

Flavour Identification of Reconstructed Hadronic Jets RG, Alexander Huss, Giovanni Stagnitto, PRL 130 (2023) 16

Rhorry Gauld

RADCOR 2023 (30/05/23)

MAX-PLANCK-INSTITUT FÜR PHYSIK

I) General introduction

- Final state jets
- Related progress in fixed-order calculations

2) The challenges of jet flavour

- The problem(s)
- Summary of recent solution(s)

3) The flavour dressing algorithm

- Motivation and context
- Some pheno. results (Z+c-jet)

2

$$\mathrm{d}\sigma_{pp\to f+X} = \sum_{i,j} \int \mathrm{d}x_1 \mathrm{d}x_2 f_a(x_1) f_b(x_2) \mathrm{d}\hat{\sigma}_{ab\to f+\hat{X}}(\hat{s},\dots) \left(1 + \mathcal{O}(\Lambda_{QCD}/Q)\right)$$

$$d\hat{\sigma}_{ab \to f+..} = d\hat{\sigma}_{ab \to f+..}^{LO} + \alpha_s \, d\hat{\sigma}_{ab \to f+..}^{NLO} + \alpha_s^2 \, d\hat{\sigma}_{ab \to f+..}^{NNLO} + \dots$$
(renormalised) amplitudes
$$\text{ subtracting/slicing}$$

$$\text{ application of jet algorithm}$$

InfraRed and Collinear safe observables

- Those not impacted by collinear splitting(s) or emission(s) of soft particles
- Those calculated in terms of quarks and gluons where the $m_q \rightarrow 0$ limit does not introduce singularities (Stermann, Weinberg '77)
- ➡ Can (reliably) use fixed-order perturbation theory

$$d\sigma_{PP \rightarrow f+X}^{data\,(meas.)}$$
 vs $d\sigma_{PP \rightarrow f+X}^{fixed-order}$

KLN theorem: (Kinoshita '62, Lee & Nauenberg '64)

- For such observables, a cancellation of IRC divergences between virtual and real emissions is ensured (order-by-order)
- IRC unsafe observables can be defined, all-order-resummation/factorisation theorems typically required (PDF evolution, obs. dependent resummation)

Final state jets

Final state jets

Experiment:

focus of this talk will be flavour identified (c/b) jets

- a) Higgs physics (hadronic decays)
- b) Top-quark physics ($|V_{tb}| \sim 1$)
- c) New physics searches (f-jet $+E_T^{\text{miss}}$)
- d) Gauge-boson + heavy-flavour

Recent NNLO progress with flavoured jets

Methods		All calculations consider flavoured jets						
Antenna Stripper Nested SC Q_T subtraction Q_T +CoLoRFul Slicing + P2B Slicing (MCFM)			$VH Z + b$ $t\bar{t} t\bar{t}(+W+c)$			$Z + c$ $B)$ $W + h\bar{h}$		
VH			$VH(m_b)$					
VH						$W + b\bar{b}(m_b)$		
t, \bar{t}		t, \overline{t}			[Luca's talk]			
2016	2017	2018	2019	2020	2021	2022	2023	2024

Recent NNLO progress with flavoured jets

I) General introduction

- Final state jets
- Related progress in fixed-order calculations

2) The challenges of jet flavour

- The problem(s)
- Summary of recent solution(s)

3) The flavour dressing algorithm

- Motivation and context
- Some pheno. results (Z+c-jet)

Jets at the LHC

Experimentally: apply an algorithm to particle flow objects (Kaons, Pions,...) (e.g. ATLAS arXiv: 1703.10485, CMS arXiv: 1706.04965, LHCb arXiv: 1310.8197)

The anti-k_T algorithm (Cacciari, Salam, Soyez arXiv:0802.1189) applied to these objects

Or... initialise a list of particles (pseudo jets) from these objects

Introduce distance measures between particles (pseudo jets) and a Beam:

$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
$$d_{iB} = k_{Ti}^{2p} \qquad \text{anti-kt} (p=-1)$$

(Inclusive) clustering proceeds by identifying the min. distance:

- If it is d_{ij} combine particles ij (update list to contain combined particle)
- If it is d_{iB} , identify i as a jet and remove from list

[repeat until <u>list</u> is empty]

Jets at the LHC

Experimentally: apply an algorithm to particle flow objects (Kaons, Pions,...) (e.g. ATLAS arXiv: 1703.10485, CMS arXiv: 1706.04965, LHCb arXiv: 1310.8197)

The anti-k_T algorithm (Cacciari, Salam, Soyez arXiv:0802.1189) applied to these objects

k_T (p=1)

anti- k_T (p=-1)

