Semileptonic and nonleptonic B decays at NNLO

RADCOR 2023
Manuel Egner | Crieff, May 30, 2023
based on work with:
Matteo Fael, Kay Schönwald, Matthias Steinhauser

Outline

(1) Introduction
(2) Calculation

- Analytic approach
- Numerical approach
(3) Results
(4) Conclusion and Outlook

Motivation

Calculation of B-meson lifetimes in HQE:

$$
\Gamma(B)=\Gamma_{3}+\Gamma_{5} \frac{\left\langle\mathcal{O}_{5}\right\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\left\langle\mathcal{O}_{6}\right\rangle}{m_{b}^{3}}+\cdots+16 \pi^{2}\left(\Gamma_{6} \frac{\left\langle\tilde{\mathcal{O}}_{6}\right\rangle}{m_{b}^{3}}+\Gamma_{7} \frac{\left\langle\tilde{\mathcal{O}}_{7}\right\rangle}{m_{b}^{4}}+\ldots\right) .
$$

- Heavy Quark Expansion (HQE): Decay width of B-meson as sum of decay width of a free b-quark (Γ_{3}) and corrections

- Error contributions on B-meson lifetimes dominated by uncertainty induced by renormalization scale μ
- Knowing the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contributions will reduce the uncertainty induced by the renormalization scale variation.

Motivation

- Goal: Hadronic decay channels $b \rightarrow c \bar{u} d$ and $b \rightarrow c \bar{c} s$ at $\mathcal{O}\left(\alpha_{s}^{2}\right)$.
- In this talk: Semileptonic decay channel $b \rightarrow c / \bar{\nu}$ at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ as a proof of concept.
- Use different methods to calculate master integrals
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ corrections for semileptonic decay channel are already known
\rightarrow cross checks
$\Rightarrow b \rightarrow c / \bar{\nu}$ calculation to set up a frame work for the calculation for the hadronic decay channels

What is known?

Previous calculations including finite charm quark mass for Γ_{3} :

Semileptonic decay channel:

- $\mathcal{O}\left(\alpha_{s}^{1}\right)$ [Nir (1989)]
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ [Czarnecki, Pak (2008)], [Dowling, Piclum, Czarnecki (2008)]
- $\mathcal{O}\left(\alpha_{s}^{3}\right)$ [Fael, Schönwald, Steinhauser (2021)] [Czakon, Czarnecki, Dowling (2021)]
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ and $\mathcal{O}\left(\alpha_{s}^{3}\right)$ calculations as expansions in mass ratios, no exact analytic results.

Hadronic decay channel:

- $b \rightarrow c \bar{u} d: \mathcal{O}\left(\alpha_{s}^{1}\right)$ [Bagan, Ball, Braun, Gosdzinsky (1994)]
- $b \rightarrow c \bar{c} s: \mathcal{O}\left(\alpha_{s}^{1}\right)$ [Bagan, Ball, Fiol, Gosdzinsky (1995)]
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$, including only massless quarks in the final state, $b \rightarrow u$, but only one operator [Czarnecki, Slusarczyk, Tkachov (2006)]

Calculation setup

- Optical theorem:

$$
\Gamma=\frac{1}{m_{b}} \operatorname{Im}[\mathcal{M}(b \rightarrow b)]
$$

- Integrate out W-boson

$$
\frac{1}{\left(m_{W}^{2}-p^{2}\right)} \rightarrow \frac{1}{m_{W}^{2}}
$$

- At $\mathcal{O}\left(\alpha_{s}^{2}\right)$ calculate imaginary part of 4-loop diagrams

Calculation setup

- Generate diagrams with QGRAF [Nogueira (1993)].
- Mapping on integral families with TAPIR [Gerlach, Herren, Lang (2022)] and EXP [Harlander, Seidensticker, Steinhauser (1998-1999)].
- Reduction to master integrals with Kira [Klappert, Lange,

Maierhöfer, Usovitsch (2021)].

- Choose good basis of master integrals, where ϵ and $x=m_{c} / m_{b}$ factorize, with ImproveMasters.m [Smirnov, Smirnov (2020)].
- Calculate only imaginary part of master integrals (optical theorem)

70 diagrams
\Downarrow
24 families
\Downarrow

129 master integrals in 9 families

Master integrals: analytic calculation

Two sets of master integrals:

Exact analytic calculation of imaginary part of 96 master integrals with cut through one charm quark.

