A new observable for W-mass determination

Paolo Torrielli

Università di Torino and INFN

RADCOR, Crieff, 30/5/2023

Based on: Rottoli, PT, Vicini, hep-ph/2301.04059

Paolo Torrielli

A new observable for W-mass determination

Role of M_W

- *M_W* fundamental SM parameter, input to global EW fits.
- Quantum corrections to M_W are sensitive to M_{top}, M_H, allowing stringent SM tests.
- Aiming at 10⁻⁴ relative accuracy on its determination.
- Also in view of recent CDF result, need to assess accuracy of methodologies employed for M_W determination.

M_W determination at hadron colliders

- M_W extracted from $pp \rightarrow \ell \nu$, charged-current DY (CCDY) at hadron colliders.
- Define relevant transverse observables: p_t^{ℓ} , and $M_t^{\ell\nu} = \sqrt{2 p_t^{\ell} p_t^{\nu} (1 \cos \Delta \phi^{\ell\nu})}$.
- ▶ p_t^{ℓ} and $M_t^{\ell\nu}$ spectra display a kinematical jacobian peak with position related to M_W :

$$\frac{d\sigma}{dp_t^{\ell}} \propto \frac{1}{\sqrt{1 - (2\,p_t^{\ell}/\hat{s})^2}} \sim \frac{1}{\sqrt{1 - (2\,p_t^{\ell}/M_W)^2}}$$

Jacobian-peak description

- Jacobian peak sensitive to a variety of effects.
- ► Soft radiation causes integrable singularity [Catani,Webber '97] at fixed order beyond LO at $p_t^\ell = M_W/2$.
- QCD resummation required. Significant progress [Chen et al., 2203.01565; Chen et al., 2205.11426; Campbell, Neumann 2207.07056; Camarda, Cieri, Ferrera, 2303.12781].

- Importance of QED FSR and mixed QCD-EW corrections at the jacobian peak (see e.g. [Carloni et al., 1612.02841]).
- Significant progress in mixed QCD-EW corrections at fixed order [Behring, et al. 2009.10386, 2103.02671; Buonocore et al. 2102.12539; Bonciani et al., 2106.11953; Armadillo et al. 2201.01754; Buccioni et al. 2203.11237], and with resummation [Cieri et al. 1805.11948; Autieri et al. 2302.05403].

Standard extraction of M_W from jacobian peak: template fitting

- Compute theoretical distributions for p^ℓ_t (or M^{ℓν}_t) with different hypotheses M_{W,i} for the W mass (template distributions).
- Compare templates with exp. data in a fit window; calculate χ_i^2 for each $M_{W,i}$ hypothesis.
- Extract M_W as the $M_{W,i}$ hypothesis associated to the smallest χ_i^2 .

- Theory prediction must be close to data to get reasonable minimum χ².
- Need to control shapes at the permille level to resolve ΔM_W/M_W ~ 10⁻⁴.
- But: even most accurate QCD predictions for p^t_ℓ or M^{t_ℓν} have uncertainties at the percent level (see e.g. [Chen et al., 2203.01565, Chen et al., 2205.11426; Neumann, Campbell 2207.07056]).

The role of tuning in template fits

Events per GeV

Ratio to ref

0

0.6

10

- Procedure restored leveraging high-precision p_t^Z data in neutral-current Drell Yan (NCDY).
- (Low accuracy) event generators are calibrated to describe NCDY data.
- Tuning performed on parameters of a non-perturbative (NP) model, typically intrinsic k_t and shower NP scale p_{t0} .
- Fit region LHCb 15 1.7 fb⁻¹ GPVTHIA (ref.) LHCb 1.7 fb⁻¹ After fi WHEGPYTHIA (ref.) 90 YTHIANNPDF31 Ratio to ref. 0.8 0.6 Events / 0.5 GeV ATLAS Doto 14 W -----120 $^{2}/dof = 29/39$ 100 20 1.02 Data / Pred. 0.99 0.9 p_ [GeV]
- Same tuning parameters are used to prepare CCDY templates.
- After tuning, χ² of p^ℓ_t templates in CCDY is under control.

Paolo Torrielli

A new observable for W-mass determination

Concerns about template fitting

- ► Heavily reliant on tuning of parton showers. Dominated by NP physics, the least known.
- Assumes universality of NP model: should carefully assess uncertainty on information transfer from p_t⁷ to CCDY p_t^ℓ.
- Higher-orders partly included via reweighing and partly mimicked by tuning. Significant progress in perturbative understanding of DY not fully exploited.
- χ^2 definition does not include scale uncertainties (non-statistical).

Robust assessment of theoretical uncertainties given up in template fitting.