Heavy-flavour jets at the LHC

Typical experimental approaches of defining jet flavour (truth/data level): (ATLAS arXiv:1504.07670, CMS arXiv:1712.07158, LHCb arXiv:1504.07670)

i) First identify flavour-blind anti- k_T jets in a fiducial region

ii) Tag these jets with flavour by the presence of I or more D/B hadrons

 $\Delta R(j,D/B) < 0.5$

iii) [ATLAS/LHCb] Apply p_T requirement to D/B hadron ~ $p_T^{D/B} > 5 \text{ GeV}$

Heavy-flavour jets at the LHC

Typical experimental approaches of defining jet flavour (truth/data level): (ATLAS arXiv:1504.07670, CMS arXiv:1712.07158, LHCb arXiv:1504.07670)

i) First identify flavour-blind anti- k_T jets in a fiducial region

ii) Tag these jets with flavour by the presence of I or more D/B hadrons

 $\Delta R(j, D/B) < 0.5$

iii) [ATLAS/LHCb] Apply p_T requirement to D/B hadron ~ $p_T^{D/B} > 5$ GeV

Solutions to this problem

Comments/status

"The Flavour-k_T algorithm"
(Banfi, Salam, Zanderighi: hep-ph/0601139)

k⊤ jets

Solutions to this problem

"The Flavour-k^T algorithm"
(Banfi, Salam, Zanderighi: hep-ph/0601139)

... theory progress on NNLO QCD jet calculations (VH, $t\bar{t}$ w/ decay, V + j) ...

Practical jet flavour through NNLO (Caletti, Larkoski, Marzani, Reichelt: arXiv:2205.01109) (substructure based)

Comments/status

k_⊤ jets

Infrared-safe flavoured anti-k_T jets (Czakon, Mitov, Poncelet: arXiv:2205.11879) approx. anti-k_T jets

A dress of flavour to suit any jet (**RG**, Huss, Stagnitto: arXiv:2208.11138) Tested at N3LO ($e^+e^- \rightarrow jets$)

Solutions to this problem

Comments/status k_⊤ jets (Banfi, Salam, Zanderighi: hep-ph/0601139)

... theory progress on NNLO QCD jet calculations (VH, $t\bar{t}$ w/ decay, V + j) ...

Practical jet flavour through NNLO (Caletti, Larkoski, Marzani, Reichelt: arXiv:2205.01109)

Infrared-safe flavoured anti- k_{T} jets (Czakon, Mitov, Poncelet: arXiv:2205.11879)

"The Flavour-k_T algorithm"

approx. anti-k_T jets

(substructure based)

Tested at N3LO ($e^+e^- \rightarrow jets$) A dress of flavour to suit any jet (**RG**, Huss, Stagnitto: arXiv:2208.11138)

(substructure based) Flavoured jets with exact anti- k_T kinematics (Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler: preliminary—Moriond Mar '23)

I) General introduction

- Final state jets
- Related progress in fixed-order calculations

2) The challenges of jet flavour

- The problem(s)
- Summary of recent solution(s)

3) The flavour dressing algorithm

- Motivation and context
- Some pheno. results (Z+c-jet)

(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti-k_T jets (actually, any jet)

(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti-k_T jets (actually, any jet)

(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti-k_T jets (actually, any jet)

(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti-k_T jets (actually, any jet)

(RG, Huss, Stagnitto arXiv:2208.11138)

Stage I: dress the flavoured particles with collinear radiation

(altering momenta but not flavour)

flavoured particles \rightarrow flavoured 'clusters' (potentially annihilating m collinear $f_i f_j$ pairs*)

*adjustment of original algorithm

(RG, Huss, Stagnitto arXiv:2208.11138)

Stage 2: Calculate
$$d_{ab}$$
 for all $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$

$$d_{ab} = \Delta R_{ab}^2 \max\left(p_{T,a}^{\alpha}, p_{T,b}^{\alpha}\right) \min\left(p_{T,a}^{2-\alpha}, p_{T,b}^{2-\alpha}\right)$$

(this is the original flavour- k_T distance)

$$d_{aB\pm} = \max(p_{T,a}^{\alpha}, p_{T,B_{\pm}}^{\alpha}(y_{\hat{f}_{a}})) \min(p_{T,a}^{2-\alpha}, p_{T,B_{\pm}}^{2-\alpha}(y_{\hat{f}_{a}}))$$

(rapidity dependent measure of the Beam)

- If min. is d_{fj} : assign f quantum number to j, [remove f from list]
- If min. is: d_{ff} or d_{fB} , [remove f from list]