Master integrals: analytic calculation

- Calculating master integrals via differential equations:
- Determination of ϵ-form [Henn (2013)], [Lee (2014)] for 92 integrals with Canonica [Meyer (2018)] and Libra [Lee (2020)].
- Remaining part of the differential equations (4 integrals) which we could not bring to ϵ-form:

$$
\frac{m_{c}}{m_{b}}=\frac{1-t^{2}}{1+t^{2}}
$$ decouple system with OreSys [Gerhold (2002)], Sigma.m [Schneider (2007)].

- Handling of iterated integrals with HarmonicSums [Ablinger (2010)].

$$
\xrightarrow{\vec{l}=T \cdot \vec{\jmath}} \frac{\mathrm{~d}}{\mathrm{~d} t} \vec{J}=\epsilon \tilde{A}(t) \cdot \vec{J}
$$

- Fix constants \vec{c} by matching to boundary conditions
- Boundary conditions: asymptotic expansion in $\delta=1-m_{c}^{2} / m_{b}^{2}$ the limit $m_{c} \approx m_{b}$

$$
\rightarrow \vec{J}=\int^{t} \epsilon \tilde{A}\left(t^{\prime}\right) \cdot \vec{J} \mathrm{~d} t^{\prime}+\vec{c}
$$

Master integrals: analytic calculation

Similar to calculation of $\mathcal{O}\left(\alpha_{s}^{2}\right)$ [Dowling, Piclum, Czarnecki (2008)] and $\mathcal{O}\left(\alpha_{s}^{3}\right)$ [Fael, Schönwald, Steinhauser (2021)] corrections:

- Fix boundary condition in the limit $m_{c} \approx m_{b}$.
- Asymptotic expansion [Beneke, Smirnov (1997)] of master integrals in $\delta=1-m_{c}^{2} / m_{b}^{2}$.
- Two relevant momentum scalings:
- hard: $\left|k^{\mu}\right| \sim m_{b}$
- ultrasoft: $\left|k^{\mu}\right| \sim \delta \cdot m_{b}$

Master integrals: analytic calculation

- Obtain master integrals in terms of iterated integrals over the alphabet

$$
\frac{1}{t}, \quad \frac{1}{1+t}, \quad \frac{1}{1-t}, \quad \frac{t}{1+t^{2}}, \quad \frac{t^{3}}{1+t^{4}}
$$

- Exact analytic result for $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contributions (new!)
- Exact analytic expression \rightarrow allows for expansion around different kinematic limits:
- Massless charm quark:

$$
x=\frac{m_{c}}{m_{b}}=0 \quad \leftrightarrow \quad t=1
$$

- Heavy charm quark:

$$
x=\frac{m_{c}}{m_{b}}=1 \quad \leftrightarrow \quad \delta=0 \quad \leftrightarrow \quad t=0
$$

Analytic results

$$
\Gamma(b \rightarrow c \mid \bar{\nu})=\frac{A_{e w} G_{F}^{2} m_{b}^{5}\left|V_{c b}\right|^{2}}{192 \pi^{3}}\left(x_{0}+\frac{\alpha_{s}}{\pi} C_{F} X_{1}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} C_{F} X_{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right),
$$

with

$$
X_{2}=C_{F} X_{F}+C_{A} X_{A}+T_{F}\left(n_{l} X_{l}+n_{c} X_{c}+n_{b} X_{b}\right)
$$

- $n_{l}=3, n_{c}=1, n_{b}=1$ number of light, charm and bottom quarks.
- All $\left\{X_{F}, X_{A}, X_{l}, X_{c}, X_{b}\right\}$ depending on the mass ratio m_{c} / m_{b} as functions of t, polynomials and iterated integrals up to weight five

Comparing results

- Expand amplitude around $m_{c} \approx m_{b}$ after insertion of analytic master integrals
- Compare $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contribution [Dowling, Piclum, Czarnecki (2008)]
\rightarrow Reproduce same results for all color factors!

Comparing results

- Expand amplitude around $m_{c} \approx m_{b}$ after insertion of analytic master integrals
- Compare $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contribution [Dowling, Piclum, Czarnecki (2008)]
\rightarrow Reproduce same results for all color factors!
- Results as an expansion in $x=m_{c} / m_{b}$ are known up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ [Czarnecki, Pak (2008)].
- Expand amplitude in x after insertion of analytic master integrals
- Compare $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contribution
\rightarrow Reproduce same results for $T_{F} n_{l}$ and $T_{F} n_{h}$ but not for $T_{F} n_{C}, C_{F}^{2}$ and $C_{F} C_{A}$, because of 3 charm contributions