Concerns about template fitting

- ► Heavily reliant on tuning of parton showers. Dominated by NP physics, the least known.
- Assumes universality of NP model: should carefully assess uncertainty on information transfer from p_t⁷ to CCDY p_t^ℓ.
- Higher-orders partly included via reweighing and partly mimicked by tuning. Significant progress in perturbative understanding of DY not fully exploited.
- χ^2 definition does not include scale uncertainties (non-statistical).

Robust assessment of theoretical uncertainties given up in template fitting.

Aim: define a procedure allowing for a transparent discussion of M_W uncertainties.

Aim: minimise reliance on Z calibration when extracting M_W .

A new observable for M_W determination

p_t^ℓ distribution in CCDY

- *p*^ℓ_t spectrum at ±2% accuracy using accurate QCD
 predictions. N³LL from RadISH [Bizon, Monni, Re, Rottoli, PT,
 '17;18;19;21], NNLO from MCFM [Campbell, Ellis, Neumann].
- Including resummation cures integrable singularity: physical description of the jacobian peak.

p_t^ℓ distribution in CCDY

- *p*^ℓ_t spectrum at ±2% accuracy using accurate QCD
 predictions. N³LL from RadISH [Bizon, Monni, Re, Rottoli, PT,
 '17,18,19,21], NNLO from MCFM [Campbell, Ellis, Neumann].
- Including resummation cures integrable singularity: physical description of the jacobian peak.

- Ratio of p^f_t spectra with different M_W largely independent of QCD (resummed) approximation. Mild dependence only in uncertainty band.
- Sensitivity to M_W variations stems from W propagation and decay, factorised from QCD ISR.
- Which p_t^{ℓ} bins carry most of the sensitivity to M_W ?

Paolo Torrielli

A new observable for W-mass determination

Covariance matrix w.r.t. M_W variations (I)

• Given *N* bins σ_i around the p_t^{ℓ} jacobian peak, their sensitivity to M_W can be quantified by constructing a covariance matrix

$$\mathcal{C}_{ij}^{(M_{W})} = \langle \sigma_{i} \sigma_{j} \rangle - \langle \sigma_{i} \rangle \langle \sigma_{j} \rangle, \qquad \langle x \rangle = \frac{1}{p} \sum_{k=1}^{p} x_{(k)},$$

where p is the number of M_W hypotheses considered.

- ▶ Diagonalisation of $C^{(M_W)}$ gives N orthogonal p_t^{ℓ} -bin combinations (eigenvectors).
- Corresponding eigenvalues represent the sensitivity of eigenvectors to M_W variations.

Covariance matrix w.r.t. M_W variations (II)

- First eigenvalue dominates (Eigen[1]/Tr[COV] ~ 99%): bulk of M_W sensitivity captured by a single bin combination.
- Indeed the dominant effect of ΔM_W is just to rigidly shift the spectrum by $\Delta M_W/2$.
- Define a simple observable as a proxy for the dominant eigenvector (i.e. positive coeffs. below ~ 37 GeV, negative above): jacobian asymmetry.

Paolo Torrielli

A new observable for *W*-mass determination

The jacobian asymmetry $\mathcal{A}_{p_t^{\ell}}$

- ► L = sum of bins below ~ 37 GeV, with +1 coeff; -U = sum of bins above, with -1 coeff. Mimicking the dominant covariance eigenvector.
- Simple observable constructed as combination of fiducial rates in relatively wide p_t^{ℓ} bins.
- A single scalar number depending only on the bin edges, measurable via counting.

Paolo Torrielli

A new observable for W-mass determination

$\mathcal{A}_{p_{t}^{\ell}}$ sensitivity to M_{W} (I)

- ► $+\Delta M_W$ shifts jacobian peak by $+\Delta M_W/2$, depleting *L* and populating *U*: asymmetry decreases linearly if $p_{\perp,\text{mid}}^{\ell}$ at the left of the peak.
- Slope independent of QCD approx./scale: reflecting factorisation of QCD production from M_W-sensitive propagation/decay.
- Expected to carry over to NP QCD.
- Slope related to the magnitude of the first covariance eigenvalue.
- Slope depends on the value of the bin edges [p^ℓ_{⊥,min}, p^ℓ_{⊥,mid}, p^ℓ_{⊥,max}].

$\mathcal{A}_{p_t^{\ell}}$ sensitivity to M_W (II)

- $\mathcal{A}_{p\ell}$ = combination of fiducial rates.
 - Excellent perturbative QCD convergence.
 - Importance of higher-order results for high-accuracy prediction.

 $\mathcal{A}_{p_{\star}^{\ell}}$ = based on wide p_{t}^{ℓ} bins $\mathcal{O}(5-10 \text{ GeV})$.

