Setup

 $p p \rightarrow e^+e^- \mu^+ \nu_\mu j_b J + X$ at $\mathcal{O}(\alpha_s \alpha^6)$ and $\mathcal{O}(\alpha^7)$ [Denner GP Schwan 2207.11264]

- full tree-level and one-loop amplitudes: RECOLA1 [Actis et al. 1605.01090]
- 1-loop tensor-integral reduction and evaluation: COLLIER [Denner et al. 1604.06792]
- multi-channel integration with $\operatorname{MoCaNLO}$ in-house Monte Carlo
- dipole subtraction of IR singularities [Catani Seymour 9605323, Dittmaier 9904440]
- complex-mass scheme [Denner et al. 9904472] for W, Z, top
- NNPDF3.1 NNLO LUXQED PDFs (photon included, [Bertone et al. 1712.07053]);
- Γ_t computed including NLO QCD+EW corrections [Basso et al. 1507.04676].

Selections mimic those of [ATLAS 2002.07546].

Jets: b-jets (j_b) and light jets (j) clustered with k_t algorithm [Catani et al. Nucl.Phys.B406(1993)] and R = 0.4, $N_b \ge 1$, $N_{j_b} + N_j \ge 2$, $p_{T,j_b}, p_{T,j} > 35$ GeV, $|y_{j_b}| < 2.5$, $|y_j| < 4.5$

Leptons 3 dressed leptons clustered with k_t algorithm and R = 0.1, $p_{T,\ell_1} > 28$ GeV, $p_{T,\ell} > 20$ GeV, $|y_\ell| < 2.5$, $M_{e^+e^-} > 30$ GeV, $\Delta R_{\ell J} > 0.4$

Central-scale choice: $\mu_0 = (M_{T,t} + M_{T,Z})/6$ (inspired by [Pagani et al. 2006.10086]).

Recontruction of top-quark and spectator-jet observables

Missing p_T owing to single neutrino: reconstructing top quark is possible.

Strategy for single-top [Cao et al. 0504230], used in differential tZj analysis [CMS 2111.02860].

Identify top-decay (j_t) and spectator (j_s) jets (recall that $N_b \ge 1$ and $N_{j_b} + N_j \ge 2$):

$$\begin{array}{ll} & N_{j_b} + N_j = 2: \\ & \quad & N_{j_b} = 1, \ N_j = 1: \ \text{no ambiguity for } j_t, j_s \\ & \quad & N_{j_b} = 2: \ \text{minimize } |M_{j_b\ell\nu^{rec}} - m_{top}| \ \text{for } j_t, \ \text{other is } j_s \\ \\ & \quad & N_{j_b} + N_j > 2: \\ & \quad & N_{j_b} = 1: \ \text{no ambiguity for } j_t, \ \text{hardest-} p_T \ \text{light jet is } j_s \\ & \quad & N_{j_b} \geq 2: \ \text{minimize } |M_{j_b\ell\nu^{rec}} - m_{top}| \ \text{for } j_t, \ \text{hardest-} p_T \ \text{light jet is } j_s \\ \end{array}$$

Reconstruct neutrino with resonance-aware on-shell requirement $M_{\ell\nu^{rec}}^2 = M_W^2$ (quadratic eq.):

- if complex sol., take real part
- if 2 real sol., minimize $|M_{j_t\ell\nu^{rec}} m_{top}|$ $(M_{j_b\ell\nu^{rec}}$ if ambiguity for $j_t)$

Integrated cross-sections

Fiducial cross-sections [Denner GP Schwan 2207.11264]	Contribution	Default setup σ [fb]	δ [%]	Z-peak setup σ [fb]	δ [%]
 Sizeable QCD and EW corrections. QCD-scale (downward) uncertainty diminished from LO to NLO QCD. 	$\mathcal{O}(\alpha^6) = \mathrm{LO}$ $\mathcal{O}(\alpha_{\mathrm{s}}\alpha^6)$ $\mathcal{O}(\alpha^7)$	$\begin{array}{c} 0.6416 \\ -13.5\% \\ 0.1987(5) \\ -0.0416(6) \end{array}$	$100.0 \\ 31.0 \\ -6.5$	$\begin{array}{c} 0.5846 \\ -13.5\% \\ 0.1788(5) \\ -0.0499(6) \end{array}$	100.0 30.6 -8.5
	NLO QCD NLO EW NLO QCD+EW	$\begin{array}{c} 0.8402(5) \begin{array}{c} +8.6\% \\ -3.9\% \\ 0.5999(6) \begin{array}{c} +9.4\% \\ -13.9\% \\ 0.7986(8) \begin{array}{c} +9.4\% \\ -4.2\% \end{array}$	$131.0 \\ 93.5 \\ 124.5$	$\begin{array}{c} 0.7634(5) \begin{array}{c} +8.6\% \\ -3.9\% \\ 0.5348(6) \begin{array}{c} +9.4\% \\ -13.9\% \\ 0.7135(8) \begin{array}{c} +9.8\% \\ -4.4\% \end{array}$	130.6 91.5 122.0

Z-peak setup: 81GeV < $M_{e^+e^-}$ < 101GeV (default: $M_{e^+e^-}$ > 30GeV).