Cuts through 3 charm quarks

- Boundary conditions for differential equations at $m_{c} \approx m_{b}$
- Cut through three charm quarks is trivially set to zero in this limit!
- Expect this contribution to be small because of small phase space ($m_{b} \approx 4.5 \mathrm{GeV}, 3 m_{c} \approx 3.9 \mathrm{GeV}$)!
\Rightarrow Alternative approach to calculate both, one and three charm cut contributions

Master integrals: Expand and Match

Calculation procedure: [Fael, Lange, Schönwald, Steinhauser (2021, 2022)]

- Strating point: DEQ for master integrals
- Make general expansion ansatz in $\delta=1-m_{c}^{2} / m_{b}^{2}$ around certain point δ_{0} for integral

$$
\begin{aligned}
I_{i}\left(\delta, \delta_{0}\right) & =\sum_{j=\epsilon_{\min }}^{\epsilon_{\max }} \sum_{m=0}^{j+4} \sum_{n=0}^{n_{\max }} c[i, j, m, n] \epsilon^{j}\left(\delta_{0}-\delta\right)^{n} \log ^{m}\left(\delta_{0}-\delta\right) \\
\delta_{0} & =\frac{8}{9} \rightarrow \log \left(\frac{8}{9}-\delta\right)=\log \left(\left|\frac{8}{9}-\delta\right|\right)-i \pi
\end{aligned}
$$

- Insert ansatz in DEQ

$$
\ldots c[i, j, m, n] \frac{\mathrm{d}}{\mathrm{~d} \delta}\left(\delta_{0}-\delta\right)^{n}+\cdots=\ldots c[i, j, m, n-1]\left(\delta_{0}-\delta\right)^{n-1}+\ldots
$$

\rightarrow Linear equations for $c[i, j, m, n]$ for every power in δ

- Solve system of linear equations with Kira [Klappert, Lange, Maierhöfer, Usovitsch (2021)] and FireFly [Klappert, Lange(2020)]

Master integrals: Expand and Match

- Determine remaining coefficients by matching to numerical results (AMFlow [Liu, Ma (2022)])
- Expansions around several expansion points:
- Expansion including Logarithms around $x=1 / 3 \leftrightarrow \delta=8 / 9, x=0 \leftrightarrow \delta=1$ and $x=1 \leftrightarrow \delta=0$.
- Taylor expansions around other expansion points.

Example:

(1) Taylor expansion around $\delta_{0}=0.5$
(2) Obtain numerical values of integrals at $\delta=0.5$ with AMFlow
(3) Determine expansion coefficients by matching expansion of step 1 to numerical results of step 2
(4) Taylor expansion around $\delta_{0}=0.7$
(5) Evaluate expansions of step 1 at $\delta=0.6$
(6) Determine expansion coefficients of expansion of step 4 by matching to numerical results of step 5
(7) repeat for next expansion point

Master integrals: Expand and Match

Real part of sample integral calculated by "Expand and Match" method at $\mathcal{O}\left(\epsilon^{2}\right)$:

Master integrals: Expand and Match

Real part of sample integral calculated by "Expand and Match" method at $\mathcal{O}\left(\epsilon^{2}\right)$:

Master integrals: Expand and Match

Real part of sample integral calculated by "Expand and Match" method at $\mathcal{O}\left(\epsilon^{2}\right)$:

Master integrals: Expand and Match

Real part of sample integral calculated by "Expand and Match" method at $\mathcal{O}\left(\epsilon^{2}\right)$:

Master integrals: Expand and Match

Real part $\mathrm{O}\left(\epsilon^{\wedge} 2\right)$

$\delta=1-m_{c}^{2} / m_{b}^{2}$

Master integrals: Expand and Match

Imaginary part $\mathrm{O}\left(\epsilon^{\wedge} 2\right)$

Master integrals: Expand and Match

Relative difference between numerical calculations with AMFlow and "Expand and Match" results at $\mathcal{O}\left(\epsilon^{2}\right):$
$\left|\frac{I_{\mathrm{E} \& \mathrm{M}}(\delta)-I_{\text {AMFlow }}(\delta)}{I_{\text {AMFlow }}(\delta)}\right|$

$\delta=1-m_{c}^{2} / m_{b}^{2}$

Results: Pole cancellation

Check results by combining bare NNLO amplitude ($\mathrm{A}_{\text {bare }}$) with Expand\&Match master integrals and analytic counter terms CT

$$
\frac{\left|\mathrm{A}_{\text {bare }}+\mathrm{CT}\right|}{\mathrm{CT}}
$$

- Colour factors are set to numerical value
- Use different expansions:

$$
\begin{array}{cl}
x_{0}=1 / 12 & x \in[0.02,0.12) \\
x_{0}=1 / 6 & x \in[0.12,0.20) \\
x_{0}=1 / 4 & x \in[0.20,0.28) \\
x_{0}=1 / 3 & x \in[0.28,0.42) \\
x_{0}=1 / 2 & x \in[0.42,1.00)
\end{array}
$$

- Starting point: Expansion around $x_{0}=1 / 2$
preliminary:

Comparing results

preliminary:

How good does the numerical and anlytic solution agree?