- Small stat./syst. experimental errors.
- Viability to unfold detector effects: combination of different experimental M_W determinations.
- M_W simply extracted as the intersection of theoretical and experimental lines.
- $\Delta M_W \sim \pm 15$ MeV from asymmetry measurement seems feasible experimentally. (Estimated assuming 0.1% error on the measurement of *L* and *U* and no correlation. Statistical error ~ 10 times smaller already with $\mathcal{L} = 140$ fb⁻¹)

$\mathcal{A}_{p_t^\ell}$ dependence on p_t^ℓ bin edges

- Perturbative convergence generally very well behaved.
- Importance of including N³LL to assess quality of perturbative convergence.
 Perturbative stability checked beyond mere scale variation.
- Some trade-off between sensitivity (improving at higher $p_{\perp,\mathrm{mid}}^\ell$) and perturbative convergence (improving at lower $p_{\perp,\mathrm{mid}}^\ell$).
- ► $\Delta M_W \sim \pm 5$ MeV from perturbative QCD achievable based on CCDY alone.

Including further effects

Preliminary study only dealt with perturbative QCD.

Starting point for a complete quantitative assessment of contributions sensitive to M_W and their theoretical uncertainty.

- Impact of PDFs.
- Impact of NP QCD modelling.
- QED and mixed QCD-EW perturbative corrections.
- Systematic covariance studies to include effects beyond asymmetry.

....

Impact of PDF choice on jacobian asymmetry

- ▶ Variations from 100 NNPDF4.0 NNLO replicas on NLO+NLL result: $\Delta M_W \sim \pm 12$ MeV.
- Spread from 3 other PDF sets (central replica) on N3LL+NNLO result: $\Delta M_W \sim 30$ MeV.
- Asymmetry slope unaffected: factorisation of initial-state effects from W propagation/decay.
- ▶ PDF spread can be reduced to few MeV using additional p_t^{ℓ} bins, anti-correlation of different rapidity windows [Bozzi, Citelli, Vesterinen, Vicini, '15; Bagnaschi, Vicini, '19], combination of W^+ and W^- .

Paolo Torrielli

Tevatron check

- ► $\Delta M_W \gtrsim \pm 30 \text{ MeV} (\pm 10 \text{ MeV})$ at the Tevatron using $p_t^{\ell} (M_t^{\ell\nu}) \text{ NLO+(N)NLL QCD}$ (the ResBos accuracy [Balazs, Yuan, '97; Landry, Brock, Nadolsky, Yuan, '03]).
- To be compared with O(±2 MeV) perturbative-model uncertainties quoted by CDF II, see also [Isaacson, Fu, Yuan, 2205.02788].

Paolo Torrielli

Outlook

Study of theoretical uncertainties problematic with a template-fit procedure to M_W extraction. Calibration on data improves the accuracy of data description, not the precision of the model. Jacobian asymmetries $\mathcal{A}_{p_t^{\ell}}$ and $\mathcal{A}_{M_t^{\ell\nu}}$ can help discussion of uncertainties.

- Capturing most of the sensitivity to M_W (covariance): visible linear dependence on M_W .
- Excellent perturbative QCD stability and accuracy.
- Experimental statistical and systematic errors under control \rightarrow precision measurement.
- \blacktriangleright Viability to unfold data to particle level \rightarrow global experimental combination.
- ▶ Systematic assessment of all sources of sensitivity to *M_W*: PDF, NP, EW, ...

Thank you for your attention

Taming PDF uncertainties with additional p_t^{ℓ} bins [Bagnaschi, Vicini, 1910.04726]

- ► Strong anti-correlation under PDF variations between p_t^{ℓ} regions below/above jacobian peak.
- Take PDF correlations into account directly in the definition of χ²:

$$\begin{split} \chi_{i}^{2} &= \sum_{r,s \,\in \,\mathrm{bins}} \left(\mathcal{T}^{i} - \mathcal{D}^{\mathrm{exp}} \right)_{r} \left(\mathcal{C}^{-1} \right)_{rs} \left(\mathcal{T}^{i} - \mathcal{D}^{\mathrm{exp}} \right)_{s} \\ \mathcal{C} &= \Sigma_{\mathrm{pdf}} + \Sigma_{\mathrm{stat}} + \Sigma_{\mathrm{mc}} + \Sigma_{\mathrm{exp}}^{\mathrm{syst}} \\ (\Sigma_{\mathrm{pdf}})_{rs} &= \langle \mathcal{T}_{r}^{i} \, \mathcal{T}_{s}^{i} \rangle_{\mathrm{pdf}} - \langle \mathcal{T}_{r}^{i} \rangle_{\mathrm{pdf}} \, \langle \mathcal{T}_{s}^{i} \rangle_{\mathrm{pdf}} \end{split}$$

Correlation leads to profiling of PDF replicas → significant reduction of PDF uncertainty w.r.t. the case with no PDF covariance, at the few-MeV level.