[repeat until <u>list</u> is empty]

Note: only evaluate d_{fj} if the f is associated to the jet (e.g. a constituent) 25 [complete details in back-up slides]

(RG, Huss, Stagnitto arXiv:2208.11138)

Stage 2: Calculate
$$d_{ab}$$
 for all $\{j_1, \dots, j_m\}, \{\hat{f}_1, \dots, \hat{f}_n\}$

Adjustment required (Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler) [e.g. unsafe configuration "IDS x FDS" encountered at N4LO]

$$d_{ab} = 2p_a \cdot p_b$$

(TBC, simple fix with Jade distance and β <2 in clustering)

- If min. is d_{fi} : assign f quantum number to j, [remove f from list]
- If min. is: d_{ff} or d_{fB} , [remove f from list] ►

[repeat until <u>list</u> is empty]

Note: only evaluate d_{fj} if the f is associated to the jet (e.g. a constituent) [complete details in back-up slides]

(RG, Huss, Stagnitto arXiv:2208.11138)

Stage 3: Count how many flavours assigned to each jet $\{j_1,\ldots,j_m\}$

How to count flavour quantum numbers:

- With charge info. (q vs q̄), then q = +1 and q̄ = −1 (net flavour is sum of the q_i and q̄_i assigned to jet j_n)
- If one cannot (e.g. experiment), |q| = |q
 | = 1
 (net flavour is sum [modulo 2] of the q_i and q
 _j assigned to jet j_n)
 [i.e. even tagged jets are NOT flavoured]

Outcome: a set of flavour identified (anti-k_T) jets $\left\{j_1^{f_1}, \ldots, j_m^{f_m}\right\}$

This algorithm is applicable at the measurement level in experiments

Summary

(reminder: I have detailed the "flavour-dressing" approach)

- i) Several theory motivated algorithms for jet flavour, with differences:
- * Reproduction of exact anti- k_T kinematics (at parton or hadron level)
- * Fixed-order IRC safety (between N2LO and N6LO+)
- * Applicability at truth-level (parton) or measurement (unstable B/D hadrons)
- ii) Experimental feasibility (or dependence on an unfolding correction)
 * Size of this correction may be strongly algorithm/process dependent

Summary

(reminder: I have detailed the "flavour-dressing" approach)

- i) Several theory motivated algorithms for jet flavour, with differences:
- * Reproduction of exact anti- k_T kinematics (at parton or hadron level)
- * Fixed-order IRC safety (between N2LO and N6LO+)
- * Applicability at truth-level (parton) or measurement (unstable B/D hadrons)
- ii) Experimental feasibility (or dependence on an unfolding correction)
 * Size of this correction may be strongly algorithm/process dependent

critical question: how to define $f \, {\rm to} \, {\rm best}$ enable this comparison

$$d\sigma_{PP \rightarrow f+X}^{data\,(meas.)}$$
 vs $d\sigma_{PP \rightarrow f+X}^{theory}$

a lot of exciting work: close experiment + theory collaboration still required

Whiteboard

(1/3) collinear-safe flavoured objects

(RG, Huss, Stagnitto arXiv:2208.11138)

flavoured particles (quarks, hadrons) not collinear safe. Define new objects: i) Initialise a <u>list</u> of all particles

ii) Add to the list all flavoured particles, removing any overlap

iii) Calculate the distances $d_{ij} = \Delta R_{ij}^2$ between all particles

iv) If $d_{ij}^{\min} > \Delta R_{cut}^2$ terminate the clustering. Otherwise:

I. (i & j flavourless) replace i & j in the list with combined object ij

2. (i or j flavoured) combine i and j if:

$$\frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R_{\text{cut}}}\right)^{\beta} \quad \text{[Soft-drop]} \\ \text{(Larkoski et al. arXiv:1402.2657)}$$

Otherwise:

(i & j flavoured) remove both from list

(i or j flavourless) remove only flavourless object

[Repeat until list empty, or no flavoured particles left]

(2/3) Association criterion and counting (**RG**, Huss, Stagnitto arXiv:2208.11138) We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$

We introduce an **Association criterion** for \hat{f}_a with j_b (some possibilities):

- the flavoured particle f_a is a constituent of jet j_b
- or $\Delta R(\hat{f}_a, j_b) < R_{\text{tag}}$
- or Ghost association of \hat{f}_a (include direction of \hat{f}_a in anti-k_T clustering) (association criterion required as not assumed that f_a is a stable particle)

Introduce a **Counting** or **Accumulation** for flavour:

- with charge info. (q vs \bar{q}), then q = +1 and $\bar{q} = -1$ (net flavour is sum)
- if one cannot (e.g. experiment), $q = \bar{q} = 1$ (net flavour is sum modulo 2) [i.e. jets with even number of $q_i + \bar{q}_j$ are NOT flavoured]

(3/3) The flavour dressing algorithm

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

Dressing algorithm:

- Calculate a set of distances between the flavoured objects, jets and beam:
 - [ff] d_{ab} between all all flavoured objects \hat{f}_a and \hat{f}_b
 - [fj] d_{ab} between \hat{f}_a and j_b ONLY if there is an association
 - [fB] d_{aB} for all \hat{f}_a without a jet association
- Find the minimum distance of all entries in the list
 - if it is an [fj] assign \hat{f}_a to j_b (removing entries involving \hat{f}_a from list)
 - otherwise just remove \hat{f}_a [fB] or \hat{f}_a and \hat{f}_b [ff] from the list

[repeat until list empty]

• The flavour of each jet is then just the accumulation of its flavour

(3/3) The flavour dressing algorithm

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

Note: Originally we used the distance measures proposed in flavour-k_T (Banfi, Salam, Zanderighi hep-ph/0601139)

$$d_{ab} = \Delta R_{ab}^2 \max\left(p_{T,a}^{\alpha}, p_{T,b}^{\alpha}\right) \min\left(p_{T,a}^{2-\alpha}, p_{T,b}^{2-\alpha}\right)$$

$$d_{aB\pm} = \max(p_{T,a}^{\alpha}, p_{T,B_{\pm}}^{\alpha}(y_{\hat{f}_{a}})) \min(p_{T,a}^{2-\alpha}, p_{T,B_{\pm}}^{2-\alpha}(y_{\hat{f}_{a}}))$$

As pointed out by (Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler) alteration required

[e.g. unsafe configuration "IDS x FDS" encountered at N4LO]

(TBC: addressed with Jade distance and $\beta < 2$) $d_{ab} = 2p_a \cdot p_b$

Tests of the algorithm (e^+e^-)

(RG, Huss, Stagnitto arXiv:2208.11138)

Consider the process $e^+e^- \rightarrow 2$ jets at fixed-order using k_T algorithm

Look at 'bad' events (i.e. where we do not find 2 flavoured jets, $e^+e^- \rightarrow q\bar{q}$)

The 'bad' cross-section should vanish in the $y_3 \rightarrow 0$ limit $(y_3 \text{ defines the distance measure at which the event goes from 2 jet <math>\rightarrow$ 3 jet) $(y_3 \rightarrow 0 \text{ corresponds to limit of extremely soft and/or collinear emissions})$ $\mathcal{O}(\alpha_{\rm s}^3)$ $\mathcal{O}(\alpha_s^2)$ $\mathcal{O}(\alpha_{s})$ Durham (k_T) jets Durham (k_T) jets Durham (k_T) jets $e^+ e^- \rightarrow jets$ $e^+ e^- \rightarrow jets$ e⁺ e⁻ → jets 0.3 2000 12 naive naive 10 $d\sigma_{bad}/dlog(y_3)$ (1/o_{Born}) do_{bad}/dlog(y₃) 1500 dress [a=2] dress [a=2] 0.2 dress [a=1] 8 dress [a=1] 1000 0.1 500 (1/σ_{Born}) (2 0 0 naive 'collinear -500 dress [a=2] -2 coeff of $(a_s/2\pi)^2$ coeff of $(a_s/2\pi)^3$ dress -1000 -0.1 -20 -18 -16 -14 -12 -10 -6 -4 -20 -18 -16 -14 -12 -10 -8 -2 -20 -18 -16 -14 -12 -10 -2 -8 $log(y_3)$ $log(y_3)$ $log(y_3)$

These tests originally proposed/shown in the original flavour- k_T study

 $(1/\sigma_{Born}) d\sigma_{bad}/dlog(y_3)$

(Banfi, Salam, Zanderighi hep-ph/0601139)

Tests of the algorithm (pp)

(RG, Huss, Stagnitto arXiv:2208.11138)

Can also perform all-order 'sensitivity' tests using Parton Shower framework

In this case study, also use resolution variable to probe IRC sensitive regions (here we study the behaviour, rather than the bad cross-section vanishing)

Here consider dijet events (exclusive k_T algorithm) with $E_T \ge 1$ TeV

We use the resolution variable: $y_3^{k_T} = d_3^{k_T}/(E_{T,1} + E_{T,2})$

These tests originally proposed/shown in the original flavour-k_T study

(Banfi, Salam, Zanderighi hep-ph/0601139)

Application of the algorithm (pp)