Off-shell [Denner GP Schwan 2207.11264] vs on-shell [Pagani et al. 2006.10086] in Z-peak setup: same EW correction (relative to NLO QCD), differences at NLO QCD.

	on-shell	off-shell $*$ (w/o decay corr.)	off-shell*
NLO QCD/LO	1.24	1.289	1.195
(NLO QCD+EW)/NLO QCD	0.93	0.919	0.924

* excluded $\bar{b}\gamma$, $\bar{b}g$ channels

Transverse-momentum of jets

- increasing positive QCD corrections (up to 100%) due to LO suppression
- EW-Sudakov enhancement in the tail

- decreasing QCD corrections (\rightarrow 0 at large p_T), no LO suppression
- tZ system recoils against j_s (Z typically soft or close to top)

Transverse-momentum of leptons

- EW corr. flat for μ^+ : $\bar{b}\gamma$ contributions cancel NLO EW to LO channels.
- dominance of EW Sudakov logs for e⁻
- QCD effects stronger for μ^+ than for Z-decay leptons

Invariant-mass of the top quark

Recontruction mostly affects radiative-return tail at low mass (both EW and QCD) Negative NLO corr. at peak, positive otherwise

Invariant-mass of the Z boson and the di-jet system

- rather flat QCD corrections
- large EW radiative return below peak (soft photons)

 hadronic-antitop peak at 165GeV (below m_{top}, owing to jet-identification)

Rapidity and angular observables

Rapidity separation between top-decay jet and spectator jet

- tZ topology peaks at $|\Delta y_{j_t j_s}| \approx 2.5$
- large hadronic-antitop contamination for $|\Delta y_{i_t i_s}| < 1$

Polarisation-sensitive polar angle of the antimuon in the top-quark rest frame

- definition similar to helicity basis
- depletion of anti-collinear region due to cuts, top-quark mostly left handed

Conclusions

Essential to properly model off-shell/decay effects in top-quark-associated processes for upcoming fiducial and differential LHC measurements .

Take-home messages from tZj:

- QCD-scale uncertainties not so reduced owing to EW production mechanism
- NLO EW corrections negative and scale-independent
- **EW-Sudakov enhancement** in tails of *p*_T and mass distributions.
- opening of new sub-processes with higher-orders
- overlap with other resonance structures in fiducial volume (TWZ)
- combined NLO may exceed scale-unc. of the NLO_{QCD}, not severe in tZj
- off-shell effects relevant in the tails of several distributions (mass, p_T)
- both EW and QCD corrections change distribution shapes (also angular ones)

Rapidity distributions

Partonic channels

ch.	$\delta_{ m sum}^{ m LO}$ [%]	$\begin{smallmatrix} \delta_{\rm sum}^{\rm NLO \ EW} \\ [\%] \end{smallmatrix}$	$ \delta_{\rm sum}^{\rm NLO~QCD} \\ [\%]$	$\delta_{\rm sum}^{\rm NLO~QCD+EW}$ [%]	$\begin{array}{c} \delta^{\mathcal{O}(\alpha^7)}_{\mathrm{ch.}} \\ [\%] \end{array}$	$ \begin{smallmatrix} \delta^{\mathcal{O}(\alpha_{\rm s}\alpha^6)}_{\rm ch.} \\ [\%] \end{smallmatrix} $	$ \delta^{\mathcal{O}(\alpha^7) + \mathcal{O}(\alpha_{\rm s}\alpha^6)}_{\rm ch.} \\ [\%] $
$q_{\rm u} {\rm b}$	82.9	76.3	59.7	53.1	-8.0	-28.0	-36.0
gq_u			30.6	30.6			
$\bar{b}g$			11.1	11.1			
$^{\mathrm{gb}}$			10.4	10.4			
$\bar{q}_{\rm d} { m b}$	14.5	13.5	10.2	9.3	-6.4	-29.5	-35.9
$\bar{q}_{\rm d} { m g}$			5.5	5.5			
$\bar{q}_{\rm d} q_{\rm u}$	1.9	1.7	3.0	2.8	-10.5	54.7	44.2
$\gamma \mathrm{b}$		0.7		0.7			
$\bar{\mathrm{b}}\gamma$		0.6		0.6			
$\bar{b}q_{u}$	0.6	0.5	0.5	0.4	-13.0	-19.3	-32.3
$\gamma q_{\rm u}$		0.1		0.1			
$\bar{\mathrm{b}} \bar{q}_{\mathrm{d}}$	0.1	0.1	0.1	0.1	-11.1	-22.3	-33.4
$\bar{q}_{\mathrm{d}}\gamma$		0.02		0.02			