Toy study on the effect of calibration to Z production

- Compute NNLO+NNLL NCDY p^Z_t reweighing factors to match NCDY 'data' (NNLO+N³LL central), mimicking tuning.
- One reweighing factor per scale choice to estimate how perturbative QCD uncertainty propagates in the tuning procedure.
- Apply rwg factors to NNLO+NNLL CCDY p^{ℓν}_t spectrum; compare with CCDY 'data' (NNLO+N³LL central).
- p_t^{ℓ} after reweighing agrees better with CCDY 'data', but maintain some shape difference: delicate to assume that $p_t^{\ell\nu}$ rescaling applies equally well to p_t^{ℓ} .
- ΔM_W similar with and without reweighing: starting point for tuning should be the highest available perturbative order to minimise systematics in the Z to W transfer.
- NP = additional effect to asymmetry calculation (slope unaffected), not the central ingredient of M_W extraction, as for template fitting.

Importance of EW effects

- Significant effects from QED FSR and from mixed QCD-EW corrections at the jacobian peak for p^ℓ_t (see e.g. [Carloni, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini, 1612.02841]).
- Effects only from QED FSR at the jacobian peak for M^{ℓν}_t.
- QED FSR affect both asymmetry value and slope.
- Smearing of p^ℓ_t distribution expected, leading to slight M_W-sensitivity loss.

EW effects at the jacobian peak [Carloni, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini, 1612.02841]

	$p\bar{p} \rightarrow W^+$, $\sqrt{s} = 1.96 \text{ TeV}$			M_W shifts (MeV)				
	Templates accuracy: NLO-QCD+QCD _{PS}		$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+\nu(\text{dres})$			
	Pseudodata accuracy	$\rm QED \; FSR$	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	NLO-QCD+(QCD+QED) _{PS}	Pythia	-91 ± 1	-308 ± 4	-37±1	-116 ± 4		
2	NLO-QCD+(QCD+QED) _{PS}	Photos	-83 ± 1	-282 ± 4	-36 ± 1	-114±3		
3	$\rm NLO-(QCD+EW)-two-rad+(QCD+QED)_{PS}$	Pythia	-86 ± 1	-291 ± 3	-38 ± 1	-115 ± 3		
4	${\rm NLO}\text{-}({\rm QCD}\text{+}{\rm EW})\text{-}\texttt{two-rad}\text{+}({\rm QCD}\text{+}{\rm QED})_{\rm PS}$	Photos	$\text{-}85{\pm}1$	$^{-290\pm4}$	-37 ± 2	-113 ± 3		

	$pp \rightarrow W^+$, $\sqrt{s} = 14 \text{ TeV}$		M_W shi	ts (MeV)	
	Templates accuracy: LO	$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+ \nu$	
	Pseudo–data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	Horace only FSR-LL at $O(\alpha)$	-94 ± 1	-104 ± 1	-204 ± 1	-230 ± 2
2	Horace FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	Horace FSR-LL + Pairs	-94 ± 1	-102 ± 1	-182 ± 2	-199 ± 1
5	Photos FSR-LL	-92 ± 1	-100 ± 2	-182 ± 1	-199 ± 2

- EW effects induce a smearing of the jacobian peak, shifting the extracted M_W.
- Leading effect from QED FSR, extra few-MeV shifts from subleading EW effects.
- Quantitatively, EW impact depends on the underlying QCD model: importance to include EW effects on top of an accurate QCD prediction.
- Significant progress in calculation of QCD-EW corrections at fixed order [Behring, et al. 2009.10386, 2103.02671; Buonocore et al. 2102.12539; Bonciani et al., 2106.11953; Armadillo et al. 2201.01754; Buccioni et al. 2203.11237], and in resummation [Cieri et al. 1805.11948; Autieri et al. 2302.05403].

Covariance studies beyond jacobian asymmetry

- Effect of ΔM_W on p_ℓ^ℓ is a shift: sensitivity to M_W mainly encoded in primary eigenvector (~asymmetry) representing translations (Eigen[1]/Tr[COV] ~ 0.99).
- Secondary eigenvalues extremely suppressed
- Covariance allows systematic classification of eigenvectors according to M_W sensitivity.
- Secondary eigenvectors can be separately analysed (if need be) and included once their perturbative stability is established.
- Not possible with template fitting, all secondary eigenvectors lumped with the first: very little gain in sensitivity at the price of much more noisy analysis.