(RG, Huss, Stagnitto arXiv:2208.11138)

Now consider the process $pp \rightarrow Z + b - jet$ in Fiducial region (13 TeV, CMS-like)

(N)NLO at fixed-order w/ NNLOJET, RG et al. arXiv:2005.03016

NLO+PS Hadron-level with aMC@NLO interfaced to Pythia8

Tests sensitivity to: all-order effects, hadronisation (also FO IRC safety in pp)

37

 $p_{T,b-jet}$

 $p_{T,Z}$

Higher-order configurations / pitfalls

(Ludovic Scyboz, Moriond QCD)

Applications: Z+c-jet at LHCb

LHCb measurement (13 TeV), arXiv: 2109.08084

Forward kinematics:

$$x_{1(2)} \sim \frac{1}{\sqrt{s}} \left(m_T^Z e^{+(-)y_Z} + p_T^j e^{+(-)y_j} \right)$$

unique probe of large(small) x see Boettcher et al., arXiv: 1512.06666

39

Applications: Z+c-jet at LHCb

Article Open Access Published: 17 August 2022

Evidence for intrinsic charm quarks in the proton

The NNPDF Collaboration

<u>Nature</u> 608, 483–487 (2022) Cite this article

42k Accesses 7 Citations 374 Altmetric Metrics

(not observed by all pdf fitting groups, CTEQ-TEA Guzzi et al. arXiv:2211.01387)

Applications: Z+c-jet at LHCb ... MPI

Possibility for multiple hard interactions in a single pp-collision

e.g. single-parton-scattering (SPS), double-parton-scattering (DPS), ...

Hard Process I (HPI) = Z+jet

The jet is flavour inclusive

Hard Process 2 (HP2) = $c\bar{c}$

Large cross-section at LHCb

Probability that $\Delta R(j_{HP1}, c_{HP2}) \le 0.5$ leading to a charm tagged jet (small phase-space compensated by large $c\bar{c}$ cross-section)

Applications: Z+c-jet at LHCb

RG, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, Stagnitto, arXiv:2302.12844

$$\frac{d\sigma^{Z+c-jet}}{dy_Z}$$

Note: no direct comparison to data:

- IRC safe jet algorithm required (resumming charm PDF critical)
- Data sensitive to MPI contributions (positive and rapidity dependent)

More details in backups

NNLO QCD corrections positive and grow with y_Z (mimicking intrinsic charm)

Calculated in the 3fs scheme (i.e. $n_f^{\text{max}} = 3$ in PDFs, and α_s evolution)

$$d\sigma^{3fs} = d\sigma^{m_c=0} + d\sigma^{\ln[m_c]} + d\sigma^{m_c}$$
Massless component
 $\mathcal{O}(\alpha_s^2 n_f)$ in 4fs
 $\mathcal{O}(\alpha_s^2 n_f)$ in 4fs
 $\mathcal{O}(\alpha_s^2 n_f)$ in 4fs

Note, initial-state mass singularities still there (even with IRC safe jet alg.)

Calculated in the 3fs scheme (i.e. $n_f^{\text{max}} = 3$ in PDFs, and α_s evolution)

$$d\sigma^{3fs} = d\sigma^{m_c=0} + d\sigma^{\ln[m_c]} + d\sigma^{m_c}$$

0.220 = +0.0364 +0.203 -0.019 [pb]
100% = +16% +92% -8%

Note, initial-state mass singularities still there (even with IRC safe jet alg.)

Applications: Z+c-jet at LHCb

The perturbative corrections are enormous: resummation critical (this class of logarithm resummed by PDF evolution)

LHCb cross-section: Leading Log (1st order) = 0.203pb, Leading Log (resumed) = 0.332pb I am showing fixed-order pdf versus a resummed one (PDF evolution)

$$\alpha_s^m \ln^n[\mu_F^2/m_c^2], \quad m \ge n$$
 Note! $\alpha_s \ln[m_Z^2/m_c^2] \approx 1.0$

MPI effects

Z+c-jet

Heavy-quark pair production

(RG et al., arXiv:1506.08025)

These are the theory uncertainties (PDF+scales) for D-cross section at LHCb

With a requirement of $P_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}} > 5 \text{ GeV QCD uncertainties } > 50\% (at best)$

Z+b-jet and unfolding

How to account for theory-experiment mismatch? [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer] PRL 125 (2020) 22, 222002
Use an NLO + Parton Shower prediction (which can evaluate both)
I) Prediction at parton-level, flavour-k_T algorithm (Theory)
2) Prediction at hadron-level, anti-k_T algorithm (Experiment)

We use RooUnfold (following the procedure used in the exp. analyses)