- Compare bare amplitude of numerical and analytic results:

$$
100 \cdot \frac{\left|\mathrm{~A}_{\text {ana }}-\mathrm{A}_{\mathrm{num}}\right|}{\mathrm{A}_{\mathrm{ana}}}
$$

- Compare in region, where 3 charm cut is zero $(x>1 / 3)$

3 charm cut

How big is the 3 charm contribution?

- In the physical region $x \in[0.2,0.3]$

$$
\frac{\left|\mathrm{A}_{\text {ana }}-\mathrm{A}_{\text {num }}\right|}{\mathrm{A}_{\text {ana }}}
$$

is of the order of $10^{-1} \ldots 10^{-4} \%$
$\rightarrow 3$ charm contribution is negligible in the physical region!

- Obtain expression for 3 charm contribution by subtracting expansion of exact analytic one charm result around $x=0$ from [Czarnecki, Pak (2008)]

3 charm cut

$$
\Gamma(b \rightarrow c c c / \nu)=\frac{A_{e w} G_{F}^{2} m_{b}^{5}\left|V_{c b}\right|^{2}}{192 \pi^{3}} \frac{\alpha_{s}^{2}}{\pi^{2}}\left(C_{F}^{2} X_{F, 3}+C_{F} C_{A} X_{A, 3}+T_{F} n_{c} X_{c, 3}\right)
$$

with $L_{x}=\log (x)$

$$
\begin{aligned}
X_{F, 3} & =-\frac{409}{576}-\frac{349 \pi^{2}}{288}-\frac{7 \pi^{4}}{144}+\frac{19 \pi^{2} \log (2)}{6}+\frac{5 \pi^{2} x}{3}+\left(-\frac{13}{8}+\frac{\pi^{2}}{4}-\zeta_{3}\right) L_{x}-\frac{115 \zeta_{3}}{24} \\
& +x^{2}\left(\frac{12083}{648}-\frac{103 \pi^{2}}{36}-\frac{29 \pi^{4}}{18}-\frac{4 \pi^{2} \log (2)}{3}+\left(-\frac{34}{9}-\frac{4 \pi^{2}}{3}\right) L_{x}^{2}+\frac{14}{3} L_{x}^{3}+\frac{2}{3} L_{x}^{4}\right. \\
& \left.+\left(\frac{961}{54}-\frac{52 \pi^{2}}{9}-60 \zeta_{3}\right) L_{x}-\frac{341 \zeta_{3}}{3}\right)+x^{3}\left(\frac{131 \pi^{2}}{3}-\frac{56 \pi^{3}}{3}-\frac{124 \pi^{2} L_{x}}{3}\right)+\mathcal{O}\left(x^{4}\right) \\
X_{A, 3} & =-\frac{1}{2} X_{F, 3} \\
X_{c, 3} & =-\frac{38225}{5184}+\frac{2 \pi^{2}}{27}+\frac{4 \zeta(3)}{3}+\frac{3 \pi^{2} x}{8}+\left(-\frac{415}{72}+\frac{\pi^{2}}{9}\right) L_{x}-\frac{5}{3} L_{x}^{2}-\frac{2}{9} L_{x}^{3} \\
& +x^{2}\left(\frac{9305}{162}+\frac{38 \pi^{2}}{27}+\frac{340}{9} L_{x}+\frac{20}{3} L_{x}^{2}\right)+x^{3}\left(\frac{209 \pi^{2}}{72}+\frac{16 \pi^{2}}{3} L_{x}\right)+\mathcal{O}\left(x^{4}\right)
\end{aligned}
$$

Conclusion

- We obtained an exact analytic expression for one charm cut contribution to the semileptonic decay width $b \rightarrow c / \bar{\nu}$ at $\mathcal{O}\left(\alpha_{s}^{2}\right)$.
- We compared our exact analytic results with previous known expansions and found agreement.
- We obtained a precise numerical result including one and three charm cut contributions.

What's next?

- Nonleptonic decay channels $b \rightarrow c \bar{u} d$ and $b \rightarrow c \bar{c} s$ with finite charm mass at $\mathcal{O}\left(\alpha_{s}^{2}\right)$.

Thank you for your attention!

